next up previous
Next: Sequents Up: Typed logic Previous: Examples

  
Formal proofs

There are many ways to organize formal proofs of typed formulas, e.g. natural deduction, the sequent calculus, or its dual, tableauxtableaux proof, or Hilbert style systems to name a few. We choose a sequent calculus presented in a top-down fashion (as with tableaux). We call this a refinement logicrefinement logic (RL). The choice is motivated by the advantages sequents provide for automation and display.18 Here is what a simple proof looks like for $A
\in Type$, $P \in A \rightarrow Prop$; only the relevant hypotheses are mentioned and only the first time they are generated.

  $\vdash \forall x: A.\: (\forall y: A.\: P(y) \Rightarrow \exists x:
A.\: P(x))$ by $\forall R$
     
1.           $x:A \vdash \forall y: A.\: P(y) \Rightarrow
\exists x:A.\: P(x)$ by $\Rightarrow\!\!R$
     
1.1                 $f: (\forall y : A.\: P(y)) \vdash \exists x:A.\: P(x)$ by $\forall L$ on f with x
     
1.1.1                      $l: P(x) \vdash \exists x: A.\: P(x)$ by $\exists R$with x
     
         1.1.1.1 $\vdash P(x)$ by $hyp\; l$
     
         1.1.1.2 $\vdash x \in A$ by $hyp\; x$
     
1.1.2 $\vdash x \in A$ by $hyp\; x$
The schematic tree structure with path names is
                       $\vdash G$
  |
  1.    $H_1 \vdash G_1$
  |
  1.1     $H_2 \vdash G_2$        
  $\left / \ \right \backslash $
  1.1.1     $H_3 \vdash G_2$      1.1.2     $H_2 \vdash G_3$
  $ / \ \backslash$                 
  1.1.1.1     $H_3 \vdash G_4$     1.1.1.2     $H_3 \vdash G_3$                     



 
next up previous
Next: Sequents Up: Typed logic Previous: Examples
James Wallis
1999-09-17