- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Preference and Participation Dynamics in Learning Systems (via Zoom)
Abstract: When machine learning models are deployed, they can affect the distribution on which they operate. Such endogenous distribution shifts arise due to the impact of decisions on individuals. In this talk, I will discuss models of impact in two settings: biased-assimilation preference dynamics in personalized recommendation, and participation dynamics in the presence of multiple learners. Based on joint work with Mihaela Curmei, Maryam Fazel, Jamie Morgenstern, and Lillian Ratliff.
Bio:
Sarah is an Assistant Professor in the Computer Science Department at Cornell. She recently completed a PhD in EECS from UC Berkeley and was a postdoc at the University of Washington. Sarah is interested in the interplay between optimization, machine learning, and dynamics, and her research focuses on understanding the fundamentals of data-driven control and decision-making. This work is grounded in and inspired by applications ranging from robotics to recommendation systems.