CoRN.reals.Cauchy_CReals


Require Export Cauchy_COF.
Require Export CReals.

Section R_CReals.

The Real Number Structure

We will now apply our Cauchy sequence construction to an archimedean ordered field in order to obtain a model of the real numbers.

Injection of Q

We start by showing how to inject the rational numbers in the field of Cauchy sequences; this embedding preserves the algebraic operations.
Let F be an ordered field.

Variable F : COrdField.

Notation "'R_COrdField''" := (R_COrdField F).

Definition inject_Q (x : F) : R_COrdField' := Build_CauchySeq _ _ (CS_seq_const _ x).

Lemma ing_eq : x y : F, x [=] yinject_Q x [=] inject_Q y.
Proof.
 intros.
 unfold inject_Q in |- ×.
 simpl in |- *; intro H0.
 elim H0; intro.
  elim a; intros N HN.
  elim HN; clear H0 a HN; intros e He HN; simpl in HN.
  apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with ([0]:F); auto.
  astepr (x[-]x); astepr (y[-]x); eauto with arith.
 elim b; intros N HN.
 elim HN; clear H0 b HN; intros e He HN; simpl in HN.
 apply (less_irreflexive_unfolded _ e).
 apply leEq_less_trans with ([0]:F); auto.
 astepr (x[-]x); astepr (x[-]y); eauto with arith.
Qed.

Lemma ing_plus : x y : F, inject_Q (x[+]y) [=] inject_Q x[+]inject_Q y.
Proof.
 intros.
 unfold inject_Q in |- ×.
 simpl in |- *; intro H.
 elim H; intro.
  elim a; intros N HN.
  elim HN; clear H a HN; intros e He HN; simpl in HN.
  apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with ([0]:F); auto.
  astepr (x[+]y[-] (x[+]y)); eauto with arith.
 elim b; intros N HN.
 elim HN; clear H b HN; intros e He HN; simpl in HN.
 apply (less_irreflexive_unfolded _ e).
 apply leEq_less_trans with ([0]:F); auto.
 astepr (x[+]y[-] (x[+]y)); eauto with arith.
Qed.

Lemma ing_min : x : F, inject_Q [--]x [=] [--] (inject_Q x).
Proof.
 intros.
 unfold inject_Q in |- ×.
 simpl in |- *; intro H.
 elim H; intro.
  elim a; intros N HN.
  elim HN; clear H a HN; intros e He HN; simpl in HN.
  apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with ([0]:F); auto.
  astepr ( [--]x[-][--]x); eauto with arith.
 elim b; intros N HN.
 elim HN; clear H b HN; intros e He HN; simpl in HN.
 apply (less_irreflexive_unfolded _ e).
 apply leEq_less_trans with ([0]:F); auto.
 astepr ( [--]x[-][--]x); eauto with arith.
Qed.

Lemma ing_lt : x y : F, x [<] yinject_Q x [<] inject_Q y.
Proof.
 intros.
 simpl in |- ×.
  0.
  ((y[-]x) [/]TwoNZ).
  apply pos_div_two.
  apply shift_zero_less_minus.
  assumption.
 intros.
 apply less_leEq; apply pos_div_two'.
 simpl in |- ×.
 apply shift_zero_less_minus; auto.
Qed.

Lemma ing_ap : x y : F, x [#] yinject_Q x [#] inject_Q y.
 intros x y H; elim (ap_imp_less _ _ _ H); intro Hlt; [ left | right ]; apply ing_lt; auto.
Qed.

Lemma ing_cancel_eq : x y : F, inject_Q x [=] inject_Q yx [=] y.
Proof.
 intros x y Hxy.
 apply not_ap_imp_eq; intro Hap.
 elim (ap_irreflexive_unfolded _ (inject_Q x)).
 astepr (inject_Q y).
 apply ing_ap; auto.
Qed.

Lemma ing_cancel_less : x y : F, inject_Q x [<] inject_Q yx [<] y.
Proof.
 intros x y H.
 elim H; intros N HN; elim HN; clear H HN; intros e He HN; simpl in HN.
 apply less_leEq_trans with (x[+]e).
  apply shift_less_plus'; astepl ([0]:F); auto.
 apply shift_plus_leEq'; eauto.
Qed.

Lemma ing_le : x y : F, x [<=] yinject_Q x [<=] inject_Q y.
Proof.
 intros.
 intro.
 rewriteleEq_def in H; apply H.
 apply ing_cancel_less.
 auto.
Qed.

Lemma ing_cancel_leEq : x y : F, inject_Q x [<=] inject_Q yx [<=] y.
Proof.
 intros.
 rewriteleEq_def; intro.
 apply H.
 apply ing_lt.
 auto.
Qed.

Lemma ing_cancel_AbsSmall : e x y : F,
 AbsSmall (inject_Q e) (inject_Q x[-]inject_Q y) → AbsSmall e (x[-]y).
Proof.
 intros.
 elim H.
 intros H0 H1.
 split.
  apply ing_cancel_leEq.
  astepl ( [--] (inject_Q e)).
   astepr (inject_Q x[-]inject_Q y).
    assumption.
   astepl (inject_Q x[+][--] (inject_Q y)).
   apply eq_transitive_unfolded with (inject_Q x[+]inject_Q [--]y).
    apply plus_resp_eq.
    apply eq_symmetric_unfolded.
    apply ing_min.
   Step_final (inject_Q (x[+][--]y)).
   apply eq_symmetric_unfolded.
   apply ing_plus.
  apply eq_symmetric_unfolded.
  apply ing_min.
 apply ing_cancel_leEq.
 astepl (inject_Q x[-]inject_Q y).
  assumption.
 astepl (inject_Q x[+][--] (inject_Q y)).
 apply eq_transitive_unfolded with (inject_Q x[+]inject_Q [--]y).
  apply plus_resp_eq.
  apply eq_symmetric_unfolded.
  apply ing_min.
 Step_final (inject_Q (x[+][--]y)).
 apply eq_symmetric_unfolded.
 apply ing_plus.
Qed.

Lemma ing_One : inject_Q ([1]:F) [=] [1].
Proof.
 apply not_ap_imp_eq; intro H.
 elim H; intro Hlt; elim Hlt; intros N HN; elim HN; clear H Hlt HN; intros e He HN; simpl in HN.
  apply (less_irreflexive_unfolded F [0]).
  apply less_leEq_trans with e; auto.
  astepr ([1][-] ([1]:F)); eauto.
 apply (less_irreflexive_unfolded F [0]).
 apply less_leEq_trans with e; auto.
 astepr ([1][-] ([1]:F)); eauto.
Qed.

Lemma ing_nring' : m n : nat,
 CS_seq _ (nring (R:=R_COrdField') n) m [=] CS_seq _ (inject_Q (nring n)) m.
Proof.
 intros.
 induction n as [| n Hrecn]; simpl in |- *; algebra.
Qed.

Lemma ing_nring : n : nat, nring n [=] inject_Q (nring n).
Proof.
 intros.
 apply not_ap_imp_eq; intro Hap.
 elim Hap; intro Hlt; elim Hlt; intros N HN; elim HN; clear Hap Hlt HN; intros e He HN.
  apply (less_irreflexive_unfolded F [0]).
  apply less_leEq_trans with e; auto.
  eapply leEq_wdr.
   apply (HN N); auto.
  apply x_minus_x; apply eq_symmetric_unfolded; apply ing_nring'.
 apply (less_irreflexive_unfolded F [0]).
 apply less_leEq_trans with e; auto.
 eapply leEq_wdr.
  apply (HN N); auto.
 apply x_minus_x; apply ing_nring'.
Qed.

Lemma ing_mult : x y : F, inject_Q (x[*]y) [=] inject_Q x[*]inject_Q y.
Proof.
 intros.
 unfold inject_Q in |- ×.
 simpl in |- *; intro H.
 elim H; intro.
  elim a; intros N HN.
  elim HN; clear H a HN; intros e He HN; simpl in HN.
  apply (less_irreflexive_unfolded _ e).
  apply leEq_less_trans with ([0]:F); auto.
  astepr (x[*]y[-]x[*]y); eauto with arith.
 elim b; intros N HN.
 elim HN; clear H b HN; intros e He HN; simpl in HN.
 apply (less_irreflexive_unfolded _ e).
 apply leEq_less_trans with ([0]:F); auto.
 astepr (x[*]y[-]x[*]y); eauto with arith.
Qed.

Opaque R_COrdField.

Lemma ing_div_three : x, inject_Q x [/]ThreeNZ [=] inject_Q (x [/]ThreeNZ).
Proof.
 intros.
 apply mult_cancel_lft with (Three:R_COrdField').
  apply pos_ap_zero.
  apply pos_three.
 apply eq_symmetric_unfolded.
 apply eq_transitive_unfolded with (inject_Q (Three:F) [*]inject_Q (x [/]ThreeNZ)).
  apply mult_wdl.
  apply ing_nring.
 apply eq_transitive_unfolded with (inject_Q (Three[*]x [/]ThreeNZ)).
  apply eq_symmetric_unfolded.
  apply ing_mult.
 astepr (inject_Q x).
 apply ing_eq; algebra.
Qed.

Transparent R_COrdField.

Lemma ing_n : x n H1 H2,
 (inject_Q x[/] nring n[//]H2) [=] inject_Q (x[/] nring n[//]H1).
Proof.
 intros.
 apply mult_cancel_lft with (inject_Q (nring (R:=F) n)).
  apply Greater_imp_ap.
  astepr (nring (R:=R_COrdField') n).
   apply nring_pos.
   apply neq_O_lt.
   apply nring_ap_zero_imp with F.
   assumption.
  apply ing_nring.
 apply eq_transitive_unfolded with (inject_Q x).
  rstepr (nring n[*] (inject_Q x[/] nring n[//]H2)).
  apply mult_wdl.
  apply eq_symmetric_unfolded.
  apply ing_nring.
 apply eq_symmetric_unfolded.
 apply eq_transitive_unfolded with (inject_Q (nring n[*] (x[/] nring n[//]H1))).
  apply eq_symmetric_unfolded.
  apply ing_mult.
 apply ing_eq.
 rational.
Qed.

Theorem expand_Q_R : (x : R_COrdField') e, [0] [<] e N,
 ( m, N mAbsSmall (e [/]FourNZ) (CS_seq F x m[-]CS_seq F x N)) →
  m, N mAbsSmall (inject_Q e) (inject_Q (CS_seq F x m) [-]x).
Proof.
 intros x e H N H0 m H1.
 split.
  apply less_leEq.
  simpl in |- ×.
  unfold Rlt in |- ×.
   N.
   (e [/]ThreeNZ).
   apply pos_div_three.
   assumption.
  intros.
  change (e [/]ThreeNZ [<=] CS_seq F (inject_Q (CS_seq F x m) [-]x) n[-][--]e) in |- ×.
  apply plus_cancel_leEq_rht with (R := F) (z := [--]e).
  rstepl ( [--] (Two[*]e [/]ThreeNZ)).
  rstepr (CS_seq F (inject_Q (CS_seq F x m) [-]x) n).
  cut (AbsSmall (e [/]FourNZ) (CS_seq F x m[-]CS_seq F x N)).
   intro H3.
   elim H3.
   intros H4 H5.
   cut (AbsSmall (e [/]FourNZ) (CS_seq F x n[-]CS_seq F x N)).
    intro H6.
    elim H6.
    intros H7 H8.
    change ( [--] (Two[*]e [/]ThreeNZ) [<=] CS_seq F x m[-]CS_seq F x n) in |- ×.
    rstepl ( [--] (e [/]ThreeNZ) [+][--] (e [/]ThreeNZ)).
    rstepr (CS_seq F x m[-]CS_seq F x N[+] (CS_seq F x N[-]CS_seq F x n)).
    apply plus_resp_leEq_both.
     apply leEq_transitive with ( [--] (e [/]FourNZ)); auto.
     apply inv_resp_leEq.
     apply mult_cancel_leEq with (nring (R:=F) 12).
      apply nring_pos.
      auto with arith.
     rstepl ([0][+]Three[*]e); rstepr (e[+]Three[*]e).
     apply plus_resp_leEq; apply less_leEq; auto.
    apply inv_cancel_leEq.
    rstepl (CS_seq F x n[-]CS_seq F x N).
    rstepr (e [/]ThreeNZ).
    apply leEq_transitive with (e [/]FourNZ); auto.
    apply mult_cancel_leEq with (nring (R:=F) 12).
     apply nring_pos.
     auto with arith.
    rstepl ([0][+]Three[*]e); rstepr (e[+]Three[*]e).
    apply plus_resp_leEq; apply less_leEq; auto.
   apply H0.
   assumption.
  apply H0.
  assumption.
 apply less_leEq.
 simpl in |- ×.
 unfold Rlt in |- ×.
  N.
  (e [/]ThreeNZ).
  apply pos_div_three.
  assumption.
 intros.
 change (e [/]ThreeNZ [<=] e[-]CS_seq F (inject_Q (CS_seq F x m) [-]x) n) in |- ×.
 apply plus_cancel_leEq_rht with (R := F) (z := [--]e).
 rstepl ( [--] (Two[*]e [/]ThreeNZ)).
 rstepr ( [--] (CS_seq F (inject_Q (CS_seq F x m) [-]x) n)).
 apply inv_resp_leEq.
 cut (AbsSmall (e [/]FourNZ) (CS_seq F x m[-]CS_seq F x N)).
  intro.
  elim H3.
  intros H4 H5.
  cut (AbsSmall (e [/]FourNZ) (CS_seq F x n[-]CS_seq F x N)).
   intro.
   elim H6.
   intros H7 H8.
   change (CS_seq F x m[-]CS_seq F x n [<=] Two[*]e [/]ThreeNZ) in |- ×.
   rstepr (e [/]ThreeNZ[+]e [/]ThreeNZ).
   rstepl (CS_seq F x m[-]CS_seq F x N[+] (CS_seq F x N[-]CS_seq F x n)).
   apply plus_resp_leEq_both.
    apply leEq_transitive with (e [/]FourNZ); auto.
    apply mult_cancel_leEq with (nring (R:=F) 12).
     apply nring_pos.
     auto with arith.
    rstepl ([0][+]Three[*]e); rstepr (e[+]Three[*]e).
    apply plus_resp_leEq; apply less_leEq; auto.
   apply inv_cancel_leEq.
   rstepr (CS_seq F x n[-]CS_seq F x N).
   apply leEq_transitive with ( [--] (e [/]FourNZ)); auto.
   apply inv_resp_leEq.
   apply mult_cancel_leEq with (nring (R:=F) 12).
    apply nring_pos.
    auto with arith.
   rstepl ([0][+]Three[*]e); rstepr (e[+]Three[*]e).
   apply plus_resp_leEq; apply less_leEq; auto.
  apply H0.
  assumption.
 apply H0.
 assumption.
Qed.

Lemma conv_modulus : (x : R_COrdField') M, {N : nat | m,
 N mAbsSmall (one_div_succ M) (CS_seq F x m[-]CS_seq F x N)}.
Proof.
 intros.
 case x.
 intros x_ px.
 unfold Cauchy_prop in px.
 cut {N : nat | m : nat, N mAbsSmall (one_div_succ M) (x_ m[-]x_ N)}.
  intro H.
  case H.
  intros N H1.
   N.
  intros.
  apply H1.
  assumption.
 apply px.
 apply one_div_succ_pos.
Qed.

Let T (x : R_COrdField') (m : nat) := let (N, _) := conv_modulus x m in N.

We now assume our original field is archimedean and prove that the resulting one is, too.

Hypothesis F_is_archemaedian : x : F, {n : nat | x [<] nring n}.

Theorem R_is_archemaedian : x : R_COrdField', {n : nat | x [<=] nring n}.
Proof.
 intros.
 case x.
 intros x_ px.
 elim (px [1] (pos_one _)); intros Nx HNx.
 elim (F_is_archemaedian (x_ Nx)); intros N HN.
  (S N).
 intro H.
 elim H; intros K HK; elim HK; clear H HK; intros e He HK; simpl in HK.
 apply (less_irreflexive_unfolded F [0]).
 apply less_leEq_trans with e; auto.
 astepr (x_ (K + Nx) [-]x_ (K + Nx)).
 eapply leEq_transitive.
  apply (HK (K + Nx)); eauto with arith.
 unfold cg_minus in |- *; apply plus_resp_leEq_lft; apply inv_resp_leEq.
 rstepl (x_ Nx[+] (x_ (K + Nx) [-]x_ Nx)).
 apply plus_resp_leEq_both.
  apply leEq_wdr with (CS_seq _ (inject_Q (nring N)) (K + Nx)).
   simpl in |- *; apply less_leEq; auto.
  apply eq_symmetric_unfolded; apply ing_nring'.
 elim (HNx (K + Nx)); auto with arith.
Qed.


Lemma modulus_property : x M m0 m1, T x M m0T x M m1
 AbsSmall (Two[*]one_div_succ M) (CS_seq F x m0[-]CS_seq F x m1).
Proof.
 intros.
 rstepl (one_div_succ (R:=F) M[+]one_div_succ M).
 rstepr (CS_seq F x m0[-]CS_seq F x (T x M) [+] (CS_seq F x (T x M) [-]CS_seq F x m1)).
 generalize (PT x M).
 intro.
 apply AbsSmall_plus.
  apply H1.
  assumption.
 apply AbsSmall_minus.
 apply H1.
 assumption.
Qed.

Lemma modulus_property_2 : x M m, T x M m
 AbsSmall (one_div_succ M) (CS_seq F x m[-]CS_seq F x (T x M)).
Proof.
 intros.
 apply (PT x M).
 assumption.
Qed.

Lemma expand_Q_R_2 : x e N, [0] [<] e
 ( m, N mAbsSmall (e [/]FourNZ) (CS_seq F x m[-]CS_seq F x N)) →
 AbsSmall (inject_Q e) (inject_Q (CS_seq F x N) [-]x).
Proof.
 intros x e N H H0.
 apply expand_Q_R with (x := x) (e := e) (N := N).
   assumption.
  intros.
  apply H0.
  assumption.
 constructor.
Qed.

Lemma CS_seq_diagonal : a : CauchySeq R_COrdField',
 Cauchy_prop (fun mlet b := (CS_seq _ a m) in CS_seq F b (T b m)).
Proof.
 intros.
 unfold Cauchy_prop in |- ×.
 case a.
 intros a_ pa.
 intros.
 simpl in |- ×.
 unfold Cauchy_prop in pa.
 cut (e [#] [0]).
  intro H0.
  cut {n : nat | (Twelve[/] e[//]H0) [-][1] [<] nring n}.
   intro H1.
   case H1.
   intros M H2.
   cut {N : nat | m : nat, N mAbsSmall (inject_Q e [/]SixNZ) (a_ m[-]a_ N)}.
    intro H3.
    case H3.
    intros N H4.
     (max N M).
    intros.
    apply ing_cancel_AbsSmall.
    rstepl (inject_Q e [/]ThreeNZ[+]inject_Q e [/]ThreeNZ[+]inject_Q e [/]ThreeNZ).
    rstepr (inject_Q (CS_seq F (a_ m) (T (a_ m) m)) [-]a_ m[+] (a_ (max N M) [-]
      inject_Q (CS_seq F (a_ (max N M)) (T (a_ (max N M)) (max N M)))) [+] (a_ m[-]a_ (max N M))).
    apply AbsSmall_plus.
     apply AbsSmall_plus.
      astepl (inject_Q (e [/]ThreeNZ)).
       apply AbsSmall_leEq_trans with (R := R_COrdField') (e1 := inject_Q (Four[*]one_div_succ m)).
        apply ing_le.
        apply leEq_transitive with (y := Four[*]one_div_succ (R:=F) M).
         apply mult_resp_leEq_lft.
          apply one_div_succ_resp_leEq.
          eauto with arith.
         apply less_leEq.
         apply pos_four.
        apply mult_cancel_leEq with (R := F) (z := (nring M[+][1]) [*] (Three:F)).
         apply mult_resp_pos.
          apply less_transitive_unfolded with (F := F) (y := Twelve[/] e[//]H0).
           apply mult_cancel_less with (R := F) (z := e).
            assumption.
           rstepl ([0]:F).
           rstepr (Twelve:F).
           apply nring_pos.
           apply lt_O_Sn.
          apply plus_cancel_less with (R := F) (z := [--] ([1]:F)).
          rstepl ((Twelve[/] e[//]H0) [-][1]).
          rstepr (nring (R:=F) M).
          exact H2.
         apply nring_pos.
         apply lt_O_Sn.
        unfold one_div_succ in |- ×.
        unfold Snring in |- ×.
        change (Four[*] ([1][/] nring M[+][1][//]nringS_ap_zero F M) [*]
          ((nring M[+][1]) [*]Three) [<=] e [/]ThreeNZ[*] ((nring M[+][1]) [*]Three)) in |- ×.
        rstepl (Twelve:F).
        rstepr (e[*] (nring M[+][1])).
        apply mult_cancel_leEq with (R := F) (z := [1][/] e[//]H0).
         apply recip_resp_pos.
         assumption.
        rstepr (nring (R:=F) M[+][1]).
        apply plus_cancel_leEq_rht with (R := F) (z := [--] ([1]:F)).
        rstepl ((Twelve[/] e[//]H0) [-][1]).
        rstepr (nring (R:=F) M).
        apply less_leEq; exact H2.
       apply expand_Q_R_2 with (x := a_ m) (e := Four[*]one_div_succ (R:=F) m) (N := T (a_ m) m).
        apply mult_resp_pos.
         apply pos_four.
        apply one_div_succ_pos.
       intros.
       rstepl (one_div_succ (R:=F) m).
       apply modulus_property_2.
       assumption.
      apply eq_symmetric_unfolded.
      apply ing_div_three.
     astepl (inject_Q (e [/]ThreeNZ)).
      apply AbsSmall_leEq_trans with (R := R_COrdField') (e1 := inject_Q (Four[*]one_div_succ (R:=F) M)).
       apply less_leEq.
       apply ing_lt.
       apply mult_cancel_less with (R := F) (z := (nring M[+][1]) [*] (Three:F)).
        apply mult_resp_pos.
         apply less_transitive_unfolded with (F := F) (y := Twelve[/] e[//]H0).
          apply mult_cancel_less with (R := F) (z := e).
           assumption.
          rstepl ([0]:F).
          rstepr (Twelve:F).
          apply nring_pos.
          apply lt_O_Sn.
         apply plus_cancel_less with (R := F) (z := [--] ([1]:F)).
         rstepl ((Twelve[/] e[//]H0) [-][1]).
         rstepr (nring (R:=F) M).
         exact H2.
        apply pos_three.
       unfold one_div_succ in |- ×.
       unfold Snring in |- ×.
       change (Four[*] ([1][/] nring M[+][1][//]nringS_ap_zero F M) [*]
         ((nring M[+][1]) [*]Three) [<] e [/]ThreeNZ[*] ((nring M[+][1]) [*]Three)) in |- ×.
       rstepl (Twelve:F).
       rstepr (e[*] (nring M[+][1])).
       apply mult_cancel_less with (R := F) (z := [1][/] e[//]H0).
        apply recip_resp_pos.
        assumption.
       rstepr (nring (R:=F) M[+][1]).
       apply plus_cancel_less with (R := F) (z := [--] ([1]:F)).
       rstepl ((Twelve[/] e[//]H0) [-][1]).
       rstepr (nring (R:=F) M).
       exact H2.
      apply AbsSmall_minus.
      apply expand_Q_R_2 with (x := a_ (max N M)) (e := Four[*]one_div_succ (R:=F) M)
        (N := T (a_ (max N M)) (max N M)).
       apply mult_resp_pos.
        apply pos_four.
       apply one_div_succ_pos.
      intros.
      rstepl (one_div_succ (R:=F) M).
      apply AbsSmall_leEq_trans with (R := F) (e1 := one_div_succ (R:=F) (max N M)).
       apply one_div_succ_resp_leEq.
       auto with arith.
      apply modulus_property_2.
      assumption.
     apply eq_symmetric_unfolded.
     apply ing_div_three.
    rstepl (inject_Q e [/]SixNZ[+]inject_Q e [/]SixNZ).
    rstepr (a_ m[-]a_ N[+] (a_ N[-]a_ (max N M))).
    apply AbsSmall_plus.
     apply H4; eauto with arith.
    apply AbsSmall_minus.
    apply H4; eauto with arith.
   apply pa.
   apply mult_cancel_less with (R := R_COrdField') (z := Six:R_COrdField').
    apply pos_six.
   rstepl ([0]:R_COrdField').
   rstepr (inject_Q e).
   change (inject_Q ([0]:F) [<] inject_Q e) in |- ×.
   apply ing_lt.
   assumption.
  apply F_is_archemaedian.
 apply Greater_imp_ap.
 assumption.
Qed.

Cauchy Completeness

We can also define a limit operator.

Lemma Q_dense_in_R : x, [0] [<] x{q : F | [0] [<] q | inject_Q q [<] x}.
Proof.
 intros.
 cut (x [#] [0]).
  intro H0.
  cut {n : nat | ([1][/] x[//]H0) [<=] nring n}.
   intro H1.
   case H1.
   intros n H2.
   cut (nring (R:=F) (S n) [#] [0]).
    intro H3.
     ([1][/] nring (S n) [//]H3).
     apply recip_resp_pos.
     apply ing_cancel_less.
     change ([0] [<] inject_Q (nring (S n))) in |- ×.
     apply less_leEq_trans with (R := R_COrdField') (y := [1][/] x[//]H0).
      apply recip_resp_pos.
      assumption.
     apply leEq_transitive with (inject_Q (nring n)).
      astepr (nring (R:=R_COrdField') n).
       assumption.
      apply ing_nring.
     astepl (nring (R:=R_COrdField') n).
      astepr (nring (R:=R_COrdField') (S n)).
       apply less_leEq; astepr (nring (R:=R_COrdField') n[+][1]); apply less_plusOne.
      apply ing_nring.
     apply ing_nring.
    cut (nring (R:=R_COrdField') (S n) [#] [0]).
     intro H4.
     astepl (inject_Q ([1]:F) [/] nring (S n) [//]H4).
      apply shift_div_less.
       apply nring_pos.
       auto with arith.
      astepl ([1]:R_COrdField').
      apply shift_less_mult' with H0.
       assumption.
      eapply leEq_less_trans.
       apply H2.
      astepr (nring (R:=R_COrdField') n[+][1]); apply less_plusOne.
     apply ing_n.
    apply nringS_ap_zero.
   apply nringS_ap_zero.
  apply R_is_archemaedian.
 apply Greater_imp_ap.
 assumption.
Qed.

Definition LimR_CauchySeq (a : CauchySeq R_COrdField') :=
  Build_CauchySeq _ _ (CS_seq_diagonal a).

Theorem R_is_complete : a : CauchySeq R_COrdField',
 SeqLimit (R:=R_COrdField') a (LimR_CauchySeq a).
Proof.
 intros.
 simpl in |- ×.
 red in |- ×.
 case a.
 intros a_ pa.
 intros e H.
 simpl in |- ×.
 set (He := pos_ap_zero _ _ H) in ×.
 elim (Q_dense_in_R (e [/]ThreeNZ)); [ intros q Hq Hinj | apply pos_div_three; auto ].
 set (Hq' := pos_ap_zero _ _ Hq) in ×.
 elim (F_is_archemaedian ((Four[/] q[//]Hq') [-][1])); intros M HM.
 unfold Cauchy_prop in pa.
 elim (pa (e [/]SixNZ)); [ intros N2 HN2 | apply pos_div_six; auto ].
 elim (CS_seq_diagonal (Build_CauchySeq R_COrdField' a_ pa) (q [/]EightNZ));
   [ intros N1 HN1 | apply pos_div_eight; auto ].
  (max M (max N1 N2)).
 intros.
 rstepl (e [/]ThreeNZ[+]e [/]ThreeNZ[+]e [/]ThreeNZ).
 rstepr (a_ m[-]a_ (max M (max N1 N2)) [+] (a_ (max M (max N1 N2)) [-] inject_Q
   (CS_seq F (LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa)) (max M (max N1 N2)))) [+] (inject_Q
     (CS_seq F (LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa)) (max M (max N1 N2))) [-]
       LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa))).
 apply AbsSmall_plus.
  apply AbsSmall_plus.
   rstepl (e [/]SixNZ[+]e [/]SixNZ).
   rstepr (a_ m[-]a_ N2[+] (a_ N2[-]a_ (max M (max N1 N2)))).
   apply AbsSmall_plus.
    apply HN2; eauto with arith.
   apply AbsSmall_minus; apply HN2; eauto with arith.
  apply AbsSmall_leEq_trans with (R := R_COrdField') (e1 := inject_Q q).
   apply less_leEq; assumption.
  apply AbsSmall_minus.
  simpl in |- ×.
  apply AbsSmall_leEq_trans with (R := R_COrdField')
    (e1 := Four[*] (one_div_succ (max M (max N1 N2)):R_COrdField')).
   apply less_leEq.
   apply leEq_less_trans with (R := R_COrdField') (y := Four[*]one_div_succ (R:=R_COrdField') M).
    apply mult_resp_leEq_lft.
     apply one_div_succ_resp_leEq.
     auto with arith.
    apply less_leEq; apply pos_four.
   apply mult_cancel_less with (R := R_COrdField') (z := nring M[+][1]:R_COrdField').
    apply less_transitive_unfolded with (F := R_COrdField') (y := inject_Q (Four[/] q[//]Hq')).
     change (inject_Q ([0]:F) [<] inject_Q (Four[/] q[//]Hq')) in |- ×.
     apply ing_lt.
     apply mult_cancel_less with (R := F) (z := q).
      assumption.
     rstepl ([0]:F).
     rstepr (Four:F).
     apply pos_four.
    apply shift_less_plus.
    astepl (inject_Q ((Four[/] q[//]Hq') [+][--][1])).
     astepr (inject_Q (nring M)).
      apply ing_lt.
      rstepl ((Four[/] q[//]Hq') [-][1]).
      exact HM.
     apply eq_symmetric_unfolded.
     apply ing_nring.
    unfold cg_minus in |- ×.
    apply eq_transitive_unfolded with (inject_Q (Four[/] q[//]Hq') [+]inject_Q ( [--][1]:F)).
     apply ing_plus.
    apply plus_resp_eq.
    apply eq_transitive_unfolded with ( [--] (inject_Q ([1]:F))).
     apply ing_min.
    astepl ([0][-]inject_Q ([1]:F)).
    Step_final ([0][-] ([1]:R_COrdField')).
   unfold one_div_succ in |- ×.
   unfold Snring in |- ×.
   change (Four[*] ([1][/] nring M[+][1][//]nringS_ap_zero R_COrdField' M) [*]
     (nring M[+][1]) [<] inject_Q q[*] (nring M[+][1])) in |- ×.
   rstepl (Four:R_COrdField').
   astepr (inject_Q q[*]inject_Q (nring M[+][1])).
    astepl (inject_Q (Four:F)).
     astepr (inject_Q (q[*] (nring M[+][1]))).
      apply ing_lt.
      apply mult_cancel_less with (R := F) (z := [1][/] q[//]Hq').
       apply recip_resp_pos.
       assumption.
      rstepl (Four[/] q[//]Hq').
      rstepr (nring (R:=F) M[+][1]).
      apply plus_cancel_less with (R := F) (z := [--] ([1]:F)).
      rstepl ((Four[/] q[//]Hq') [-][1]).
      rstepr (nring (R:=F) M).
      exact HM.
     apply ing_mult.
    apply eq_symmetric_unfolded.
    apply ing_nring.
   apply mult_wd.
    apply ing_eq.
    apply eq_reflexive_unfolded.
   apply eq_transitive_unfolded with (inject_Q (nring M) [+]inject_Q ([1]:F)).
    apply ing_plus.
   astepl (inject_Q (nring M) [+][1]).
   astepl ([1][+]inject_Q (nring M)).
   astepr ([1][+]nring (R:=R_COrdField') M).
   apply plus_resp_eq.
   apply eq_symmetric_unfolded.
   apply ing_nring.
  astepl (inject_Q (Four[*]one_div_succ (R:=F) (max M (max N1 N2)))).
   apply expand_Q_R_2 with (x := a_ (max M (max N1 N2)))
     (e := Four[*]one_div_succ (R:=F) (max M (max N1 N2)))
       (N := T (a_ (max M (max N1 N2))) (max M (max N1 N2))).
    apply mult_resp_pos.
     apply pos_four.
    apply one_div_succ_pos.
   intros.
   rstepl (one_div_succ (R:=F) (max M (max N1 N2))).
   apply modulus_property_2.
   assumption.
  apply eq_transitive_unfolded with (inject_Q (Four:F) [*]inject_Q (one_div_succ (max M (max N1 N2)))).
   apply ing_mult.
  apply eq_transitive_unfolded with (Four[*]inject_Q (one_div_succ (max M (max N1 N2)))).
   apply mult_wd.
    apply eq_symmetric_unfolded.
    apply ing_nring.
   apply eq_reflexive_unfolded.
  apply mult_wd.
   apply eq_reflexive_unfolded.
  unfold one_div_succ in |- ×.
  unfold Snring in |- ×.
  astepl (inject_Q ([1][/] _[//]nringS_ap_zero _ (max M (max N1 N2)))).
  Step_final ([1][/] _[//]nringS_ap_zero R_COrdField' (max M (max N1 N2))).
  apply eq_transitive_unfolded with (inject_Q ([1]:F) [/] _[//]nringS_ap_zero _ (max M (max N1 N2))).
   apply eq_symmetric_unfolded.
   apply ing_n.
  apply div_wd.
   exact ing_One.
  apply eq_reflexive_unfolded.
 apply AbsSmall_leEq_trans with (R := R_COrdField') (e1 := inject_Q q).
  apply less_leEq; assumption.
 apply expand_Q_R_2 with (x := LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa)) (e := q)
   (N := max M (max N1 N2)).
  assumption.
 intros.
 rstepl (q [/]EightNZ[+]q [/]EightNZ).
 rstepr (CS_seq F (LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa)) m0[-]
   CS_seq F (LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa)) N1[+]
     (CS_seq F (LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa)) N1[-]
       CS_seq F (LimR_CauchySeq (Build_CauchySeq R_COrdField' a_ pa)) (max M (max N1 N2)))).
 apply AbsSmall_plus.
  unfold LimR_CauchySeq in |- *; simpl in |- *; apply HN1; eauto with arith.
 apply AbsSmall_minus.
 unfold LimR_CauchySeq in |- *; simpl in |- *; apply HN1; eauto with arith.
Qed.

Definition R_is_CReals := Build_is_CReals _
 LimR_CauchySeq R_is_complete R_is_archemaedian.

Definition R_as_CReals := Build_CReals _ _ R_is_CReals.

End R_CReals.