MathClasses.categories.orders
Require Import
abstract_algebra theory.categories orders.maps interfaces.orders orders.orders
interfaces.functors.
Require categories.setoids.
Inductive Object := object { T:> Type; e: Equiv T; le: Le T; setoid_proof: Setoid T; po_proof: PartialOrder le }.
Existing Instance e.
Existing Instance le.
Existing Instance setoid_proof.
Existing Instance po_proof.
Implicit Arguments object [[e] [le] [setoid_proof] [po_proof]]
[[e] [setoid_proof] [po_proof]]
[[setoid_proof] [po_proof]].
Section contents.
Global Instance Arrow: Arrows Object := λ A B, sig (@OrderPreserving A B _ _ _ _).
Global Program Instance: ∀ x y: Object, Equiv (x ⟶ y) := λ _ _, respectful (=) (=).
Existing Instance order_morphism_mor.
Global Instance: ∀ x y: Object, Setoid (x ⟶ y).
Proof with intuition.
intros x y.
constructor.
intros [? ?] ? ? E. now rewrite E.
intros ? ? E ? ? ?. symmetry...
intros [f Pf] [g Pg] [h Ph] E1 E2 a b E3. simpl.
transitivity (g a)...
Qed.
Global Program Instance: CatId Object := λ _, id.
Local Obligation Tactic := idtac.
Global Program Instance: CatComp Object := λ _ _ _, compose.
Instance: ∀ x y z: Object, Proper ((=) ==> (=) ==> (=)) (comp x y z).
Proof. repeat intro. simpl. firstorder. Qed.
Global Instance: Category Object.
Proof.
constructor; try apply _.
intros ? ? ? ? [??] [??] [??] ? ? E. simpl. now rewrite E.
intros ? ? [??] ? ? E. simpl. now rewrite E.
intros ? ? [??] ? ? E. simpl. now rewrite E.
Qed.
Definition forget (O: Object) : setoids.Object := setoids.object O.
Global Program Instance: Fmap forget := λ x y f, f.
Global Instance: Functor forget _ := {}.
Proof.
× constructor; try typeclasses eauto.
intros ???. assumption.
× intros ????. assumption.
× intros ??[] ?[] ???.
simpl. rewrite H.
reflexivity.
Qed.
End contents.
abstract_algebra theory.categories orders.maps interfaces.orders orders.orders
interfaces.functors.
Require categories.setoids.
Inductive Object := object { T:> Type; e: Equiv T; le: Le T; setoid_proof: Setoid T; po_proof: PartialOrder le }.
Existing Instance e.
Existing Instance le.
Existing Instance setoid_proof.
Existing Instance po_proof.
Implicit Arguments object [[e] [le] [setoid_proof] [po_proof]]
[[e] [setoid_proof] [po_proof]]
[[setoid_proof] [po_proof]].
Section contents.
Global Instance Arrow: Arrows Object := λ A B, sig (@OrderPreserving A B _ _ _ _).
Global Program Instance: ∀ x y: Object, Equiv (x ⟶ y) := λ _ _, respectful (=) (=).
Existing Instance order_morphism_mor.
Global Instance: ∀ x y: Object, Setoid (x ⟶ y).
Proof with intuition.
intros x y.
constructor.
intros [? ?] ? ? E. now rewrite E.
intros ? ? E ? ? ?. symmetry...
intros [f Pf] [g Pg] [h Ph] E1 E2 a b E3. simpl.
transitivity (g a)...
Qed.
Global Program Instance: CatId Object := λ _, id.
Local Obligation Tactic := idtac.
Global Program Instance: CatComp Object := λ _ _ _, compose.
Instance: ∀ x y z: Object, Proper ((=) ==> (=) ==> (=)) (comp x y z).
Proof. repeat intro. simpl. firstorder. Qed.
Global Instance: Category Object.
Proof.
constructor; try apply _.
intros ? ? ? ? [??] [??] [??] ? ? E. simpl. now rewrite E.
intros ? ? [??] ? ? E. simpl. now rewrite E.
intros ? ? [??] ? ? E. simpl. now rewrite E.
Qed.
Definition forget (O: Object) : setoids.Object := setoids.object O.
Global Program Instance: Fmap forget := λ x y f, f.
Global Instance: Functor forget _ := {}.
Proof.
× constructor; try typeclasses eauto.
intros ???. assumption.
× intros ????. assumption.
× intros ??[] ?[] ???.
simpl. rewrite H.
reflexivity.
Qed.
End contents.