MathClasses.varieties.groups
Require
categories.varieties categories.product forget_algebra forget_variety theory.groups.
Require Import
abstract_algebra universal_algebra ua_homomorphisms workaround_tactics.
Inductive op := mult | inv | one.
Definition sig: Signature := single_sorted_signature
(λ o, match o with one ⇒ O | inv ⇒ 1%nat | mult ⇒ 2%nat end).
Section laws.
Global Instance: SgOp (Term0 sig nat tt) :=
λ x, App sig _ _ _ (App sig _ _ _ (Op sig nat mult) x).
Global Instance: MonUnit (Term0 sig nat tt) := Op sig nat one.
Global Instance: Negate (Term0 sig nat tt) :=
λ x, App sig _ _ _ (Op sig nat inv) x.
Local Notation x := (Var sig nat 0%nat tt).
Local Notation y := (Var sig nat 1%nat tt).
Local Notation z := (Var sig nat 2%nat tt).
Import notations.
Inductive Laws: EqEntailment sig → Prop :=
| e_mult_assoc: Laws (x & (y & z) === (x & y) & z)
| e_mult_1_l: Laws (mon_unit & x === x)
| e_mult_1_r: Laws (x & mon_unit === x)
| e_recip_l: Laws (-x & x === mon_unit)
| e_recip_r: Laws (x & -x === mon_unit).
End laws.
Definition theory: EquationalTheory := Build_EquationalTheory sig Laws.
Definition Object := varieties.Object theory.
Definition forget: Object → setoids.Object :=
@product.project unit
(λ _, setoids.Object)
(λ _, _: Arrows setoids.Object) _
(λ _, _: CatId setoids.Object)
(λ _, _: CatComp setoids.Object)
(λ _, _: Category setoids.Object) tt
∘ forget_algebra.object theory ∘ forget_variety.forget theory.
Instance encode_operations A `{!SgOp A} `(Negate A) `{!MonUnit A}: AlgebraOps sig (λ _, A) :=
λ o, match o with mult ⇒ (&) | inv ⇒ (-) | one ⇒ mon_unit: A end.
Section decode_operations.
Context `{AlgebraOps theory A}.
Global Instance: MonUnit (A tt) := algebra_op one.
Global Instance: SgOp (A tt) := algebra_op mult.
Global Instance: Negate (A tt) := algebra_op inv.
End decode_operations.
Section encode_variety_and_ops.
Context A `{Group A}.
Global Instance encode_algebra_and_ops: Algebra sig _.
Proof. constructor. intro. apply _. intro o. destruct o; simpl; try apply _; unfold Proper; reflexivity. Qed.
Global Instance encode_variety_and_ops: InVariety theory (λ _, A).
Proof.
constructor. apply _.
intros ? [] ?; simpl; unfold algebra_op; simpl.
apply associativity.
apply left_identity.
apply right_identity.
eapply left_inverse.
eapply right_inverse.
Qed.
Definition object: Object := varieties.object theory (λ _, A).
End encode_variety_and_ops.
Lemma encode_algebra_only `{!AlgebraOps theory A} `{∀ u, Equiv (A u)} `{!Group (A tt)}: Algebra theory A .
Proof. constructor; intros []; simpl in *; try apply _. Qed.
Global Instance decode_variety_and_ops `{InVariety theory A}: Group (A tt).
Proof with simpl; auto.
pose proof (λ law lawgood x y z, variety_laws law lawgood (λ s n,
match s with tt ⇒ match n with 0 ⇒ x | 1 ⇒ y | _ ⇒ z end end)) as laws.
repeat constructor; try apply _.
intro. apply_simplified (laws _ e_mult_assoc).
apply (algebra_propers mult)...
intro. apply_simplified (laws _ e_mult_1_l)...
intro. apply_simplified (laws _ e_mult_1_r)...
apply (algebra_propers inv).
intro. apply_simplified (laws _ e_recip_l)...
intro. apply_simplified (laws _ e_recip_r)...
Qed.
Lemma encode_morphism_only
`{AlgebraOps theory A} `{∀ u, Equiv (A u)}
`{AlgebraOps theory B} `{∀ u, Equiv (B u)}
(f: ∀ u, A u → B u) `{!Group (A tt)} `{!Group (B tt)} `{!Monoid_Morphism (f tt)}: HomoMorphism sig A B f.
Proof.
pose proof (monmor_a (f:=f tt)).
pose proof (monmor_b (f:=f tt)).
constructor.
intros []. apply _.
intros []; simpl.
apply preserves_sg_op.
apply groups.preserves_negate.
rapply preserves_mon_unit.
eapply encode_algebra_only.
eapply encode_algebra_only.
Qed.
Lemma encode_morphism_and_ops `{Group A} `{Group B} `{!Monoid_Morphism (f: A → B)}:
@HomoMorphism sig (λ _, A) (λ _, B) _ _ ( _) ( _) (λ _, f).
Proof. intros. apply encode_morphism_only; assumption. Qed.
Lemma decode_morphism_and_ops
`{InVariety theory x} `{InVariety theory y} `{!HomoMorphism theory x y f}:
Monoid_Morphism (f tt).
Proof.
constructor; try apply _.
constructor; try apply _.
apply (preserves theory x y f mult).
apply (preserves theory x y f one).
Qed.
categories.varieties categories.product forget_algebra forget_variety theory.groups.
Require Import
abstract_algebra universal_algebra ua_homomorphisms workaround_tactics.
Inductive op := mult | inv | one.
Definition sig: Signature := single_sorted_signature
(λ o, match o with one ⇒ O | inv ⇒ 1%nat | mult ⇒ 2%nat end).
Section laws.
Global Instance: SgOp (Term0 sig nat tt) :=
λ x, App sig _ _ _ (App sig _ _ _ (Op sig nat mult) x).
Global Instance: MonUnit (Term0 sig nat tt) := Op sig nat one.
Global Instance: Negate (Term0 sig nat tt) :=
λ x, App sig _ _ _ (Op sig nat inv) x.
Local Notation x := (Var sig nat 0%nat tt).
Local Notation y := (Var sig nat 1%nat tt).
Local Notation z := (Var sig nat 2%nat tt).
Import notations.
Inductive Laws: EqEntailment sig → Prop :=
| e_mult_assoc: Laws (x & (y & z) === (x & y) & z)
| e_mult_1_l: Laws (mon_unit & x === x)
| e_mult_1_r: Laws (x & mon_unit === x)
| e_recip_l: Laws (-x & x === mon_unit)
| e_recip_r: Laws (x & -x === mon_unit).
End laws.
Definition theory: EquationalTheory := Build_EquationalTheory sig Laws.
Definition Object := varieties.Object theory.
Definition forget: Object → setoids.Object :=
@product.project unit
(λ _, setoids.Object)
(λ _, _: Arrows setoids.Object) _
(λ _, _: CatId setoids.Object)
(λ _, _: CatComp setoids.Object)
(λ _, _: Category setoids.Object) tt
∘ forget_algebra.object theory ∘ forget_variety.forget theory.
Instance encode_operations A `{!SgOp A} `(Negate A) `{!MonUnit A}: AlgebraOps sig (λ _, A) :=
λ o, match o with mult ⇒ (&) | inv ⇒ (-) | one ⇒ mon_unit: A end.
Section decode_operations.
Context `{AlgebraOps theory A}.
Global Instance: MonUnit (A tt) := algebra_op one.
Global Instance: SgOp (A tt) := algebra_op mult.
Global Instance: Negate (A tt) := algebra_op inv.
End decode_operations.
Section encode_variety_and_ops.
Context A `{Group A}.
Global Instance encode_algebra_and_ops: Algebra sig _.
Proof. constructor. intro. apply _. intro o. destruct o; simpl; try apply _; unfold Proper; reflexivity. Qed.
Global Instance encode_variety_and_ops: InVariety theory (λ _, A).
Proof.
constructor. apply _.
intros ? [] ?; simpl; unfold algebra_op; simpl.
apply associativity.
apply left_identity.
apply right_identity.
eapply left_inverse.
eapply right_inverse.
Qed.
Definition object: Object := varieties.object theory (λ _, A).
End encode_variety_and_ops.
Lemma encode_algebra_only `{!AlgebraOps theory A} `{∀ u, Equiv (A u)} `{!Group (A tt)}: Algebra theory A .
Proof. constructor; intros []; simpl in *; try apply _. Qed.
Global Instance decode_variety_and_ops `{InVariety theory A}: Group (A tt).
Proof with simpl; auto.
pose proof (λ law lawgood x y z, variety_laws law lawgood (λ s n,
match s with tt ⇒ match n with 0 ⇒ x | 1 ⇒ y | _ ⇒ z end end)) as laws.
repeat constructor; try apply _.
intro. apply_simplified (laws _ e_mult_assoc).
apply (algebra_propers mult)...
intro. apply_simplified (laws _ e_mult_1_l)...
intro. apply_simplified (laws _ e_mult_1_r)...
apply (algebra_propers inv).
intro. apply_simplified (laws _ e_recip_l)...
intro. apply_simplified (laws _ e_recip_r)...
Qed.
Lemma encode_morphism_only
`{AlgebraOps theory A} `{∀ u, Equiv (A u)}
`{AlgebraOps theory B} `{∀ u, Equiv (B u)}
(f: ∀ u, A u → B u) `{!Group (A tt)} `{!Group (B tt)} `{!Monoid_Morphism (f tt)}: HomoMorphism sig A B f.
Proof.
pose proof (monmor_a (f:=f tt)).
pose proof (monmor_b (f:=f tt)).
constructor.
intros []. apply _.
intros []; simpl.
apply preserves_sg_op.
apply groups.preserves_negate.
rapply preserves_mon_unit.
eapply encode_algebra_only.
eapply encode_algebra_only.
Qed.
Lemma encode_morphism_and_ops `{Group A} `{Group B} `{!Monoid_Morphism (f: A → B)}:
@HomoMorphism sig (λ _, A) (λ _, B) _ _ ( _) ( _) (λ _, f).
Proof. intros. apply encode_morphism_only; assumption. Qed.
Lemma decode_morphism_and_ops
`{InVariety theory x} `{InVariety theory y} `{!HomoMorphism theory x y f}:
Monoid_Morphism (f tt).
Proof.
constructor; try apply _.
constructor; try apply _.
apply (preserves theory x y f mult).
apply (preserves theory x y f one).
Qed.