- Lecture 1 : Introduction, course details, what is learning theory, learning frameworks [slides]
Reference : [1] (ch 1 and 3)
- Lecture 2 : Learning frameworks, simple examples in binary classification (finite class realizable, bit prediction) [pdf]
- Lecture 3 : Minimax Rates, statistical learning and uniform convergence [pdf]
- Lecture 4 : Statistical learning, uniform convergence, finite class and MDL principle [pdf]
- Lecture 5 : Symmetrization and infinite classes [pdf]
- Lecture 6 : Effective size, Growth function and VC dimension [pdf]
- Lecture 7 : VC dimension, Massart Lemma, Rademacher Complexity [pdf]
- Lecture 8 : Rademacher Complexity [pdf]
- Lecture 9 : Covering numbers, Pollard Bound [pdf]
- Lecture 10 : Dudley Integral Bound [pdf]
- Lecture 11 : Wrapping up Statistical Learning [pdf]
- Lecture 12 : Online Learning: Bit Prediction [pdf]
- Lecture 13 : Online Learning: Bit Prediction, Dice Prediction, ... [pdf]
- Lecture 14 : Online Learning: Bit/Dice Prediction, Experts ... [pdf]
- Lecture 15 : Online Convex Optimization [pdf]
- Lecture 17 : Online Convex Optimization [pdf]
- Lecture 19 : Online Convex Optimization [pdf]
- Lecture 20 : General Online Learning and Relaxations [pdf]
- Lecture 21 : General Online Learning and Relaxations [pdf]
- Lecture 22 : General Online Learning and Relaxations [pdf]
- Lecture 23 : General Online Learning and Relaxations [pdf]
- Lecture 24 : Randomized Algoeithms Via Relaxations [pdf]