MathClasses.implementations.option

Require Import
  abstract_algebra interfaces.monads jections theory.monads.

Inductive option_equiv A `{Equiv A} : Equiv (option A) :=
  | option_equiv_Some : Proper ((=) ==> (=)) Some
  | option_equiv_None : None = None.

Existing Instance option_equiv.
Hint Constructors option_equiv.

Section contents.
  Context `{Setoid A}.

  Lemma Some_ne_None x : Some x None.
  Proof. intros E. inversion E. Qed.

  Lemma None_ne_Some x : None Some x.
  Proof. intros E. inversion E. Qed.

  Global Instance: Setoid (option A).
  Proof.
    split.
      intros [x|]. now apply option_equiv_Some. now apply option_equiv_None.
     red. induction 1. now apply option_equiv_Some. now apply option_equiv_None.
    intros x y z E. revert z. induction E.
     intros z E2. inversion_clear E2.
     apply option_equiv_Some. etransitivity; eassumption.
    easy.
  Qed.

  Global Instance: Setoid_Morphism Some.
  Proof. split; try apply _. now apply option_equiv_Some. Qed.

  Global Instance: Injective Some.
  Proof. split; try apply _. intros ? ? E. now inversion E. Qed.

  Global Instance option_zero: MonUnit (option A) := None.

  Global Instance option_op: SgOp (option A) := λ mx my,
    match mx with
    | Some xSome x
    | Nonemy
    end.

  Instance: Proper ((=) ==> (=) ==> (=)) option_op.
  Proof. intros [?|] [?|] ? ???; simpl; try setoid_discriminate; auto. Qed.

  Global Instance: Monoid (option A).
  Proof. repeat (split; try apply _); now repeat intros [?|]. Qed.

  Lemma option_equiv_alt x y :
    x = y ( n, x = Some n y = Some n).
  Proof.
    split; intros E1.
     intro. now rewrite E1.
    destruct x, y.
       now apply E1.
      symmetry. now apply E1.
     now apply E1.
    easy.
  Qed.

  Global Program Instance option_dec `(A_dec : x y : A, Decision (x = y))
     : x y : option A, Decision (x = y) := λ x y,
    match x with
    | Some r
      match y with
      | Some smatch A_dec r s with left _left _ | right _right _ end
      | Noneright _
      end
    | None
      match y with
      | Some sright _
      | Noneleft _
      end
    end.
  Next Obligation. now apply (injective_ne Some). Qed.
  Next Obligation. setoid_discriminate. Qed.
  Next Obligation. setoid_discriminate. Qed.
End contents.

Hint Extern 10 (Equiv (option _)) ⇒ apply @option_equiv : typeclass_instances.

Lemma option_equiv_eq {A} (x y : option A) :
  @option_equiv A (≡) x y x y.
Proof.
  split.
   induction 1. now f_equal. reflexivity.
  intros. subst.
  now assert (@Setoid A (@eq A)) by (split; apply _).
Qed.

Instance option_ret: MonadReturn option := λ A x, Some x.
Instance option_bind: MonadBind option := λ A B f x,
  match x with
  | Some af a
  | NoneNone
  end.

Instance option_ret_proper `{Equiv A} : Proper ((=) ==> (=)) (option_ret A).
Proof. intros x y E. now apply option_equiv_Some. Qed.

Instance option_bind_proper `{Setoid A} `{Setoid (option B)}: Proper (=) (option_bind A B).
Proof.
  intros f₁ f₂ E1 x₁ x₂ [?|].
   unfold option_bind. simpl. now apply E1.
  easy.
Qed.

Instance: Monad option.
Proof.
  repeat (split; try apply _); unfold bind, ret, option_bind, option_ret, compose.
    intros. now apply setoids.ext_equiv_refl.
   now intros ? ? ? [?|].
  intros A ? B ? C ? ? f [???] g [???] [x|] [y|] E; try solve [inversion_clear E].
   setoid_inject. cut (g x = g y); [|now rewrite E].
   case (g x), (g y); intros E2; inversion_clear E2. now f_equiv. easy.
  easy.
Qed.

Instance option_map: SFmap option := option_map.

Instance: FullMonad option.
Proof. apply @monad_default_full_monad. apply _. Qed.

Section map.
  Context `{Setoid A} `{Setoid B} `{!Injective (f : A B)}.

  Global Instance: Injective (sfmap f).
  Proof.
    pose proof (injective_mor f).
    repeat (split; try apply _).
    intros [x|] [y|] E; try solve [inversion E | easy].
    apply sm_proper. apply (injective f). now apply (injective Some).
  Qed.
End map.