- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Automatic Movie Analysis and Summarization via Turning Point Identification (via Zoom)
Abstract: Movie analysis is an umbrella term for many tasks aiming to automatically interpret, extract, and summarize the content of a movie. Potential applications include generating shorter versions of scripts to help with the decision making process in a production company, enhancing movie recommendation engines, and notably generating movie previews.
In this talk I will introduce the task of turning point identification as a means of analyzing movie content. According to screenwriting theory, turning points (e.g., change of plans, major setback, climax) are crucial narrative moments within a movie: they define its plot structure, determine its progression and segment it into thematic units. I will argue that turning points and the segmentation they provide can facilitate the analysis of long, complex narratives, such as screenplays. I will further formalize the generation of a shorter version of a movie as the problem of identifying scenes with turning points and present a graph neural network model for this task based on linguistic and audiovisual information. Finally, I will discuss why the representation of screenplays as (sparse) graphs offers interpretability and exposes the morphology of different movie genres.
Bio: Mirella Lapata is professor of natural language processing in the School of Informatics at the University of Edinburgh. Her research focuses on getting computers to understand, reason with, and generate natural language. She is the first recipient (2009) of the BCS and Information Retrieval Specialist Group (BCS/IRSG) Karen Sparck ones award and a Fellow of the Royal Society of Edinburgh. She has also received best paper awards in leading NLP conferences and has served on the editorial boards of the Journal of Artificial Intelligence Research, the Transactions of the ACL, and Computational Linguistics. She was president of SIGDAT (the group that organises EMNLP) in 2018.
The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336.