- About
- Events
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Robotics Ph. D. prgram
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
New Techniques for Proving Fine-Grained Average-Case Hardness (via Zoom)
Abstract: In this talk I will cover a new technique for worst-case to average-case reductions. There are two primary concepts introduced in this talk: "factored" problems and a framework for worst-case to average-case fine-grained (WCtoACFG) self reductions.
We will define new versions of OV, kSUM and zero-k-clique that are both worst-case and average-case fine-grained hard assuming the core hypotheses of fine-grained complexity. We then use these as a basis for fine-grained hardness and average-case hardness of other problems. Our hard factored problems are also simple enough that we can reduce them to many other problems, e.g. to edit distance, k-LCS and versions of Max-Flow. We further consider counting variants of the factored problems and give WCtoACFG reductions for them for a natural distribution.
To show hardness for these factored problems we formalize the framework of [Boix-Adsera et al. 2019] that was used to give a WCtoACFG reduction for counting k-cliques. We define an explicit property of problems such that if a problem has that property one can use the framework on the problem to get a WCtoACFG self reduction.
In total these factored problems and the framework together give tight fine-grained average-case hardness for various problems including the counting variant of regular expression matching.
Based on joint work with Mina Dalirrooyfard and Virginia Vassilevska Williams.
Bio: Andrea Lincoln graduated from MIT's undergraduate program with a double major in Mathematics and Electrical Engineering & Computer Science in 2014. She then received a Masters in Engineering in Electrical Engineering & Computer Science from MIT in 2015, advised by Erik Demaine. In 2016, she graduated with a Masters in Computer Science from Stanford, advised by Virginia Vassilevska Williams. Andrea Lincoln was awarded a Stanford Graduate Fellowship in 2015. She was then awarded the EECS Merrill Lynch Fellowship in 2017. She received the NSF GRFP honorable mention in 2016 and 2017. She is currently a Postdoctoral Researcher at UC Berkeley.