MathClasses.orders.semirings

Require Import
  Ring abstract_algebra interfaces.orders theory.rings.
Require Export
  orders.orders orders.maps.

Local Existing Instance srorder_semiring.
Local Existing Instance strict_srorder_semiring.
Local Existing Instance pseudo_srorder_semiring.

Section semiring_order.
  Context `{SemiRingOrder R}.
  Add Ring R : (stdlib_semiring_theory R).

  Global Instance: (z : R), OrderEmbedding (+z).
  Proof.
    intro. split.
     now apply order_preserving_flip.
    now apply order_reflecting_flip.
  Qed.

  Global Instance: z, LeftCancellation (+) z.
  Proof.
    intros z x y E.
    apply (antisymmetry (≤)); apply (order_reflecting (z+)); now apply eq_le.
  Qed.

  Global Instance: z, RightCancellation (+) z.
  Proof. intros. apply (right_cancel_from_left (+)). Qed.

  Lemma nonneg_plus_le_compat_r x z : 0 z x x + z.
  Proof.
    rewrite <-(plus_0_r x) at 1. split; intros.
     now apply (order_preserving _).
    now apply (order_reflecting (x+)).
  Qed.

  Lemma nonneg_plus_le_compat_l x z : 0 z x z + x.
  Proof. rewrite commutativity. now apply nonneg_plus_le_compat_r. Qed.

  Lemma plus_le_compat x₁ y₁ x₂ y₂ : x₁ y₁ x₂ y₂ x₁ + x₂ y₁ + y₂.
  Proof.
    intros E1 E2.
    transitivity (y₁ + x₂).
     now apply (order_preserving (+ x₂)).
    now apply (order_preserving (y₁ +)).
  Qed.

  Lemma plus_le_compat_r x y z : 0 z x y x y + z.
  Proof. intros. rewrite <-(plus_0_r x). now apply plus_le_compat. Qed.

  Lemma plus_le_compat_l x y z : 0 z x y x z + y.
  Proof. rewrite commutativity. now apply plus_le_compat_r. Qed.

  Lemma nonpos_plus_compat x y : x 0 y 0 x + y 0.
  Proof. intros. rewrite <-(plus_0_r 0). now apply plus_le_compat. Qed.

  Instance nonneg_plus_compat (x y : R) : PropHolds (0 x) PropHolds (0 y) PropHolds (0 x + y).
  Proof. intros. now apply plus_le_compat_l. Qed.

  Lemma decompose_le {x y} : x y z, 0 z y = x + z.
  Proof.
    intros E.
    destruct (srorder_partial_minus x y E) as [z Ez].
     z. split; [| easy].
    apply (order_reflecting (x+)).
    now rewrite plus_0_r, <-Ez.
  Qed.

  Lemma compose_le x y z : 0 z y = x + z x y.
  Proof.
    intros E1 E2.
    rewrite E2.
    now apply nonneg_plus_le_compat_r.
  Qed.

  Global Instance: (z : R), PropHolds (0 z) OrderPreserving (z *.).
  Proof.
    intros z E.
    repeat (split; try apply _).
    intros x y F.
    destruct (decompose_le F) as [a [Ea1 Ea2]].
    rewrite Ea2, plus_mult_distr_l.
    apply nonneg_plus_le_compat_r.
    now apply nonneg_mult_compat.
  Qed.

  Global Instance: (z : R), PropHolds (0 z) OrderPreserving (.* z).
  Proof. intros. now apply order_preserving_flip. Qed.

  Lemma mult_le_compat x₁ y₁ x₂ y₂ :
    0 x₁ 0 x₂ x₁ y₁ x₂ y₂ x₁ × x₂ y₁ × y₂.
  Proof.
    intros Ex₁ Ey₁ E1 E2.
    transitivity (y₁ × x₂).
     now apply (order_preserving_flip_nonneg (.*.) x₂).
    apply (order_preserving_nonneg (.*.) y₁); [| easy].
    now transitivity x₁.
  Qed.

  Lemma ge_1_mult_le_compat_r x y z : 1 z 0 y x y x y × z.
  Proof.
    intros.
    transitivity y; [easy |].
    rewrite <-(mult_1_r y) at 1.
    now apply (order_preserving_nonneg (.*.) y).
  Qed.

  Lemma ge_1_mult_le_compat_l x y z : 1 z 0 y x y x z × y.
  Proof. rewrite commutativity. now apply ge_1_mult_le_compat_r. Qed.

  Lemma flip_nonpos_mult_l x y z : z 0 x y z × y z × x.
  Proof.
    intros Ez Exy.
    destruct (decompose_le Ez) as [a [Ea1 Ea2]], (decompose_le Exy) as [b [Eb1 Eb2]].
    rewrite Eb2.
    apply compose_le with (a × b).
     now apply nonneg_mult_compat.
    transitivity (z × x + (z + a) × b).
     rewrite <-Ea2. ring.
    ring.
  Qed.

  Lemma flip_nonpos_mult_r x y z : z 0 x y y × z x × z.
  Proof.
    rewrite 2!(commutativity _ z).
    now apply flip_nonpos_mult_l.
  Qed.

  Lemma nonpos_mult x y : x 0 y 0 0 x × y.
  Proof.
    intros.
    rewrite <-(mult_0_r x).
    now apply flip_nonpos_mult_l.
  Qed.

  Lemma nonpos_nonneg_mult x y : x 0 0 y x × y 0.
  Proof.
    intros.
    rewrite <-(mult_0_r x).
    now apply flip_nonpos_mult_l.
  Qed.

  Lemma nonneg_nonpos_mult x y : 0 x y 0 x × y 0.
  Proof. intros. rewrite commutativity. now apply nonpos_nonneg_mult. Qed.
End semiring_order.

Hint Extern 7 (PropHolds (0 _ + _)) ⇒ eapply @nonneg_plus_compat : typeclass_instances.

Section strict_semiring_order.
  Context `{SemiRing R} `{Apart R} `{!StrictSemiRingOrder Rlt}.
  Add Ring Rs : (stdlib_semiring_theory R).

  Global Instance: (z : R), StrictOrderEmbedding (+z).
  Proof.
    intro. split.
     now apply strictly_order_preserving_flip.
    now apply strictly_order_reflecting_flip.
  Qed.

  Lemma pos_plus_lt_compat_r x z : 0 < z x < x + z.
  Proof.
    rewrite <-(plus_0_r x) at 1. split; intros.
     now apply (strictly_order_preserving _).
    now apply (strictly_order_reflecting (x+)).
  Qed.

  Lemma pos_plus_lt_compat_l x z : 0 < z x < z + x.
  Proof. rewrite commutativity. now apply pos_plus_lt_compat_r. Qed.

  Lemma plus_lt_compat x₁ y₁ x₂ y₂ : x₁ < y₁ x₂ < y₂ x₁ + x₂ < y₁ + y₂.
  Proof.
    intros E1 E2.
    transitivity (y₁ + x₂).
     now apply (strictly_order_preserving (+ x₂)).
    now apply (strictly_order_preserving (y₁ +)).
  Qed.

  Lemma plus_lt_compat_r x y z : 0 < z x < y x < y + z.
  Proof. intros. rewrite <-(plus_0_r x). now apply plus_lt_compat. Qed.

  Lemma plus_lt_compat_l x y z : 0 < z x < y x < z + y.
  Proof. rewrite commutativity. now apply plus_lt_compat_r. Qed.

  Lemma neg_plus_compat x y : x < 0 y < 0 x + y < 0.
  Proof. intros. rewrite <-(plus_0_r 0). now apply plus_lt_compat. Qed.

  Instance pos_plus_compat (x y : R) : PropHolds (0 < x) PropHolds (0 < y) PropHolds (0 < x + y).
  Proof. intros. now apply plus_lt_compat_l. Qed.

  Lemma compose_lt x y z : 0 < z y = x + z x < y.
  Proof.
    intros E1 E2.
    rewrite E2.
    now apply pos_plus_lt_compat_r.
  Qed.

  Lemma decompose_lt {x y} : x < y z, 0 < z y = x + z.
  Proof.
    intros E.
    destruct (strict_srorder_partial_minus x y E) as [z Ez].
     z. split; [| easy].
    apply (strictly_order_reflecting (x+)).
    now rewrite <-Ez, rings.plus_0_r.
  Qed.

  Global Instance: (z : R), PropHolds (0 < z) StrictlyOrderPreserving (z *.).
  Proof.
    intros z E. repeat (split; try apply _). intros x y F.
    destruct (decompose_lt F) as [a [Ea1 Ea2]].
    rewrite Ea2, plus_mult_distr_l.
    apply pos_plus_lt_compat_r.
    now apply pos_mult_compat.
  Qed.

  Global Instance: (z : R), PropHolds (0 < z) StrictlyOrderPreserving (.* z).
  Proof. intros. now apply strictly_order_preserving_flip. Qed.

  Lemma mult_lt_compat x₁ y₁ x₂ y₂ :
    0 < x₁ 0 < x₂ x₁ < y₁ x₂ < y₂ x₁ × x₂ < y₁ × y₂.
  Proof.
    intros Ex₁ Ey₁ E1 E2.
    transitivity (y₁ × x₂).
     now apply (strictly_order_preserving_flip_pos (.*.) x₂).
    apply (strictly_order_preserving_pos (.*.) y₁); [| easy ].
    now transitivity x₁.
  Qed.

  Lemma gt_1_mult_lt_compat_r x y z : 1 < z 0 < y x < y x < y × z.
  Proof.
    intros.
    transitivity y; [ easy |].
    rewrite <-(mult_1_r y) at 1.
    now apply (strictly_order_preserving_pos (.*.) y).
  Qed.

  Lemma gt_1_mult_lt_compat_l x y z : 1 < z 0 < y x < y x < z × y.
  Proof. rewrite commutativity. now apply gt_1_mult_lt_compat_r. Qed.

  Lemma flip_neg_mult_l x y z : z < 0 x < y z × y < z × x.
  Proof.
    intros Ez Exy.
    destruct (decompose_lt Ez) as [a [Ea1 Ea2]], (decompose_lt Exy) as [b [Eb1 Eb2]].
    rewrite Eb2.
    apply compose_lt with (a × b).
     now apply pos_mult_compat.
    transitivity (z × x + (z + a) × b).
     rewrite <-Ea2. ring.
    ring.
  Qed.

  Lemma flip_neg_mult_r x y z : z < 0 x < y y × z < x × z.
  Proof.
    rewrite 2!(commutativity _ z).
    now apply flip_neg_mult_l.
  Qed.

  Lemma neg_mult x y : x < 0 y < 0 0 < x × y.
  Proof.
    intros.
    rewrite <-(mult_0_r x).
    now apply flip_neg_mult_l.
  Qed.

  Lemma neg_pos_mult x y : x < 0 0 < y x × y < 0.
  Proof.
    intros.
    rewrite <-(mult_0_r x).
    now apply flip_neg_mult_l.
  Qed.

  Lemma pos_neg_mult x y : 0 < x y < 0 x × y < 0.
  Proof. intros. rewrite commutativity. now apply neg_pos_mult. Qed.
End strict_semiring_order.

Hint Extern 7 (PropHolds (0 < _ + _)) ⇒ eapply @pos_plus_compat : typeclass_instances.

Section pseudo_semiring_order.
  Context `{PseudoSemiRingOrder R}.
  Add Ring Rp : (stdlib_semiring_theory R).

  Instance: StrongSetoid R := pseudo_order_setoid.

  Global Instance: StrictSemiRingOrder (_ : Lt R).
  Proof.
    split; try apply _.
     intros. now apply pseudo_srorder_partial_minus, lt_flip.
    now apply pseudo_srorder_pos_mult_compat.
  Qed.

  Global Instance: StrongSetoid_BinaryMorphism (+).
  Proof.
    assert ( z, StrongSetoid_Morphism (z +)).
     intros. apply pseudo_order_embedding_ext.
    now apply strong_setoids.strong_binary_setoid_morphism_commutative.
  Qed.

 Global Instance: z, StrongLeftCancellation (+) z.
  Proof.
    intros z x y.
    rewrite !apart_iff_total_lt.
    intros [|]; [left | right]; now apply (strictly_order_preserving (z +)).
  Qed.

  Global Instance: z, StrongRightCancellation (+) z.
  Proof. intros. now apply (strong_right_cancel_from_left (+)). Qed.

  Lemma neg_mult_decompose x y : x × y < 0 (x < 0 0 < y) (0 < x y < 0).
  Proof.
    intros.
    assert (0 x) as Ex.
     apply (strong_extensionality (.* y)).
     rewrite mult_0_l. now apply pseudo_order_lt_apart_flip.
    assert (0 y) as Ey.
     apply (strong_extensionality (x *.)).
     rewrite mult_0_r. now apply pseudo_order_lt_apart_flip.
    rewrite apart_iff_total_lt in Ex, Ey.
    destruct Ex as [Ex|Ex], Ey as [Ey|Ey]; try tauto.
     destruct (irreflexivity (<) 0).
     transitivity (x × y); [| easy].
     now apply pos_mult_compat.
    destruct (irreflexivity (<) 0).
    transitivity (x × y); [| easy].
    now apply neg_mult.
  Qed.

  Lemma pos_mult_decompose x y : 0 < x × y (0 < x 0 < y) (x < 0 y < 0).
  Proof.
    intros.
    assert (0 x) as Ex.
     apply (strong_extensionality (.* y)).
     rewrite mult_0_l. now apply pseudo_order_lt_apart.
    assert (0 y) as Ey.
     apply (strong_extensionality (x *.)).
     rewrite mult_0_r. now apply pseudo_order_lt_apart.
    rewrite apart_iff_total_lt in Ex, Ey.
    destruct Ex as [Ex|Ex], Ey as [Ey|Ey]; try tauto.
     destruct (irreflexivity (<) 0).
     transitivity (x × y); [easy |].
     now apply pos_neg_mult.
    destruct (irreflexivity (<) 0).
    transitivity (x × y); [easy |].
    now apply neg_pos_mult.
  Qed.

  Global Instance: (z : R), PropHolds (0 < z) StrictlyOrderReflecting (z *.).
  Proof.
    intros z Ez. repeat (split; try apply _). intros x y E1.
    apply not_lt_apart_lt_flip.
     intros E2. apply (lt_flip _ _ E1).
     now apply (strictly_order_preserving (z *.)).
    apply (strong_extensionality (z *.)).
    now apply pseudo_order_lt_apart_flip.
  Qed.

  Global Instance: (z : R), PropHolds (0 < z) StrictlyOrderReflecting (.* z).
  Proof. intros. now apply strictly_order_reflecting_flip. Qed.

  Global Instance: z, PropHolds (z 0) StrongLeftCancellation (.*.) z.
  Proof.
    intros z Ez x y E. red in Ez.
    rewrite apart_iff_total_lt in E, Ez |- ×.
    destruct E as [E|E], Ez as [Ez|Ez].
       right. now apply flip_neg_mult_l.
      left. now apply (strictly_order_preserving_pos (.*.) z).
     left. now apply flip_neg_mult_l.
    right. now apply (strictly_order_preserving_pos (.*.) z).
  Qed.

  Global Instance: z, PropHolds (z 0) StrongRightCancellation (.*.) z.
  Proof. intros. now apply (strong_right_cancel_from_left (.*.)). Qed.

  Global Instance: z, PropHolds (z 0) LeftCancellation (.*.) z.
  Proof. intros. now apply _. Qed.

  Global Instance: z, PropHolds (z 0) RightCancellation (.*.) z.
  Proof. intros. now apply _. Qed.

  Lemma square_pos x : x 0 0 < x × x.
  Proof.
    intros E. apply apart_iff_total_lt in E.
    destruct E as [E|E].
     destruct (decompose_lt E) as [z [Ez1 Ez2]].
     apply compose_lt with (z × z).
      now apply pos_mult_compat.
     rewrite plus_0_l.
     apply (left_cancellation (+) (x × z)).
     rewrite <-plus_mult_distr_r, <-plus_mult_distr_l.
     rewrite (commutativity z x), <-!Ez2.
     ring.
    now apply pos_mult_compat.
  Qed.

  Lemma pos_mult_rev_l x y : 0 < x × y 0 < y 0 < x.
  Proof. intros. apply (strictly_order_reflecting (.* y)). now rewrite rings.mult_0_l. Qed.

  Lemma pos_mult_rev_r x y : 0 < x × y 0 < x 0 < y.
  Proof. intros. apply pos_mult_rev_l with x. now rewrite commutativity. easy. Qed.

  Context `{PropHolds (1 0)}.

  Instance lt_0_1 : PropHolds (0 < 1).
  Proof. red. setoid_replace 1 with (1 × 1) by ring. now apply square_pos. Qed.

  Instance lt_0_2 : PropHolds (0 < 2).
  Proof. apply _. Qed.

  Instance lt_0_3 : PropHolds (0 < 3).
  Proof. apply _. Qed.

  Instance lt_0_4 : PropHolds (0 < 4).
  Proof. apply _. Qed.

  Lemma lt_1_2 : 1 < 2.
  Proof. now apply pos_plus_lt_compat_r, lt_0_1. Qed.

  Lemma lt_1_3 : 1 < 3.
  Proof. now apply pos_plus_lt_compat_r, lt_0_2. Qed.

  Lemma lt_1_4 : 1 < 4.
  Proof. now apply pos_plus_lt_compat_r, lt_0_3. Qed.

  Lemma lt_2_3 : 2 < 3.
  Proof. apply (strictly_order_preserving (1+)), lt_1_2. Qed.

  Lemma lt_2_4 : 2 < 4.
  Proof. apply (strictly_order_preserving (1+)), lt_1_3. Qed.

  Lemma lt_3_4 : 3 < 4.
  Proof. apply (strictly_order_preserving (1+)), lt_2_3. Qed.

  Instance apart_0_2 : PropHolds (2 0).
  Proof. red. symmetry. now apply pseudo_order_lt_apart, lt_0_2. Qed.
End pseudo_semiring_order.

Hint Extern 7 (PropHolds (0 < 1)) ⇒ eapply @lt_0_1 : typeclass_instances.
Hint Extern 7 (PropHolds (0 < 2)) ⇒ eapply @lt_0_2 : typeclass_instances.
Hint Extern 7 (PropHolds (0 < 3)) ⇒ eapply @lt_0_3 : typeclass_instances.
Hint Extern 7 (PropHolds (0 < 4)) ⇒ eapply @lt_0_4 : typeclass_instances.
Hint Extern 7 (PropHolds (2 0)) ⇒ eapply @apart_0_2 : typeclass_instances.

Section full_pseudo_semiring_order.
  Context `{FullPseudoSemiRingOrder R}.

  Add Ring Rf : (stdlib_semiring_theory R).

  Global Instance: FullPseudoOrder (_ : Le R) (_ : Lt R).
  Proof. split. apply _. apply full_pseudo_srorder_le_iff_not_lt_flip. Qed.

  Global Instance: SemiRingOrder (_ : Le R).
  Proof.
    split; try apply _.
      intros x y. rewrite le_iff_not_lt_flip.
      now apply pseudo_srorder_partial_minus.
     intros z. repeat (split; try apply _); intros x y.
      rewrite !le_iff_not_lt_flip.
      intros E1 E2. apply E1.
      now apply (strictly_order_reflecting (z+)).
     rewrite !le_iff_not_lt_flip.
     intros E1 E2. apply E1.
     now apply (strictly_order_preserving _).
    intros x y. rewrite !le_iff_not_lt_flip. intros Ex Ey E.
    destruct (neg_mult_decompose x y); now intuition.
  Qed.

  Global Instance: (z : R), PropHolds (0 < z) OrderReflecting (z *.).
  Proof. intros z E. now apply full_pseudo_order_reflecting. Qed.

  Global Instance: (z : R), PropHolds (0 < z) OrderReflecting (.* z).
  Proof. intros. now apply order_reflecting_flip. Qed.

  Lemma plus_lt_le_compat x₁ y₁ x₂ y₂ : x₁ < y₁ x₂ y₂ x₁ + x₂ < y₁ + y₂.
  Proof.
    intros E1 E2.
    apply lt_le_trans with (y₁ + x₂).
     now apply (strictly_order_preserving (+ x₂)).
    now apply (order_preserving (y₁ +)).
  Qed.

  Lemma plus_le_lt_compat x₁ y₁ x₂ y₂ : x₁ y₁ x₂ < y₂ x₁ + x₂ < y₁ + y₂.
  Proof.
    intros E1 E2.
    apply le_lt_trans with (y₁ + x₂).
     now apply (order_preserving (+ x₂)).
    now apply (strictly_order_preserving (y₁ +)).
  Qed.

  Lemma nonneg_plus_lt_compat_r x y z : 0 z x < y x < y + z.
  Proof. intros. rewrite <-(plus_0_r x). now apply plus_lt_le_compat. Qed.

  Lemma nonneg_plus_lt_compat_l x y z : 0 z x < y x < z + y.
  Proof. intros. rewrite commutativity. now apply nonneg_plus_lt_compat_r. Qed.

  Lemma pos_plus_le_lt_compat_r x y z : 0 < z x y x < y + z.
  Proof. intros. rewrite <-(plus_0_r x). now apply plus_le_lt_compat. Qed.

  Lemma pos_plus_le_lt_compat_l x y z : 0 < z x y x < z + y.
  Proof. intros. rewrite commutativity. now apply pos_plus_le_lt_compat_r. Qed.

  Lemma square_nonneg x : 0 x × x.
  Proof.
    apply not_lt_le_flip. intros E.
    destruct (lt_antisym (x × x) 0).
    split; [easy |].
    apply square_pos.
    apply (strong_extensionality (x *.)).
    rewrite mult_0_r.
    now apply lt_apart.
  Qed.

  Lemma nonneg_mult_rev_l x y : 0 x × y 0 < y 0 x.
  Proof. intros. apply (order_reflecting (.* y)). now rewrite rings.mult_0_l. Qed.

  Lemma nonneg_mult_rev_r x y : 0 x × y 0 < x 0 y.
  Proof. intros. apply nonneg_mult_rev_l with x. now rewrite commutativity. easy. Qed.

  Instance le_0_1 : PropHolds (0 1).
  Proof. red. setoid_replace 1 with (1 × 1) by ring. now apply square_nonneg. Qed.

  Instance le_0_2 : PropHolds (0 2).
  Proof. solve_propholds. Qed.

  Instance le_0_3 : PropHolds (0 3).
  Proof. solve_propholds. Qed.

  Instance le_0_4 : PropHolds (0 4).
  Proof. solve_propholds. Qed.

  Lemma le_1_2 : 1 2.
  Proof. now apply nonneg_plus_le_compat_r, le_0_1. Qed.

  Lemma le_1_3 : 1 3.
  Proof. now apply nonneg_plus_le_compat_r, le_0_2. Qed.

  Lemma le_1_4 : 1 4.
  Proof. now apply nonneg_plus_le_compat_r, le_0_3. Qed.

  Lemma le_2_3 : 2 3.
  Proof. apply (order_preserving (1+)), le_1_2. Qed.

  Lemma le_2_4 : 2 4.
  Proof. apply (order_preserving (1+)), le_1_3. Qed.

  Lemma le_3_4 : 3 4.
  Proof. apply (order_preserving (1+)), le_2_3. Qed.

  Lemma ge_1_mult_compat x y : 1 x 1 y 1 x × y.
  Proof.
    intros.
    apply ge_1_mult_le_compat_r; trivial.
    transitivity 1. now apply le_0_1. easy.
  Qed.

  Lemma gt_1_ge_1_mult_compat x y : 1 < x 1 y 1 < x × y.
  Proof.
    intros.
    apply lt_le_trans with x; trivial.
    apply ge_1_mult_le_compat_r; try easy.
    transitivity 1. now apply le_0_1. now apply lt_le.
  Qed.

  Lemma ge_1_gt_1_mult_compat x y : 1 x 1 < y 1 < x × y.
  Proof. intros. rewrite commutativity. now apply gt_1_ge_1_mult_compat. Qed.

  Context `{PropHolds (1 0)}.

  Lemma not_le_1_0 : ¬1 0.
  Proof. now apply lt_not_le_flip, lt_0_1. Qed.

  Lemma not_le_2_0 : ¬2 0.
  Proof. now apply lt_not_le_flip, lt_0_2. Qed.
End full_pseudo_semiring_order.

Hint Extern 7 (PropHolds (0 1)) ⇒ eapply @le_0_1 : typeclass_instances.
Hint Extern 7 (PropHolds (0 2)) ⇒ eapply @le_0_2 : typeclass_instances.
Hint Extern 7 (PropHolds (0 3)) ⇒ eapply @le_0_3 : typeclass_instances.
Hint Extern 7 (PropHolds (0 4)) ⇒ eapply @le_0_4 : typeclass_instances.

Section dec_semiring_order.
  Context `{SemiRingOrder R} `{Apart R} `{!TrivialApart R}
    `{!NoZeroDivisors R} `{!TotalRelation (≤)} `{ x y, Decision (x = y)}.

  Context `{Rlt : Lt R} (lt_correct : x y, x < y x y x y).

  Instance: FullPseudoOrder (_ : Le R) (_ : Lt R) := dec_full_pseudo_order lt_correct.
  Instance: StrongSetoid R := pseudo_order_setoid.

  Instance dec_pseudo_srorder: PseudoSemiRingOrder (<).
  Proof.
    split; try apply _.
       intros x y E. now apply srorder_partial_minus, not_lt_le_flip.
      intros z. repeat (split; try apply _).
      intros x y. rewrite !lt_correct. intros [E2a E2b]. split.
       now apply (order_preserving (z+)).
      intros E3. apply E2b. now apply (left_cancellation (+) z).
     now apply (strong_setoids.dec_strong_binary_morphism (.*.)).
    intros x y. rewrite !lt_correct.
    intros [E1a E1b] [E2a E2b]. split.
     now apply nonneg_mult_compat.
    apply not_symmetry.
    now apply mult_ne_0; apply not_symmetry.
  Qed.

  Instance dec_full_pseudo_srorder: FullPseudoSemiRingOrder (≤) (<).
  Proof.
    split; try apply _.
    now apply le_iff_not_lt_flip.
  Qed.
End dec_semiring_order.

Section another_semiring.
  Context `{SemiRingOrder R1}.

  Lemma projected_srorder `{SemiRing R2} `{R2le : Le R2} (f : R2 R1)
      `{!SemiRing_Morphism f} `{!Injective f} :
    ( x y, x y f x f y) ( x y : R2, x y z, y = x + z) SemiRingOrder R2le.
  Proof.
    intros P. pose proof (projected_partial_order f P).
    repeat (split; try apply _).
       assumption.
      intros. apply P. rewrite 2!preserves_plus. now apply (order_preserving _), P.
     intros. apply P. apply (order_reflecting (f z +)).
     rewrite <-2!preserves_plus. now apply P.
    intros. apply P. rewrite preserves_mult, preserves_0.
    now apply nonneg_mult_compat; rewrite <-(preserves_0 (f:=f)); apply P.
  Qed.

 Context `{SemiRingOrder R2} `{!SemiRing_Morphism (f : R1 R2)}.

  Lemma preserving_preserves_nonneg : ( x, 0 x 0 f x) OrderPreserving f.
  Proof.
    intros E.
    repeat (split; try apply _).
    intros x y F.
    destruct (decompose_le F) as [z [Ez1 Ez2]].
    apply compose_le with (f z).
     now apply E.
    now rewrite Ez2, preserves_plus.
  Qed.

  Instance preserves_nonneg `{!OrderPreserving f} x : PropHolds (0 x) PropHolds (0 f x).
  Proof. intros. rewrite <-(preserves_0 (f:=f)). now apply (order_preserving f). Qed.

  Lemma preserves_nonpos `{!OrderPreserving f} x : x 0 f x 0.
  Proof. intros. rewrite <-(preserves_0 (f:=f)). now apply (order_preserving f). Qed.

  Lemma preserves_ge_1 `{!OrderPreserving f} x : 1 x 1 f x.
  Proof. intros. rewrite <-(preserves_1 (f:=f)). now apply (order_preserving f). Qed.

  Lemma preserves_le_1 `{!OrderPreserving f} x : x 1 f x 1.
  Proof. intros. rewrite <-(preserves_1 (f:=f)). now apply (order_preserving f). Qed.
End another_semiring.

Section another_semiring_strict.
  Context `{StrictSemiRingOrder R1} `{StrictSemiRingOrder R2}
    `{!SemiRing_Morphism (f : R1 R2)}.

  Lemma strictly_preserving_preserves_pos : ( x, 0 < x 0 < f x) StrictlyOrderPreserving f.
  Proof.
    intros E.
    repeat (split; try apply _).
    intros x y F.
    destruct (decompose_lt F) as [z [Ez1 Ez2]].
    apply compose_lt with (f z).
     now apply E.
    now rewrite Ez2, preserves_plus.
  Qed.

  Instance preserves_pos `{!StrictlyOrderPreserving f} x : PropHolds (0 < x) PropHolds (0 < f x).
  Proof. intros. rewrite <-(preserves_0 (f:=f)). now apply (strictly_order_preserving f). Qed.

  Lemma preserves_neg `{!StrictlyOrderPreserving f} x : x < 0 f x < 0.
  Proof. intros. rewrite <-(preserves_0 (f:=f)). now apply (strictly_order_preserving f). Qed.

  Lemma preserves_gt_1 `{!StrictlyOrderPreserving f} x : 1 < x 1 < f x.
  Proof. intros. rewrite <-(preserves_1 (f:=f)). now apply (strictly_order_preserving f). Qed.

  Lemma preserves_lt_1 `{!StrictlyOrderPreserving f} x : x < 1 f x < 1.
  Proof. intros. rewrite <-(preserves_1 (f:=f)). now apply (strictly_order_preserving f). Qed.
End another_semiring_strict.

Hint Extern 15 (PropHolds (_ _ _)) ⇒ eapply @preserves_nonneg : typeclass_instances.
Hint Extern 15 (PropHolds (_ < _ _)) ⇒ eapply @preserves_pos : typeclass_instances.

Hint Extern 15 (PropHolds (_ '_)) ⇒ eapply @preserves_nonneg : typeclass_instances.
Hint Extern 15 (PropHolds (_ < '_)) ⇒ eapply @preserves_pos : typeclass_instances.