- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Complement-Free Couples Must Communicate: A Hardness Result for Two-Player Combinatorial Auctions
Abstract: We study the communication complexity of welfare maximization in combinatorial auctions with m items and two subadditive bidders. a 1/2-approximation can be guaranteed by a trivial randomized protocol with zero communication, or a trivial deterministic protocol with O(1) communication. We show that outperforming these trivial protocols requires exponential communication, settling an open question of [DobzinskiNS10, Feige09]. Specifically, we show that any (randomized) protocol guaranteeing a 1/2 + 1/(6\log_2 m) approximation requires communication exponential in m. This is tight even up to lower-order terms: we further present a 1/2 + 1/O(\log m) approximation in poly(m) communication.
To derive our results, we introduce a new class of subadditive functions that are "far from" fractionally subadditive functions, and may be of independent interest for future works. Beyond our main result, we consider the spectrum of valuations between fractionally-subadditive and subadditive via the MPH hierarchy. Finally, we discuss the implications of our results towards combinatorial auctions with strategic bidders.