CoRN.model.monoids.Zmonoid


Require Export Zsemigroup.
Require Export CMonoids.

Examples of monoids: ⟨Z,[+]⟩ and ⟨Z,[*]

Z,[+]

We use the addition ZERO (defined in the standard library) as the unit of monoid:

Lemma ZERO_as_rht_unit : is_rht_unit (S:=Z_as_CSetoid) Zplus_is_bin_fun 0%Z.
Proof.
 red in |- ×.
 simpl in |- ×.
 intro x.
 apply Zplus_0_r.
Qed.

Lemma ZERO_as_lft_unit : is_lft_unit (S:=Z_as_CSetoid) Zplus_is_bin_fun 0%Z.
Proof.
 red in |- ×.
 simpl in |- ×.
 reflexivity.
Qed.

Lemma is_unit_Z_0 :(is_unit Z_as_CSemiGroup 0%Z).
Proof.
 unfold is_unit.
 intro a.
 simpl.
 split.
  reflexivity.
 intuition.
Qed.

Definition Z_is_CMonoid := Build_is_CMonoid
 Z_as_CSemiGroup _ ZERO_as_rht_unit ZERO_as_lft_unit.

Definition Z_as_CMonoid := Build_CMonoid Z_as_CSemiGroup _ Z_is_CMonoid.

Canonical Structure Z_as_CMonoid.

The term Z_as_CMonoid is of type CMonoid. Hence we have proven that Z is a constructive monoid.

Z,[*]

As the multiplicative unit we should use `1`, which is (POS xH) in the representation we have for integers.

Lemma ONE_as_rht_unit : is_rht_unit (S:=Z_as_CSetoid) Zmult_is_bin_fun 1%Z.
Proof.
 red in |- ×.
 simpl in |- ×.
 intro.
 apply Zmult_1_r.
Qed.

Lemma ONE_as_lft_unit : is_lft_unit (S:=Z_as_CSetoid) Zmult_is_bin_fun 1%Z.
Proof.
 red in |- ×.
 intro.
 eapply eq_transitive_unfolded.
  apply Zmult_is_commut.
 apply ONE_as_rht_unit.
Qed.

Definition Z_mul_is_CMonoid := Build_is_CMonoid
 Z_mul_as_CSemiGroup _ ONE_as_rht_unit ONE_as_lft_unit.

Definition Z_mul_as_CMonoid := Build_CMonoid
 Z_mul_as_CSemiGroup _ Z_mul_is_CMonoid.

The term Z_mul_as_CMonoid is another term of type CMonoid.