MathClasses.interfaces.sequences
Require Import
List abstract_algebra theory.categories forget_algebra forget_variety
theory.rings interfaces.universal_algebra interfaces.functors
categories.setoids categories.varieties.
Require
categories.product varieties.monoids categories.algebras
categories.categories theory.setoids.
Module ua := universal_algebra.
Instance: Arrows Type := λ X Y, X → Y.
Class PoshSequence
(free: setoids.Object → monoids.Object) `{!Fmap free}
(inject: id ⇛ monoids.forget ∘ free)
(extend: `((x ⟶ monoids.forget y) → (free x ⟶ y))): Prop :=
{ sequence_adjunction: ηAdjunction _ _ inject extend
; extend_morphism: `(Setoid_Morphism (extend x y)) }.
Section practical.
Class ExtendToSeq (free: Type → Type) :=
extend: ∀ {x y} `{!SgOp y} `{!MonUnit y}, (x → y) → (free x → y).
Class InjectToSeq (free: Type → Type) := inject: ∀ x, x → free x.
Context
(free: Type → Type) {raw_fmap: Fmap free}
`{∀ a, MonUnit (free a)}
`{∀ a, SgOp (free a)}
`{∀ a, Equiv a → Equiv (free a)}
`{!InjectToSeq free} `{!ExtendToSeq free}.
Class Sequence :=
{ sequence_makes_monoids:> ∀ `{Setoid a}, Monoid (free a)
; sequence_inject_morphism:> ∀ `{Setoid a}, Setoid_Morphism (inject a)
; sequence_map_morphism:> ∀ `{Equiv x} `{Equiv y} (f: x → y),
Setoid_Morphism f → Monoid_Morphism (raw_fmap _ _ f)
; sequence_fmap_proper: ∀ `{Equiv x} `{Equiv y} (f g: x → y), f = g → fmap free f = raw_fmap _ _ g
; sequence_fmap_id: ∀ `{Equiv x}, raw_fmap _ _ (@id x) = id
; sequence_fmap_comp: ∀ `{Equiv x} `{Equiv y} `{Equiv z} (f: y → z) (g: x → y),
raw_fmap _ _ (f ∘ g) = raw_fmap _ _ f ∘ raw_fmap _ _ g
; sequence_extend_makes_morphisms:> ∀ `{Equiv x} `{Monoid y} (f: x → y),
Setoid_Morphism f → Monoid_Morphism (extend f)
; sequence_inject_natural: ∀ `{Setoid A} `{Setoid B} (f: A → B), Setoid_Morphism f →
inject B ∘ f = raw_fmap _ _ f ∘ inject A
; sequence_extend_commutes: ∀ `{Setoid x} `{Monoid y} (f: x → y), Setoid_Morphism f →
extend f ∘ inject x = f
; sequence_only_extend_commutes: ∀ `{Setoid x} `{Monoid y} (f: x → y), Setoid_Morphism f →
(∀ (g: free x → y), Monoid_Morphism g → g ∘ inject x = f → g = extend f)
; sequence_extend_morphism: ∀ `{Setoid x} `{Monoid y} (f g: x → y),
Setoid_Morphism f → Setoid_Morphism g →
f = g → extend f (free:=free) = extend g (free:=free)
}.
Context `{PS: Sequence}.
Program Definition posh_free (X: setoids.Object): monoids.Object := monoids.object (free X).
Program Instance posh_fmap: functors.Fmap posh_free :=
λ _ _ X _, raw_fmap _ _ X.
Next Obligation. apply monoids.encode_morphism_only. destruct X. apply _. Qed.
Instance: Functor posh_free posh_fmap.
Proof with try apply _.
constructor...
repeat intro.
constructor...
repeat intro.
simpl.
apply sequence_fmap_proper.
intro.
apply H2.
reflexivity.
repeat intro.
simpl.
apply sequence_fmap_id.
reflexivity.
repeat intro.
simpl.
apply sequence_fmap_comp.
reflexivity.
Qed.
Program Definition posh_inject: id ⇛ monoids.forget ∘ posh_free := λ a, inject a.
Next Obligation. apply PS, _. Qed.
Typeclasses Transparent compose.
Program Definition posh_extend (x: setoids.Object) (y: monoids.Object)
(X: x ⟶ monoids.forget y): posh_free x ⟶ y
:= λ u, match u return posh_free x u → y u with
tt ⇒ @extend free ExtendToSeq0 x (monoids.forget y) _ _ X end.
Next Obligation. apply _. Defined.
Next Obligation. apply _. Defined.
Next Obligation.
apply monoids.encode_morphism_only.
destruct X. simpl in ×.
apply (sequence_extend_makes_morphisms _). apply _.
Qed.
Instance: NaturalTransformation posh_inject.
Proof.
unfold NaturalTransformation.
intros [???] [???] [??] ?? E.
simpl in ×.
rewrite E.
apply sequence_inject_natural.
apply _.
reflexivity.
Qed.
Goal @PoshSequence posh_free posh_fmap posh_inject posh_extend.
Proof.
constructor.
constructor; try apply _.
intros [x xE xH] y [f fM].
pose proof (@monoids.decode_variety_and_ops y _ _ _).
split.
repeat intro.
simpl in ×.
rewrite H3.
symmetry.
apply (@sequence_extend_commutes PS x _ _ _ _ _ _ H2 f fM).
reflexivity.
unfold compose.
intros [x0 h] H4 [] a.
unfold equiv, setoids.Equiv_instance_0 in H4.
simpl in ×.
apply (@sequence_only_extend_commutes PS x _ _ _ _ _ _ H2 f _ (x0 tt)).
apply (@monoids.decode_morphism_and_ops _ _ _ _ _ _ _ _ _ h).
intros. symmetry. apply H4. reflexivity.
unfold posh_extend.
intros [x ??] [y ?? yV].
constructor; try apply _.
intros [] [] E [] a.
simpl in ×.
apply (@sequence_extend_morphism PS x _ _ _ _ _ _
(@monoids.decode_variety_and_ops _ _ _ yV) _ _ _ _).
intro. apply E. reflexivity.
Qed.
Definition fold `{MonUnit M} `{SgOp M}: free M → M := extend id.
Global Instance fold_mor `{Monoid M}: Monoid_Morphism (fold (M:=M)).
Proof. apply _. Qed.
End practical.
List abstract_algebra theory.categories forget_algebra forget_variety
theory.rings interfaces.universal_algebra interfaces.functors
categories.setoids categories.varieties.
Require
categories.product varieties.monoids categories.algebras
categories.categories theory.setoids.
Module ua := universal_algebra.
Instance: Arrows Type := λ X Y, X → Y.
Class PoshSequence
(free: setoids.Object → monoids.Object) `{!Fmap free}
(inject: id ⇛ monoids.forget ∘ free)
(extend: `((x ⟶ monoids.forget y) → (free x ⟶ y))): Prop :=
{ sequence_adjunction: ηAdjunction _ _ inject extend
; extend_morphism: `(Setoid_Morphism (extend x y)) }.
Section practical.
Class ExtendToSeq (free: Type → Type) :=
extend: ∀ {x y} `{!SgOp y} `{!MonUnit y}, (x → y) → (free x → y).
Class InjectToSeq (free: Type → Type) := inject: ∀ x, x → free x.
Context
(free: Type → Type) {raw_fmap: Fmap free}
`{∀ a, MonUnit (free a)}
`{∀ a, SgOp (free a)}
`{∀ a, Equiv a → Equiv (free a)}
`{!InjectToSeq free} `{!ExtendToSeq free}.
Class Sequence :=
{ sequence_makes_monoids:> ∀ `{Setoid a}, Monoid (free a)
; sequence_inject_morphism:> ∀ `{Setoid a}, Setoid_Morphism (inject a)
; sequence_map_morphism:> ∀ `{Equiv x} `{Equiv y} (f: x → y),
Setoid_Morphism f → Monoid_Morphism (raw_fmap _ _ f)
; sequence_fmap_proper: ∀ `{Equiv x} `{Equiv y} (f g: x → y), f = g → fmap free f = raw_fmap _ _ g
; sequence_fmap_id: ∀ `{Equiv x}, raw_fmap _ _ (@id x) = id
; sequence_fmap_comp: ∀ `{Equiv x} `{Equiv y} `{Equiv z} (f: y → z) (g: x → y),
raw_fmap _ _ (f ∘ g) = raw_fmap _ _ f ∘ raw_fmap _ _ g
; sequence_extend_makes_morphisms:> ∀ `{Equiv x} `{Monoid y} (f: x → y),
Setoid_Morphism f → Monoid_Morphism (extend f)
; sequence_inject_natural: ∀ `{Setoid A} `{Setoid B} (f: A → B), Setoid_Morphism f →
inject B ∘ f = raw_fmap _ _ f ∘ inject A
; sequence_extend_commutes: ∀ `{Setoid x} `{Monoid y} (f: x → y), Setoid_Morphism f →
extend f ∘ inject x = f
; sequence_only_extend_commutes: ∀ `{Setoid x} `{Monoid y} (f: x → y), Setoid_Morphism f →
(∀ (g: free x → y), Monoid_Morphism g → g ∘ inject x = f → g = extend f)
; sequence_extend_morphism: ∀ `{Setoid x} `{Monoid y} (f g: x → y),
Setoid_Morphism f → Setoid_Morphism g →
f = g → extend f (free:=free) = extend g (free:=free)
}.
Context `{PS: Sequence}.
Program Definition posh_free (X: setoids.Object): monoids.Object := monoids.object (free X).
Program Instance posh_fmap: functors.Fmap posh_free :=
λ _ _ X _, raw_fmap _ _ X.
Next Obligation. apply monoids.encode_morphism_only. destruct X. apply _. Qed.
Instance: Functor posh_free posh_fmap.
Proof with try apply _.
constructor...
repeat intro.
constructor...
repeat intro.
simpl.
apply sequence_fmap_proper.
intro.
apply H2.
reflexivity.
repeat intro.
simpl.
apply sequence_fmap_id.
reflexivity.
repeat intro.
simpl.
apply sequence_fmap_comp.
reflexivity.
Qed.
Program Definition posh_inject: id ⇛ monoids.forget ∘ posh_free := λ a, inject a.
Next Obligation. apply PS, _. Qed.
Typeclasses Transparent compose.
Program Definition posh_extend (x: setoids.Object) (y: monoids.Object)
(X: x ⟶ monoids.forget y): posh_free x ⟶ y
:= λ u, match u return posh_free x u → y u with
tt ⇒ @extend free ExtendToSeq0 x (monoids.forget y) _ _ X end.
Next Obligation. apply _. Defined.
Next Obligation. apply _. Defined.
Next Obligation.
apply monoids.encode_morphism_only.
destruct X. simpl in ×.
apply (sequence_extend_makes_morphisms _). apply _.
Qed.
Instance: NaturalTransformation posh_inject.
Proof.
unfold NaturalTransformation.
intros [???] [???] [??] ?? E.
simpl in ×.
rewrite E.
apply sequence_inject_natural.
apply _.
reflexivity.
Qed.
Goal @PoshSequence posh_free posh_fmap posh_inject posh_extend.
Proof.
constructor.
constructor; try apply _.
intros [x xE xH] y [f fM].
pose proof (@monoids.decode_variety_and_ops y _ _ _).
split.
repeat intro.
simpl in ×.
rewrite H3.
symmetry.
apply (@sequence_extend_commutes PS x _ _ _ _ _ _ H2 f fM).
reflexivity.
unfold compose.
intros [x0 h] H4 [] a.
unfold equiv, setoids.Equiv_instance_0 in H4.
simpl in ×.
apply (@sequence_only_extend_commutes PS x _ _ _ _ _ _ H2 f _ (x0 tt)).
apply (@monoids.decode_morphism_and_ops _ _ _ _ _ _ _ _ _ h).
intros. symmetry. apply H4. reflexivity.
unfold posh_extend.
intros [x ??] [y ?? yV].
constructor; try apply _.
intros [] [] E [] a.
simpl in ×.
apply (@sequence_extend_morphism PS x _ _ _ _ _ _
(@monoids.decode_variety_and_ops _ _ _ yV) _ _ _ _).
intro. apply E. reflexivity.
Qed.
Definition fold `{MonUnit M} `{SgOp M}: free M → M := extend id.
Global Instance fold_mor `{Monoid M}: Monoid_Morphism (fold (M:=M)).
Proof. apply _. Qed.
End practical.