Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Linear Regression

previous
next

In this lecture we will learn about Linear Regression.

Assumptions

Data Assumption: yiR
Model Assumption: yi=wxi+ϵi where ϵiN(0,σ2)
yi|xiN(wxi,σ2)P(yi|xi,w)=12πσ2e(xiwyi)22σ2

In words, we assume that the data is drawn from a "line" wx through the origin (one can always add a bias / offset through an additional dimension, similar to the Perceptron). For each data point with features xi, the label y is drawn from a Gaussian with mean wxi and variance σ2. Our task is to estimate the slope w from the data.

Estimating with MLE

w=argmax

We are minimizing a loss function, l(\mathbf{w}) = \frac{1}{n}\sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2. This particular loss function is also known as the squared loss or Ordinary Least Squares (OLS). OLS can be optimized with gradient descent, Newton's method, or in closed form.

Closed Form: \mathbf{w} = (\mathbf{X X^\top})^{-1}\mathbf{X}\mathbf{y}^\top where \mathbf{X}=\left[\mathbf{x}_1,\dots,\mathbf{x}_n\right] and \mathbf{y}=\left[y_1,\dots,y_n\right].

Estimating with MAP

Additional Model Assumption: P(\mathbf{w}) = \frac{1}{\sqrt{2\pi\tau^2}}e^{-\frac{\mathbf{w}^\top\mathbf{w}}{2\tau^2}}
\begin{align} \mathbf{w} &= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} P(\mathbf{w}|y_1,\mathbf{x}_1,...,y_n,\mathbf{x}_n)\\ &= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \frac{P(y_1,\mathbf{x}_1,...,y_n,\mathbf{x}_n|\mathbf{w})P(\mathbf{w})}{P(y_1,\mathbf{x}_1,...,y_n,\mathbf{x}_n)}\\ &= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} P(y_1,...,y_n|\mathbf{x}_1,...,\mathbf{x}_n,\mathbf{w})P(\mathbf{x}_1,...,\mathbf{x}_n|\mathbf{w})P(\mathbf{w})\\ & \textrm{As this is a constant it can be dropped. )}\\ &= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \left[\prod_{i=1}^n P(y_i|\mathbf{x}_i,\mathbf{w})\right]P(\mathbf{w})\\ &= \operatorname*{argmax}_{\mathbf{\mathbf{w}}} \sum_{i=1}^n \log P(y_i|\mathbf{x}_i,\mathbf{w})+ \log P(\mathbf{w})\\ &= \operatorname*{argmin}_{\mathbf{\mathbf{w}}} \frac{1}{2\sigma^2} \sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2 + \frac{1}{2\tau^2}\mathbf{w}^\top\mathbf{w}\\ &= \operatorname*{argmin}_{\mathbf{\mathbf{w}}} \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i^\top\mathbf{w}-y_i)^2 + \lambda|| \mathbf{w}||_2^2 \tag*{$\lambda=\frac{\sigma^2}{n\tau^2}$}\\ \end{align}

This formulation is known as Ridge Regression. It has a closed form solution of: \mathbf{w} = (\mathbf{X X^{\top}}+\lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}^\top, where \mathbf{X}=\left[\mathbf{x}_1,\dots,\mathbf{x}_n\right] and \mathbf{y}=\left[y_1,\dots,y_n\right].

A few remarks about the derivation:

Summary

Ordinary Least Squares:
Ridge Regression: