MathClasses.implementations.nonzero_field_elements

Require Import
  Ring abstract_algebra theory.fields.

Section contents.
Context `{Field F}.
Add Ring F : (rings.stdlib_ring_theory F).

Global Program Instance NonZero_1: One (F ) := (1:F).
Next Obligation. solve_propholds. Qed.

Global Program Instance NonZero_mult: Mult (F ) := λ x y, (`x × `y : F).
Next Obligation. solve_propholds. Qed.

Ltac unfold_equiv := repeat intro; unfold equiv, sig_equiv in *; simpl in ×.

Instance: Proper ((=) ==> (=) ==> (=)) NonZero_mult.
Proof.
  intros [??] [??] E1 [??] [??] E2. unfold_equiv.
  now rewrite E1, E2.
Qed.

Global Instance: CommutativeMonoid (F ).
Proof.
  repeat (split; try apply _); red; unfold_equiv.
     now apply associativity.
    now apply left_identity.
   now apply right_identity.
  now apply commutativity.
Qed.

Definition NonZero_inject (x : F ) : F := `x.

Global Instance: SemiGroup_Morphism NonZero_inject (Bop:=(.*.)).
Proof. repeat (split; try apply _); now repeat intro. Qed.

Lemma quotients (a c : F) (b d : F ) :
  a // b + c // d = (a × `d + c × `b) // (b × d).
Proof.
  setoid_replace (a // b) with ((a × `d) // (b × d)) by (apply equal_quotients; simpl; ring).
  setoid_replace (c // d) with ((`b × c) // (b × d)) by (apply equal_quotients; simpl; ring).
  ring.
Qed.

Lemma recip_distr `{ z, PropHolds (z 0) LeftCancellation (.*.) z} (x y : F ) :
  // (x × y) = // x × // y.
Proof. destruct x, y. apply recip_distr_alt. Qed.
End contents.