- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
This talk will discuss the FCC’s ongoing “incentive auction”, which proposes to give television broadcasters an opportunity to sell their broadcast rights, to repack remaining broadcasters into a smaller block of spectrum, and to resell the freed airwaves to telecom companies. The stakes for this auction are huge—projected tens of billions of dollars in revenue for the government—justifying the design of a special-purpose descending-price auction mechanism, which I’ll discuss. An inner-loop problem in this mechanism is determining whether a given set of broadcasters can be repacked into a smaller block of spectrum while respecting radio interference constraints. This is an instance of a (worst-case intractable) graph coloring problem; however, stations’ broadcast locations and interference constraints are all known in advance. Early efforts to solve this problem considered mixed-integer programming formulations, but were unable to reliably solve realistic, national-scale problem instances. We advocate instead for the use of a SAT encoding, paired with a wide range of techniques: constraint graph decomposition; novel caching mechanisms that allow reuse of partial solutions from related, solved problems; algorithm configuration; algorithm portfolios; and the marriage of local-search and complete solver strategies. We show that our approach solves virtually all of a set of problems derived from auction simulations within the short time budget required in practice.
Kevin Leyton-Brown is a professor of Computer Science at the University of British Columbia and an associate member of the Vancouver School of Economics. He holds a PhD and M.Sc. from Stanford University (2003; 2001) and a B.Sc. from McMaster University (1998). He studies the intersection of computer science and microeconomics, addressing computational problems in economic contexts and incentive issues in multiagent systems. He also applies machine learning to the automated design and analysis of algorithms for solving hard computational problems. He has co-written two books, "Multiagent Systems" and "Essentials of Game Theory," and over 100 peer-refereed technical articles; his work has received over 8,000 citations and an h-index of 37. He is the recipient of UBC's 2015 Charles A. McDowell Award for Excellence in Research, a 2014 NSERC E.W.R. Steacie Memorial Fellowship, and a 2013 Outstanding Young Computer Science Researcher Prize from the Canadian Association of Computer Science.