- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Algorithmic Threshold for the Random Perceptron
Abstract: We consider the problem of efficiently optimizing random (spherical or Ising) perceptron models with general bounded Lipschitz activation. We focus on a class of algorithms with Lipschitz dependence on the disorder: this includes gradient descent, Langevin dynamics, approximate message passing, and any constant-order method on dimension-free time-scales. Our main result exactly characterizes the optimal value ALG such algorithms can attain in terms of a one-dimensional stochastic control problem. Qualitatively, ALG is the largest value whose level set contains a certain "dense solution cluster." Quantitatively, this characterization yields both improved algorithms and hardness results for a variety of asymptotic regimes, which are sharp up to absolute constant factors. Joint work (in progress) with Mark Sellke and Nike Sun.
pi.math.cornell.edu | Department of Mathematics