MathClasses.varieties.empty
Require
theory.rings categories.varieties.
Require Import
abstract_algebra universal_algebra.
Definition op := False.
Definition sig: Signature := Build_Signature False False (False_rect _).
Definition Laws (_: EqEntailment sig): Prop := False.
Definition theory: EquationalTheory := Build_EquationalTheory sig Laws.
Let carriers := False_rect _: sorts sig → Type.
Instance: Equiv (carriers a).
Proof. intros []. Qed.
Instance implementation: AlgebraOps sig carriers := λ o, False_rect _ o.
Global Instance: Algebra sig _.
Proof. constructor; intuition. Qed.
Instance variety: InVariety theory carriers.
Proof. constructor; intuition. Qed.
Definition Object := varieties.Object theory.
Definition object: Object := varieties.object theory carriers.
theory.rings categories.varieties.
Require Import
abstract_algebra universal_algebra.
Definition op := False.
Definition sig: Signature := Build_Signature False False (False_rect _).
Definition Laws (_: EqEntailment sig): Prop := False.
Definition theory: EquationalTheory := Build_EquationalTheory sig Laws.
Let carriers := False_rect _: sorts sig → Type.
Instance: Equiv (carriers a).
Proof. intros []. Qed.
Instance implementation: AlgebraOps sig carriers := λ o, False_rect _ o.
Global Instance: Algebra sig _.
Proof. constructor; intuition. Qed.
Instance variety: InVariety theory carriers.
Proof. constructor; intuition. Qed.
Definition Object := varieties.Object theory.
Definition object: Object := varieties.object theory carriers.