- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Teaching Machines like we Teach People
Today machine learning is largely about statistical pattern discovery and function approximation from large volumes of data. But as computing devices that interact with us in natural language become ubiquitous (e.g., Siri, Alexa, Google Home), and as computer perceptual abilities become more accurate, they open an exciting possibility of enabling end-users to teach machines similar to the way in which humans teach one another. Natural language conversations, gesturing, demonstrations, teleoperation and other modes of communication offer a new paradigm for machine learning through instruction from humans. In this talk I will discuss our effort and progress at CMU to build the next generation conversational agent that can learn from explicit verbal instruction and demonstration.
Bio:
Igor Labutov's interests are in building machine learning algorithms that can learn from natural human supervision, such as verbal or visual instructions. Most recently he was a Postdoc at Carnegie Mellon Machine Learning department working with Tom Mitchell on problems of machine learning from flexible and natural forms of instruction. Prior to that he obtained his PhD from Cornell University where he was advised by Hod Lipson and Christoph Studer, and where he was a recipient of the NSF Graduate Fellowship. His undergraduate degree is from The City College of New York. In June 2018, together with Bishan Yang he co-founded LAER AI., a startup based in New York City, focusing on developing next-generation semantic search tools for enterprises.