RecordsAdding Records to STLC
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Imp.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Imp.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
Adding Records
t ::= Terms: | {i1=t1, ..., in=tn} record | t.i projection | ... v ::= Values: | {i1=v1, ..., in=vn} record value | ... T ::= Types: | {i1:T1, ..., in:Tn} record type | ...Reduction:
ti ==> ti' | (ST_Rcd) |
{i1=v1, ..., im=vm, in=tn, ...} ==> {i1=v1, ..., im=vm, in=tn', ...} |
t1 ==> t1' | (ST_Proj1) |
t1.i ==> t1'.i |
(ST_ProjRcd) | |
{..., i=vi, ...}.i ==> vi |
Gamma ⊢ t1 : T1 ... Gamma ⊢ tn : Tn | (T_Rcd) |
Gamma ⊢ {i1=t1, ..., in=tn} : {i1:T1, ..., in:Tn} |
Gamma ⊢ t : {..., i:Ti, ...} | (T_Proj) |
Gamma ⊢ t.i : Ti |
Module STLCExtendedRecords.
Syntax and Operational Semantics
Module FirstTry.
Definition alist (X : Type) := list (string * X).
Inductive ty : Type :=
| Base : string → ty
| Arrow : ty → ty → ty
| TRcd : (alist ty) → ty.
Definition alist (X : Type) := list (string * X).
Inductive ty : Type :=
| Base : string → ty
| Arrow : ty → ty → ty
| TRcd : (alist ty) → ty.
Unfortunately, we encounter here a limitation in Coq: this type
does not automatically give us the induction principle we expect:
the induction hypothesis in the TRcd case doesn't give us
any information about the ty elements of the list, making it
useless for the proofs we want to do.
(* Check ty_ind.
====>
ty_ind :
forall P : ty -> Prop,
(forall i : id, P (Base i)) ->
(forall t : ty, P t -> forall t0 : ty, P t0
-> P (Arrow t t0)) ->
(forall a : alist ty, P (TRcd a)) -> (* ??? *)
forall t : ty, P t
*)
End FirstTry.
====>
ty_ind :
forall P : ty -> Prop,
(forall i : id, P (Base i)) ->
(forall t : ty, P t -> forall t0 : ty, P t0
-> P (Arrow t t0)) ->
(forall a : alist ty, P (TRcd a)) -> (* ??? *)
forall t : ty, P t
*)
End FirstTry.
It is possible to get a better induction principle out of Coq, but
the details of how this is done are not very pretty, and the
principle we obtain is not as intuitive to use as the ones Coq
generates automatically for simple Inductive definitions.
Fortunately, there is a different way of formalizing records that
is, in some ways, even simpler and more natural: instead of using
the standard Coq list type, we can essentially incorporate its
constructors ("nil" and "cons") in the syntax of our types.
Inductive ty : Type :=
| Base : string → ty
| Arrow : ty → ty → ty
| RNil : ty
| RCons : string → ty → ty → ty.
| Base : string → ty
| Arrow : ty → ty → ty
| RNil : ty
| RCons : string → ty → ty → ty.
Similarly, at the level of terms, we have constructors trnil,
for the empty record, and rcons, which adds a single field to
the front of a list of fields.
Inductive tm : Type :=
| var : string → tm
| app : tm → tm → tm
| abs : string → ty → tm → tm
(* records *)
| rproj : tm → string → tm
| trnil : tm
| rcons : string → tm → tm → tm.
| var : string → tm
| app : tm → tm → tm
| abs : string → ty → tm → tm
(* records *)
| rproj : tm → string → tm
| trnil : tm
| rcons : string → tm → tm → tm.
Some examples...
Open Scope string_scope.
Notation a := "a".
Notation f := "f".
Notation g := "g".
Notation l := "l".
Notation A := (Base "A").
Notation B := (Base "B").
Notation k := "k".
Notation i1 := "i1".
Notation i2 := "i2".
Notation a := "a".
Notation f := "f".
Notation g := "g".
Notation l := "l".
Notation A := (Base "A").
Notation B := (Base "B").
Notation k := "k".
Notation i1 := "i1".
Notation i2 := "i2".
{ i1:A }
(* Check (RCons i1 A RNil). *)
{ i1:A→B, i2:A }
(* Check (RCons i1 (Arrow A B)
(RCons i2 A RNil)). *)
(RCons i2 A RNil)). *)
Well-Formedness
Definition weird_type := RCons X A B.
where the "tail" of a record type is not actually a record type!
We'll structure our typing judgement so that no ill-formed types
like weird_type are ever assigned to terms. To support this, we
define predicates record_ty and record_tm, which identify
record types and terms, and well_formed_ty which rules out the
ill-formed types.
First, a type is a record type if it is built with just RNil
and RCons at the outermost level.
Inductive record_ty : ty → Prop :=
| RTnil :
record_ty RNil
| RTcons : ∀i T1 T2,
record_ty (RCons i T1 T2).
| RTnil :
record_ty RNil
| RTcons : ∀i T1 T2,
record_ty (RCons i T1 T2).
With this, we can define well-formed types.
Inductive well_formed_ty : ty → Prop :=
| wfBase : ∀i,
well_formed_ty (Base i)
| wfArrow : ∀T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty (Arrow T1 T2)
| wfRNil :
well_formed_ty RNil
| wfRCons : ∀i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty (RCons i T1 T2).
Hint Constructors record_ty well_formed_ty.
| wfBase : ∀i,
well_formed_ty (Base i)
| wfArrow : ∀T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty (Arrow T1 T2)
| wfRNil :
well_formed_ty RNil
| wfRCons : ∀i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty (RCons i T1 T2).
Hint Constructors record_ty well_formed_ty.
Note that record_ty is not recursive — it just checks the
outermost constructor. The well_formed_ty property, on the
other hand, verifies that the whole type is well formed in the
sense that the tail of every record (the second argument to
RCons) is a record.
Of course, we should also be concerned about ill-formed terms, not
just types; but typechecking can rule those out without the help
of an extra well_formed_tm definition because it already
examines the structure of terms. All we need is an analog of
record_ty saying that a term is a record term if it is built
with trnil and rcons.
Inductive record_tm : tm → Prop :=
| rtnil :
record_tm trnil
| rtcons : ∀i t1 t2,
record_tm (rcons i t1 t2).
Hint Constructors record_tm.
| rtnil :
record_tm trnil
| rtcons : ∀i t1 t2,
record_tm (rcons i t1 t2).
Hint Constructors record_tm.
Fixpoint subst (x:string) (s:tm) (t:tm) : tm :=
match t with
| var y ⇒ if eqb_string x y then s else t
| abs y T t1 ⇒ abs y T
(if eqb_string x y then t1 else (subst x s t1))
| app t1 t2 ⇒ app (subst x s t1) (subst x s t2)
| rproj t1 i ⇒ rproj (subst x s t1) i
| trnil ⇒ trnil
| rcons i t1 tr1 ⇒ rcons i (subst x s t1) (subst x s tr1)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
match t with
| var y ⇒ if eqb_string x y then s else t
| abs y T t1 ⇒ abs y T
(if eqb_string x y then t1 else (subst x s t1))
| app t1 t2 ⇒ app (subst x s t1) (subst x s t2)
| rproj t1 i ⇒ rproj (subst x s t1) i
| trnil ⇒ trnil
| rcons i t1 tr1 ⇒ rcons i (subst x s t1) (subst x s tr1)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
Inductive value : tm → Prop :=
| v_abs : ∀x T11 t12,
value (abs x T11 t12)
| v_rnil : value trnil
| v_rcons : ∀i v1 vr,
value v1 →
value vr →
value (rcons i v1 vr).
Hint Constructors value.
| v_abs : ∀x T11 t12,
value (abs x T11 t12)
| v_rnil : value trnil
| v_rcons : ∀i v1 vr,
value v1 →
value vr →
value (rcons i v1 vr).
Hint Constructors value.
To define reduction, we'll need a utility function for extracting
one field from record term:
Fixpoint tlookup (i:string) (tr:tm) : option tm :=
match tr with
| rcons i' t tr' ⇒ if eqb_string i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
match tr with
| rcons i' t tr' ⇒ if eqb_string i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
The step function uses this term-level lookup function in the
projection rule.
Reserved Notation "t1 '-->' t2" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀x T11 t12 v2,
value v2 →
(app (abs x T11 t12) v2) --> ([x:=v2]t12)
| ST_App1 : ∀t1 t1' t2,
t1 --> t1' →
(app t1 t2) --> (app t1' t2)
| ST_App2 : ∀v1 t2 t2',
value v1 →
t2 --> t2' →
(app v1 t2) --> (app v1 t2')
| ST_Proj1 : ∀t1 t1' i,
t1 --> t1' →
(rproj t1 i) --> (rproj t1' i)
| ST_ProjRcd : ∀tr i vi,
value tr →
tlookup i tr = Some vi →
(rproj tr i) --> vi
| ST_Rcd_Head : ∀i t1 t1' tr2,
t1 --> t1' →
(rcons i t1 tr2) --> (rcons i t1' tr2)
| ST_Rcd_Tail : ∀i v1 tr2 tr2',
value v1 →
tr2 --> tr2' →
(rcons i v1 tr2) --> (rcons i v1 tr2')
where "t1 '-->' t2" := (step t1 t2).
Notation multistep := (multi step).
Notation "t1 '-->*' t2" := (multistep t1 t2) (at level 40).
Hint Constructors step.
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀x T11 t12 v2,
value v2 →
(app (abs x T11 t12) v2) --> ([x:=v2]t12)
| ST_App1 : ∀t1 t1' t2,
t1 --> t1' →
(app t1 t2) --> (app t1' t2)
| ST_App2 : ∀v1 t2 t2',
value v1 →
t2 --> t2' →
(app v1 t2) --> (app v1 t2')
| ST_Proj1 : ∀t1 t1' i,
t1 --> t1' →
(rproj t1 i) --> (rproj t1' i)
| ST_ProjRcd : ∀tr i vi,
value tr →
tlookup i tr = Some vi →
(rproj tr i) --> vi
| ST_Rcd_Head : ∀i t1 t1' tr2,
t1 --> t1' →
(rcons i t1 tr2) --> (rcons i t1' tr2)
| ST_Rcd_Tail : ∀i v1 tr2 tr2',
value v1 →
tr2 --> tr2' →
(rcons i v1 tr2) --> (rcons i v1 tr2')
where "t1 '-->' t2" := (step t1 t2).
Notation multistep := (multi step).
Notation "t1 '-->*' t2" := (multistep t1 t2) (at level 40).
Hint Constructors step.
Typing
Fixpoint Tlookup (i:string) (Tr:ty) : option ty :=
match Tr with
| RCons i' T Tr' ⇒
if eqb_string i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Definition context := partial_map ty.
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀Gamma x T,
Gamma x = Some T →
well_formed_ty T →
Gamma ⊢ (var x) ∈ T
| T_Abs : ∀Gamma x T11 T12 t12,
well_formed_ty T11 →
(update Gamma x T11) ⊢ t12 ∈ T12 →
Gamma ⊢ (abs x T11 t12) ∈ (Arrow T11 T12)
| T_App : ∀T1 T2 Gamma t1 t2,
Gamma ⊢ t1 ∈ (Arrow T1 T2) →
Gamma ⊢ t2 ∈ T1 →
Gamma ⊢ (app t1 t2) ∈ T2
(* records: *)
| T_Proj : ∀Gamma i t Ti Tr,
Gamma ⊢ t ∈ Tr →
Tlookup i Tr = Some Ti →
Gamma ⊢ (rproj t i) ∈ Ti
| T_RNil : ∀Gamma,
Gamma ⊢ trnil ∈ RNil
| T_RCons : ∀Gamma i t T tr Tr,
Gamma ⊢ t ∈ T →
Gamma ⊢ tr ∈ Tr →
record_ty Tr →
record_tm tr →
Gamma ⊢ (rcons i t tr) ∈ (RCons i T Tr)
where "Gamma '⊢' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type.
match Tr with
| RCons i' T Tr' ⇒
if eqb_string i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Definition context := partial_map ty.
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀Gamma x T,
Gamma x = Some T →
well_formed_ty T →
Gamma ⊢ (var x) ∈ T
| T_Abs : ∀Gamma x T11 T12 t12,
well_formed_ty T11 →
(update Gamma x T11) ⊢ t12 ∈ T12 →
Gamma ⊢ (abs x T11 t12) ∈ (Arrow T11 T12)
| T_App : ∀T1 T2 Gamma t1 t2,
Gamma ⊢ t1 ∈ (Arrow T1 T2) →
Gamma ⊢ t2 ∈ T1 →
Gamma ⊢ (app t1 t2) ∈ T2
(* records: *)
| T_Proj : ∀Gamma i t Ti Tr,
Gamma ⊢ t ∈ Tr →
Tlookup i Tr = Some Ti →
Gamma ⊢ (rproj t i) ∈ Ti
| T_RNil : ∀Gamma,
Gamma ⊢ trnil ∈ RNil
| T_RCons : ∀Gamma i t T tr Tr,
Gamma ⊢ t ∈ T →
Gamma ⊢ tr ∈ Tr →
record_ty Tr →
record_tm tr →
Gamma ⊢ (rcons i t tr) ∈ (RCons i T Tr)
where "Gamma '⊢' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type.
Examples
Exercise: 2 stars, standard (examples)
Finish the proofs below. Feel free to use Coq's automation features in this proof. However, if you are not confident about how the type system works, you may want to carry out the proofs first using the basic features (apply instead of eapply, in particular) and then perhaps compress it using automation. Before starting to prove anything, make sure you understand what it is saying.
Lemma typing_example_2 :
empty ⊢
(app (abs a (RCons i1 (Arrow A A)
(RCons i2 (Arrow B B)
RNil))
(rproj (var a) i2))
(rcons i1 (abs a A (var a))
(rcons i2 (abs a B (var a))
trnil))) ∈
(Arrow B B).
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample :
¬∃T,
(update empty a (RCons i2 (Arrow A A)
RNil)) ⊢
(rcons i1 (abs a B (var a)) (var a)) ∈
T.
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample_2 : ∀y,
¬∃T,
(update empty y A) ⊢
(app (abs a (RCons i1 A RNil)
(rproj (var a) i1))
(rcons i1 (var y) (rcons i2 (var y) trnil))) ∈
T.
Proof.
(* FILL IN HERE *) Admitted.
empty ⊢
(app (abs a (RCons i1 (Arrow A A)
(RCons i2 (Arrow B B)
RNil))
(rproj (var a) i2))
(rcons i1 (abs a A (var a))
(rcons i2 (abs a B (var a))
trnil))) ∈
(Arrow B B).
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample :
¬∃T,
(update empty a (RCons i2 (Arrow A A)
RNil)) ⊢
(rcons i1 (abs a B (var a)) (var a)) ∈
T.
Proof.
(* FILL IN HERE *) Admitted.
Example typing_nonexample_2 : ∀y,
¬∃T,
(update empty y A) ⊢
(app (abs a (RCons i1 A RNil)
(rproj (var a) i1))
(rcons i1 (var y) (rcons i2 (var y) trnil))) ∈
T.
Proof.
(* FILL IN HERE *) Admitted.
Properties of Typing
Lemma wf_rcd_lookup : ∀i T Ti,
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
Lemma step_preserves_record_tm : ∀tr tr',
record_tm tr →
tr --> tr' →
record_tm tr'.
Lemma has_type__wf : ∀Gamma t T,
Gamma ⊢ t ∈ T → well_formed_ty T.
Field Lookup
- If i = i0, then since Tlookup i (RCons i0 T Tr) = Some
Ti we have T = Ti. It follows that t itself satisfies
the theorem.
- On the other hand, suppose i ≠ i0. Then
Tlookup i T = Tlookup i Trandtlookup i t = tlookup i tr,so the result follows from the induction hypothesis. ☐
Lemma lookup_field_in_value : ∀v T i Ti,
value v →
empty ⊢ v ∈ T →
Tlookup i T = Some Ti →
∃ti, tlookup i v = Some ti ∧ empty ⊢ ti ∈ Ti.
value v →
empty ⊢ v ∈ T →
Tlookup i T = Some Ti →
∃ti, tlookup i v = Some ti ∧ empty ⊢ ti ∈ Ti.
Theorem progress : ∀t T,
empty ⊢ t ∈ T →
value t ∨ ∃t', t --> t'.
Inductive appears_free_in : string → tm → Prop :=
| afi_var : ∀x,
appears_free_in x (var x)
| afi_app1 : ∀x t1 t2,
appears_free_in x t1 → appears_free_in x (app t1 t2)
| afi_app2 : ∀x t1 t2,
appears_free_in x t2 → appears_free_in x (app t1 t2)
| afi_abs : ∀x y T11 t12,
y ≠ x →
appears_free_in x t12 →
appears_free_in x (abs y T11 t12)
| afi_proj : ∀x t i,
appears_free_in x t →
appears_free_in x (rproj t i)
| afi_rhead : ∀x i ti tr,
appears_free_in x ti →
appears_free_in x (rcons i ti tr)
| afi_rtail : ∀x i ti tr,
appears_free_in x tr →
appears_free_in x (rcons i ti tr).
Hint Constructors appears_free_in.
Lemma context_invariance : ∀Gamma Gamma' t S,
Gamma ⊢ t ∈ S →
(∀x, appears_free_in x t → Gamma x = Gamma' x) →
Gamma' ⊢ t ∈ S.
Lemma free_in_context : ∀x t T Gamma,
appears_free_in x t →
Gamma ⊢ t ∈ T →
∃T', Gamma x = Some T'.
Lemma substitution_preserves_typing : ∀Gamma x U v t S,
(update Gamma x U) ⊢ t ∈ S →
empty ⊢ v ∈ U →
Gamma ⊢ ([x:=v]t) ∈ S.
Proof with eauto.
(* Theorem: If x⊢>U;Gamma ⊢ t : S and empty ⊢ v : U, then
Gamma ⊢ (x:=vt) S. *)
intros Gamma x U v t S Htypt Htypv.
generalize dependent Gamma. generalize dependent S.
(* Proof: By induction on the term t. Most cases follow
directly from the IH, with the exception of var,
abs, rcons. The former aren't automatic because we
must reason about how the variables interact. In the
case of rcons, we must do a little extra work to show
that substituting into a term doesn't change whether
it is a record term. *)
induction t;
intros S Gamma Htypt; simpl; inversion Htypt; subst...
- (* var *)
simpl. rename s into y.
(* If t = y, we know that
empty ⊢ v : U and
x⊢>U; Gamma ⊢ y : S
and, by inversion, update Gamma x U y = Some S.
We want to show that Gamma ⊢ [x:=v]y : S.
There are two cases to consider: either x=y or x≠y. *)
unfold update, t_update in H0.
destruct (eqb_stringP x y) as [Hxy|Hxy].
+ (* x=y *)
(* If x = y, then we know that U = S, and that
[x:=v]y = v. So what we really must show is that
if empty ⊢ v : U then Gamma ⊢ v : U. We have
already proven a more general version of this theorem,
called context invariance! *)
subst.
inversion H0; subst. clear H0.
eapply context_invariance...
intros x Hcontra.
destruct (free_in_context _ _ S empty Hcontra)
as [T' HT']...
inversion HT'.
+ (* x<>y *)
(* If x ≠ y, then Gamma y = Some S and the substitution
has no effect. We can show that Gamma ⊢ y : S by
T_Var. *)
apply T_Var...
- (* abs *)
rename s into y. rename t into T11.
(* If t = abs y T11 t0, then we know that
x⊢>U; Gamma ⊢ abs y T11 t0 : T11→T12
x⊢>U; y⊢>T11; Gamma ⊢ t0 : T12
empty ⊢ v : U
As our IH, we know that forall S Gamma,
x⊢>U; Gamma ⊢ t0 : S → Gamma ⊢ [x:=v]t0 S.
We can calculate that
[x:=v]t = abs y T11 (if eqb_string x y then t0 else [x:=v]t0) ,
and we must show that Gamma ⊢ [x:=v]t : T11→T12. We know
we will do so using T_Abs, so it remains to be shown that:
y⊢>T11; Gamma ⊢ if eqb_string x y then t0 else [x:=v]t0 : T12
We consider two cases: x = y and x ≠ y. *)
apply T_Abs...
destruct (eqb_stringP x y) as [Hxy|Hxy].
+ (* x=y *)
(* If x = y, then the substitution has no effect. Context
invariance shows that y:U,y:T11 and Gamma,y:T11 are
equivalent. Since t0 : T12 under the former context,
this is also the case under the latter. *)
eapply context_invariance...
subst.
intros x Hafi. unfold update, t_update.
destruct (eqb_string y x)...
+ (* x<>y *)
(* If x ≠ y, then the IH and context invariance allow
us to show that
x⊢>U; y⊢>T11; Gamma ⊢ t0 : T12 =>
y⊢>T11; x⊢>U; Gamma ⊢ t0 : T12 =>
y⊢>T11; Gamma ⊢ [x:=v]t0 : T12 *)
apply IHt. eapply context_invariance...
intros z Hafi. unfold update, t_update.
destruct (eqb_stringP y z)...
subst. rewrite false_eqb_string...
- (* rcons *)
apply T_RCons... inversion H7; subst; simpl...
Qed.
Theorem preservation : ∀t t' T,
empty ⊢ t ∈ T →
t --> t' →
empty ⊢ t' ∈ T.
Proof with eauto.
intros t t' T HT.
(* Theorem: If empty ⊢ t : T and t --> t', then
empty ⊢ t' : T. *)
remember (@empty ty) as Gamma. generalize dependent HeqGamma.
generalize dependent t'.
(* Proof: By induction on the given typing derivation.
Many cases are contradictory (T_Var, T_Abs) or follow
directly from the IH (T_RCons). We show just the
interesting ones. *)
induction HT;
intros t' HeqGamma HE; subst; inversion HE; subst...
- (* T_App *)
(* If the last rule used was T_App, then t = t1 t2,
and three rules could have been used to show t --> t':
ST_App1, ST_App2, and ST_AppAbs. In the first two
cases, the result follows directly from the IH. *)
inversion HE; subst...
+ (* ST_AppAbs *)
(* For the third case, suppose
t1 = abs x T11 t12
and
t2 = v2. We must show that empty ⊢ [x:=v2]t12 : T2.
We know by assumption that
empty ⊢ abs x T11 t12 : T1→T2
and by inversion
x:T1 ⊢ t12 : T2
We have already proven that substitution_preserves_typing and
empty ⊢ v2 : T1
by assumption, so we are done. *)
apply substitution_preserves_typing with T1...
inversion HT1...
- (* T_Proj *)
(* If the last rule was T_Proj, then t = rproj t1 i.
Two rules could have caused t --> t': T_Proj1 and
T_ProjRcd. The typing of t' follows from the IH
in the former case, so we only consider T_ProjRcd.
Here we have that t is a record value. Since rule
T_Proj was used, we know empty ⊢ t ∈ Tr and
Tlookup i Tr = Some Ti for some i and Tr.
We may therefore apply lemma lookup_field_in_value
to find the record element this projection steps to. *)
destruct (lookup_field_in_value _ _ _ _ H2 HT H)
as [vi [Hget Htyp]].
rewrite H4 in Hget. inversion Hget. subst...
- (* T_RCons *)
(* If the last rule was T_RCons, then t = rcons i t tr
for some i, t and tr such that record_tm tr. If
the step is by ST_Rcd_Head, the result is immediate by
the IH. If the step is by ST_Rcd_Tail, tr --> tr2'
for some tr2' and we must also use lemma step_preserves_record_tm
to show record_tm tr2'. *)
apply T_RCons... eapply step_preserves_record_tm...
Qed.
End STLCExtendedRecords.
(* Mon Mar 25 14:39:39 EDT 2019 *)
(* Mon Mar 25 14:39:39 EDT 2019 *)