RecordSubSubtyping with Records
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import MoreStlc.
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import MoreStlc.
Inductive ty : Type :=
(* proper types *)
| Top : ty
| Base : string → ty
| Arrow : ty → ty → ty
(* record types *)
| RNil : ty
| RCons : string → ty → ty → ty.
Inductive tm : Type :=
(* proper terms *)
| var : string → tm
| app : tm → tm → tm
| abs : string → ty → tm → tm
| rproj : tm → string → tm
(* record terms *)
| rnil : tm
| rcons : string → tm → tm → tm.
Well-Formedness
Inductive record_ty : ty → Prop :=
| RTnil :
record_ty RNil
| RTcons : ∀i T1 T2,
record_ty (RCons i T1 T2).
Inductive record_tm : tm → Prop :=
| rtnil :
record_tm rnil
| rtcons : ∀i t1 t2,
record_tm (rcons i t1 t2).
Inductive well_formed_ty : ty → Prop :=
| wfTop :
well_formed_ty Top
| wfBase : ∀i,
well_formed_ty (Base i)
| wfArrow : ∀T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty (Arrow T1 T2)
| wfRNil :
well_formed_ty RNil
| wfRCons : ∀i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty (RCons i T1 T2).
Hint Constructors record_ty record_tm well_formed_ty.
| RTnil :
record_ty RNil
| RTcons : ∀i T1 T2,
record_ty (RCons i T1 T2).
Inductive record_tm : tm → Prop :=
| rtnil :
record_tm rnil
| rtcons : ∀i t1 t2,
record_tm (rcons i t1 t2).
Inductive well_formed_ty : ty → Prop :=
| wfTop :
well_formed_ty Top
| wfBase : ∀i,
well_formed_ty (Base i)
| wfArrow : ∀T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty (Arrow T1 T2)
| wfRNil :
well_formed_ty RNil
| wfRCons : ∀i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty (RCons i T1 T2).
Hint Constructors record_ty record_tm well_formed_ty.
Fixpoint subst (x:string) (s:tm) (t:tm) : tm :=
match t with
| var y ⇒ if eqb_string x y then s else t
| abs y T t1 ⇒ abs y T (if eqb_string x y then t1
else (subst x s t1))
| app t1 t2 ⇒ app (subst x s t1) (subst x s t2)
| rproj t1 i ⇒ rproj (subst x s t1) i
| rnil ⇒ rnil
| rcons i t1 tr2 ⇒ rcons i (subst x s t1) (subst x s tr2)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
match t with
| var y ⇒ if eqb_string x y then s else t
| abs y T t1 ⇒ abs y T (if eqb_string x y then t1
else (subst x s t1))
| app t1 t2 ⇒ app (subst x s t1) (subst x s t2)
| rproj t1 i ⇒ rproj (subst x s t1) i
| rnil ⇒ rnil
| rcons i t1 tr2 ⇒ rcons i (subst x s t1) (subst x s tr2)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
Inductive value : tm → Prop :=
| v_abs : ∀x T t,
value (abs x T t)
| v_rnil : value rnil
| v_rcons : ∀i v vr,
value v →
value vr →
value (rcons i v vr).
Hint Constructors value.
Fixpoint Tlookup (i:string) (Tr:ty) : option ty :=
match Tr with
| RCons i' T Tr' ⇒
if eqb_string i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Fixpoint tlookup (i:string) (tr:tm) : option tm :=
match tr with
| rcons i' t tr' ⇒
if eqb_string i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
Reserved Notation "t1 '-->' t2" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀x T t12 v2,
value v2 →
(app (abs x T t12) v2) --> [x:=v2]t12
| ST_App1 : ∀t1 t1' t2,
t1 --> t1' →
(app t1 t2) --> (app t1' t2)
| ST_App2 : ∀v1 t2 t2',
value v1 →
t2 --> t2' →
(app v1 t2) --> (app v1 t2')
| ST_Proj1 : ∀tr tr' i,
tr --> tr' →
(rproj tr i) --> (rproj tr' i)
| ST_ProjRcd : ∀tr i vi,
value tr →
tlookup i tr = Some vi →
(rproj tr i) --> vi
| ST_Rcd_Head : ∀i t1 t1' tr2,
t1 --> t1' →
(rcons i t1 tr2) --> (rcons i t1' tr2)
| ST_Rcd_Tail : ∀i v1 tr2 tr2',
value v1 →
tr2 --> tr2' →
(rcons i v1 tr2) --> (rcons i v1 tr2')
where "t1 '-->' t2" := (step t1 t2).
Hint Constructors step.
Subtyping
Definition
Reserved Notation "T '<:' U" (at level 40).
Inductive subtype : ty → ty → Prop :=
(* Subtyping between proper types *)
| S_Refl : ∀T,
well_formed_ty T →
T <: T
| S_Trans : ∀S U T,
S <: U →
U <: T →
S <: T
| S_Top : ∀S,
well_formed_ty S →
S <: Top
| S_Arrow : ∀S1 S2 T1 T2,
T1 <: S1 →
S2 <: T2 →
Arrow S1 S2 <: Arrow T1 T2
(* Subtyping between record types *)
| S_RcdWidth : ∀i T1 T2,
well_formed_ty (RCons i T1 T2) →
RCons i T1 T2 <: RNil
| S_RcdDepth : ∀i S1 T1 Sr2 Tr2,
S1 <: T1 →
Sr2 <: Tr2 →
record_ty Sr2 →
record_ty Tr2 →
RCons i S1 Sr2 <: RCons i T1 Tr2
| S_RcdPerm : ∀i1 i2 T1 T2 Tr3,
well_formed_ty (RCons i1 T1 (RCons i2 T2 Tr3)) →
i1 ≠ i2 →
RCons i1 T1 (RCons i2 T2 Tr3)
<: RCons i2 T2 (RCons i1 T1 Tr3)
where "T '<:' U" := (subtype T U).
Hint Constructors subtype.
Inductive subtype : ty → ty → Prop :=
(* Subtyping between proper types *)
| S_Refl : ∀T,
well_formed_ty T →
T <: T
| S_Trans : ∀S U T,
S <: U →
U <: T →
S <: T
| S_Top : ∀S,
well_formed_ty S →
S <: Top
| S_Arrow : ∀S1 S2 T1 T2,
T1 <: S1 →
S2 <: T2 →
Arrow S1 S2 <: Arrow T1 T2
(* Subtyping between record types *)
| S_RcdWidth : ∀i T1 T2,
well_formed_ty (RCons i T1 T2) →
RCons i T1 T2 <: RNil
| S_RcdDepth : ∀i S1 T1 Sr2 Tr2,
S1 <: T1 →
Sr2 <: Tr2 →
record_ty Sr2 →
record_ty Tr2 →
RCons i S1 Sr2 <: RCons i T1 Tr2
| S_RcdPerm : ∀i1 i2 T1 T2 Tr3,
well_formed_ty (RCons i1 T1 (RCons i2 T2 Tr3)) →
i1 ≠ i2 →
RCons i1 T1 (RCons i2 T2 Tr3)
<: RCons i2 T2 (RCons i1 T1 Tr3)
where "T '<:' U" := (subtype T U).
Hint Constructors subtype.
Module Examples.
Open Scope string_scope.
Notation x := "x".
Notation y := "y".
Notation z := "z".
Notation j := "j".
Notation k := "k".
Notation i := "i".
Notation A := (Base "A").
Notation B := (Base "B").
Notation C := (Base "C").
Definition TRcd_j :=
(RCons j (Arrow B B) RNil). (* {j:B->B} *)
Definition TRcd_kj :=
RCons k (Arrow A A) TRcd_j. (* {k:C->C,j:B->B} *)
Example subtyping_example_0 :
subtype (Arrow C TRcd_kj)
(Arrow C RNil).
(* C->{k:A->A,j:B->B} <: C->{} *)
Proof.
apply S_Arrow.
apply S_Refl. auto.
unfold TRcd_kj, TRcd_j. apply S_RcdWidth; auto.
Qed.
The following facts are mostly easy to prove in Coq. To get full
benefit, make sure you also understand how to prove them on
paper!
Exercise: 2 stars, standard (subtyping_example_1)
Example subtyping_example_1 :
subtype TRcd_kj TRcd_j.
(* {k:A->A,j:B->B} <: {j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
subtype TRcd_kj TRcd_j.
(* {k:A->A,j:B->B} <: {j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
Example subtyping_example_2 :
subtype (Arrow Top TRcd_kj)
(Arrow (Arrow C C) TRcd_j).
(* Top->{k:A->A,j:B->B} <: (C->C)->{j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
subtype (Arrow Top TRcd_kj)
(Arrow (Arrow C C) TRcd_j).
(* Top->{k:A->A,j:B->B} <: (C->C)->{j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
Example subtyping_example_3 :
subtype (Arrow RNil (RCons j A RNil))
(Arrow (RCons k B RNil) RNil).
(* {}->{j:A} <: {k:B}->{} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
subtype (Arrow RNil (RCons j A RNil))
(Arrow (RCons k B RNil) RNil).
(* {}->{j:A} <: {k:B}->{} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
Example subtyping_example_4 :
subtype (RCons x A (RCons y B (RCons z C RNil)))
(RCons z C (RCons y B (RCons x A RNil))).
(* {x:A,y:B,z:C} <: {z:C,y:B,x:A} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
subtype (RCons x A (RCons y B (RCons z C RNil)))
(RCons z C (RCons y B (RCons x A RNil))).
(* {x:A,y:B,z:C} <: {z:C,y:B,x:A} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
End Examples.
Properties of Subtyping
Well-Formedness
Lemma subtype__wf : ∀S T,
subtype S T →
well_formed_ty T ∧ well_formed_ty S.
Lemma wf_rcd_lookup : ∀i T Ti,
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
subtype S T →
well_formed_ty T ∧ well_formed_ty S.
Lemma wf_rcd_lookup : ∀i T Ti,
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
Field Lookup
Lemma rcd_types_match : ∀S T i Ti,
subtype S T →
Tlookup i T = Some Ti →
∃Si, Tlookup i S = Some Si ∧ subtype Si Ti.
subtype S T →
Tlookup i T = Some Ti →
∃Si, Tlookup i S = Some Si ∧ subtype Si Ti.
Exercise: 3 stars, standard (rcd_types_match_informal)
Write a careful informal proof of the rcd_types_match lemma.
(* FILL IN HERE *)
(* Do not modify the following line: *)
Definition manual_grade_for_rcd_types_match_informal : option (nat*string) := None.
☐
(* Do not modify the following line: *)
Definition manual_grade_for_rcd_types_match_informal : option (nat*string) := None.
Lemma sub_inversion_arrow : ∀U V1 V2,
subtype U (Arrow V1 V2) →
∃U1 U2,
(U=(Arrow U1 U2)) ∧ (subtype V1 U1) ∧ (subtype U2 V2).
subtype U (Arrow V1 V2) →
∃U1 U2,
(U=(Arrow U1 U2)) ∧ (subtype V1 U1) ∧ (subtype U2 V2).
☐
Definition context := partial_map ty.
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀Gamma x T,
Gamma x = Some T →
well_formed_ty T →
Gamma ⊢ var x ∈ T
| T_Abs : ∀Gamma x T11 T12 t12,
well_formed_ty T11 →
update Gamma x T11 ⊢ t12 ∈ T12 →
Gamma ⊢ abs x T11 t12 ∈ Arrow T11 T12
| T_App : ∀T1 T2 Gamma t1 t2,
Gamma ⊢ t1 ∈ Arrow T1 T2 →
Gamma ⊢ t2 ∈ T1 →
Gamma ⊢ app t1 t2 ∈ T2
| T_Proj : ∀Gamma i t T Ti,
Gamma ⊢ t ∈ T →
Tlookup i T = Some Ti →
Gamma ⊢ rproj t i ∈ Ti
(* Subsumption *)
| T_Sub : ∀Gamma t S T,
Gamma ⊢ t ∈ S →
subtype S T →
Gamma ⊢ t ∈ T
(* Rules for record terms *)
| T_RNil : ∀Gamma,
Gamma ⊢ rnil ∈ RNil
| T_RCons : ∀Gamma i t T tr Tr,
Gamma ⊢ t ∈ T →
Gamma ⊢ tr ∈ Tr →
record_ty Tr →
record_tm tr →
Gamma ⊢ rcons i t tr ∈ RCons i T Tr
where "Gamma '⊢' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type.
Module Examples2.
Import Examples.
Definition trcd_kj :=
(rcons k (abs z A (var z))
(rcons j (abs z B (var z))
rnil)).
Example typing_example_0 :
has_type empty
(rcons k (abs z A (var z))
(rcons j (abs z B (var z))
rnil))
TRcd_kj.
(* empty ⊢ {k=(\z:A.z), j=(\z:B.z)} : {k:A->A,j:B->B} *)
(rcons k (abs z A (var z))
(rcons j (abs z B (var z))
rnil)).
Example typing_example_0 :
has_type empty
(rcons k (abs z A (var z))
(rcons j (abs z B (var z))
rnil))
TRcd_kj.
(* empty ⊢ {k=(\z:A.z), j=(\z:B.z)} : {k:A->A,j:B->B} *)
☐
Example typing_example_1 :
has_type empty
(app (abs x TRcd_j (rproj (var x) j))
(trcd_kj))
(Arrow B B).
(* empty ⊢ (\x:{k:A->A,j:B->B}. x.j)
{k=(\z:A.z), j=(\z:B.z)}
: B->B *)
has_type empty
(app (abs x TRcd_j (rproj (var x) j))
(trcd_kj))
(Arrow B B).
(* empty ⊢ (\x:{k:A->A,j:B->B}. x.j)
{k=(\z:A.z), j=(\z:B.z)}
: B->B *)
☐
Example typing_example_2 :
has_type empty
(app (abs z (Arrow (Arrow C C) TRcd_j)
(rproj (app (var z)
(abs x C (var x)))
j))
(abs z (Arrow C C) trcd_kj))
(Arrow B B).
(* empty ⊢ (\z:(C->C)->{j:B->B}. (z (\x:C.x)).j)
(\z:C->C. {k=(\z:A.z), j=(\z:B.z)})
: B->B *)
End Examples2.
has_type empty
(app (abs z (Arrow (Arrow C C) TRcd_j)
(rproj (app (var z)
(abs x C (var x)))
j))
(abs z (Arrow C C) trcd_kj))
(Arrow B B).
(* empty ⊢ (\z:(C->C)->{j:B->B}. (z (\x:C.x)).j)
(\z:C->C. {k=(\z:A.z), j=(\z:B.z)})
: B->B *)
☐
End Examples2.
Lemma has_type__wf : ∀Gamma t T,
has_type Gamma t T → well_formed_ty T.
Lemma step_preserves_record_tm : ∀tr tr',
record_tm tr →
tr --> tr' →
record_tm tr'.
Lemma lookup_field_in_value : ∀v T i Ti,
value v →
has_type empty v T →
Tlookup i T = Some Ti →
∃vi, tlookup i v = Some vi ∧ has_type empty vi Ti.
Lemma canonical_forms_of_arrow_types : ∀Gamma s T1 T2,
has_type Gamma s (Arrow T1 T2) →
value s →
∃x S1 s2,
s = abs x S1 s2.
Theorem progress : ∀t T,
has_type empty t T →
value t ∨ ∃t', t --> t'.
has_type Gamma s (Arrow T1 T2) →
value s →
∃x S1 s2,
s = abs x S1 s2.
☐
Theorem progress : ∀t T,
has_type empty t T →
value t ∨ ∃t', t --> t'.
Theorem : For any term t and type T, if empty ⊢ t : T
then t is a value or t --> t' for some term t'.
Proof: Let t and T be given such that empty ⊢ t : T. We
proceed by induction on the given typing derivation.
- The cases where the last step in the typing derivation is
T_Abs or T_RNil are immediate because abstractions and
{} are always values. The case for T_Var is vacuous
because variables cannot be typed in the empty context.
- If the last step in the typing derivation is by T_App, then
there are terms t1 t2 and types T1 T2 such that t =
t1 t2, T = T2, empty ⊢ t1 : T1 → T2 and empty ⊢ t2 :
T1.
- Suppose t1 --> t1' for some term t1'. Then t1 t2 -->
t1' t2 by ST_App1.
- Otherwise t1 is a value.
- Suppose t2 --> t2' for some term t2'. Then t1 t2 -->
t1 t2' by rule ST_App2 because t1 is a value.
- Otherwise, t2 is a value. By Lemma
canonical_forms_for_arrow_types, t1 = \x:S1.s2 for
some x, S1, and s2. But then (\x:S1.s2) t2 -->
[x:=t2]s2 by ST_AppAbs, since t2 is a value.
- Suppose t2 --> t2' for some term t2'. Then t1 t2 -->
t1 t2' by rule ST_App2 because t1 is a value.
- Suppose t1 --> t1' for some term t1'. Then t1 t2 -->
t1' t2 by ST_App1.
- If the last step of the derivation is by T_Proj, then there
are a term tr, a type Tr, and a label i such that t =
tr.i, empty ⊢ tr : Tr, and Tlookup i Tr = Some T.
- If the final step of the derivation is by T_Sub, then there
is a type S such that S <: T and empty ⊢ t : S. The
desired result is exactly the induction hypothesis for the
typing subderivation.
- If the final step of the derivation is by T_RCons, then
there exist some terms t1 tr, types T1 Tr and a label
t such that t = {i=t1, tr}, T = {i:T1, Tr}, record_ty
tr, record_tm Tr, empty ⊢ t1 : T1 and empty ⊢ tr :
Tr.
- Suppose t1 --> t1' for some term t1'. Then {i=t1, tr}
--> {i=t1', tr} by rule ST_Rcd_Head.
- Otherwise t1 is a value.
- Suppose tr --> tr' for some term tr'. Then {i=t1,
tr} --> {i=t1, tr'} by rule ST_Rcd_Tail, since t1 is
a value.
- Otherwise, tr is also a value. So, {i=t1, tr} is a value by v_rcons.
- Suppose tr --> tr' for some term tr'. Then {i=t1,
tr} --> {i=t1, tr'} by rule ST_Rcd_Tail, since t1 is
a value.
- Suppose t1 --> t1' for some term t1'. Then {i=t1, tr}
--> {i=t1', tr} by rule ST_Rcd_Head.
Lemma typing_inversion_var : ∀Gamma x T,
has_type Gamma (var x) T →
∃S,
Gamma x = Some S ∧ subtype S T.
Lemma typing_inversion_app : ∀Gamma t1 t2 T2,
has_type Gamma (app t1 t2) T2 →
∃T1,
has_type Gamma t1 (Arrow T1 T2) ∧
has_type Gamma t2 T1.
Lemma typing_inversion_abs : ∀Gamma x S1 t2 T,
has_type Gamma (abs x S1 t2) T →
(∃S2, subtype (Arrow S1 S2) T
∧ has_type (update Gamma x S1) t2 S2).
Lemma typing_inversion_proj : ∀Gamma i t1 Ti,
has_type Gamma (rproj t1 i) Ti →
∃T Si,
Tlookup i T = Some Si ∧ subtype Si Ti ∧ has_type Gamma t1 T.
Lemma typing_inversion_rcons : ∀Gamma i ti tr T,
has_type Gamma (rcons i ti tr) T →
∃Si Sr,
subtype (RCons i Si Sr) T ∧ has_type Gamma ti Si ∧
record_tm tr ∧ has_type Gamma tr Sr.
Lemma abs_arrow : ∀x S1 s2 T1 T2,
has_type empty (abs x S1 s2) (Arrow T1 T2) →
subtype T1 S1
∧ has_type (update empty x S1) s2 T2.
Inductive appears_free_in : string → tm → Prop :=
| afi_var : ∀x,
appears_free_in x (var x)
| afi_app1 : ∀x t1 t2,
appears_free_in x t1 → appears_free_in x (app t1 t2)
| afi_app2 : ∀x t1 t2,
appears_free_in x t2 → appears_free_in x (app t1 t2)
| afi_abs : ∀x y T11 t12,
y ≠ x →
appears_free_in x t12 →
appears_free_in x (abs y T11 t12)
| afi_proj : ∀x t i,
appears_free_in x t →
appears_free_in x (rproj t i)
| afi_rhead : ∀x i t tr,
appears_free_in x t →
appears_free_in x (rcons i t tr)
| afi_rtail : ∀x i t tr,
appears_free_in x tr →
appears_free_in x (rcons i t tr).
Hint Constructors appears_free_in.
Lemma context_invariance : ∀Gamma Gamma' t S,
has_type Gamma t S →
(∀x, appears_free_in x t → Gamma x = Gamma' x) →
has_type Gamma' t S.
Lemma free_in_context : ∀x t T Gamma,
appears_free_in x t →
has_type Gamma t T →
∃T', Gamma x = Some T'.
Lemma substitution_preserves_typing : ∀Gamma x U v t S,
has_type (update Gamma x U) t S →
has_type empty v U →
has_type Gamma ([x:=v]t) S.
Theorem preservation : ∀t t' T,
has_type empty t T →
t --> t' →
has_type empty t' T.
Theorem: If t, t' are terms and T is a type such that
empty ⊢ t : T and t --> t', then empty ⊢ t' : T.
Proof: Let t and T be given such that empty ⊢ t : T. We go
by induction on the structure of this typing derivation, leaving
t' general. Cases T_Abs and T_RNil are vacuous because
abstractions and {} don't step. Case T_Var is vacuous as well,
since the context is empty.
- If the final step of the derivation is by T_App, then there
are terms t1 t2 and types T1 T2 such that t = t1 t2,
T = T2, empty ⊢ t1 : T1 → T2 and empty ⊢ t2 : T1.
- If the final step of the derivation is by T_Proj, then there
is a term tr, type Tr and label i such that t = tr.i,
empty ⊢ tr : Tr, and Tlookup i Tr = Some T.
- If the final step of the derivation is by T_Sub, then there
is a type S such that S <: T and empty ⊢ t : S. The
result is immediate by the induction hypothesis for the typing
subderivation and an application of T_Sub.
- If the final step of the derivation is by T_RCons, then there
exist some terms t1 tr, types T1 Tr and a label t such
that t = {i=t1, tr}, T = {i:T1, Tr}, record_ty tr,
record_tm Tr, empty ⊢ t1 : T1 and empty ⊢ tr : Tr.
(* Mon Mar 25 14:39:39 EDT 2019 *)