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Figure 1: Workflow. We propose a diffusion-based automatic rigging method that helps cartoon creators re-pose a character without going
through the traditional arduous rigging procedure. Our method first provides an annotation user interface and asks the user to provide
several keyframes of the character with desired control points annotated. Then we invite the user to input the coordinates of those keypoints
to indicate how they want to re-pose the character per-frame. After a simple fine-tuning, our model is able to synthesize the character in
the new motion. Unlike most existing works, our method does not assume the topology nor the texture of the character belong to a certain
category such as humanoids, and thus works on a much wider range of objects, such as a fox (blue and green box), a pinwheel (orange box,
top row), and a dragon (orange box, bottom row).

Abstract

Recent diffusion-based methods have achieved impressive results on animating images of human subjects. However, most of
that success has built on human-specific body pose representations and extensive training with labeled real videos. In this work,
we extend the ability of such models to animate images of characters with more diverse skeletal topologies. Given a small
number (3-5) of example frames showing the character in different poses with corresponding skeletal information, our model
quickly infers a rig for that character that can generate images corresponding to new skeleton poses. We propose a procedural
data generation pipeline that efficiently samples training data with diverse topologies on the fly. We use it, along with a novel
skeleton representation, to train our model on articulated shapes spanning a large space of textures and topologies. Then during
fine-tuning, our model rapidly adapts to unseen target characters and generalizes well to rendering new poses, both for realistic
and more stylized cartoon appearances. To better evaluate performance on this novel and challenging task, we create the first
2D video dataset that contains both humanoid and non-humanoid subjects with per-frame keypoint annotations. With extensive
experiments, we demonstrate the superior quality of our results.

CCS Concepts
• Computing methodologies → Animation; Image manipulation;
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1. Introduction

Animation has always been a labor-intensive process. Before the
introduction of digital tools, animation was done by drawing each
individual frame by hand, which meant an enormous amount of re-
dundant work went into creating long sequences. Modern software
helps reduce this redundant work by representing characters with
a hierarchy of parts and corresponding transformations, which are
collectively called a rig. Each part in the rig represents geometry
that can appear in multiple frames, and each transformation repre-
sents an interpolatable way that the character can move. These rigs
let artists animate a character by specifying the configuration of a
corresponding skeletal representation at a sparse set of keyframes.
This representation can greatly accelerate the animation workflow.
However, the process of creating an animation rig, called rigging,
can be complicated and tedious. It involves factoring the charac-
ter’s geometry into parts and specifying how each part is affected
by transformations in the skeletal hierarchy, including the relative
rigidity and bending of different parts in response to motion. To fur-
ther complicate the process, much of a rig’s information typically
resides in metadata that the artist must define using specialized in-
terfaces (e.g., layer decompositions and labels). In this work, we
show how image diffusion networks can be trained to infer rigging
behavior from a small set of example images and their correspond-
ing skeletal structures. Based on this, we present a tool that greatly
simplifies the 2D rigging process. To create a 2D rig, the artist only
needs to trace the skeletal structure of one or more example frames
showing the character. Then, the artist can draw new unseen skele-
tal poses, and our tool will generate corresponding images that are
consistent with the degrees of freedom and style of deformations
observed in the provided examples.

Ours is not the first work to create video by conditioning the
generation of frames on a reference image and target poses. How-
ever, most work in this space has been limited to subjects with
standard humanoid topologies—typically, the topology of human
pose detectors (e.g., OpenPose [CHS∗19]), which can be used to
automatically label abundant training data. A distinct goal of our
work is to build a solution that generalizes to more arbitrary and
abstract characters, including humanoid characters with more di-
verse shapes, as well as animals and articulated objects with unseen
topologies. In order to support such diversity, we need to adapt a
new training strategy and pose representation that is less reliant on
automatically-labeled video of humans.

Our work makes the following contributions:

• We adapt a new pose conditioning strategy that generalizes to
more diverse character appearance and skeletal topologies. Here
we draw inspiration from the use of texture atlases and texture
coordinates.

• We present a training strategy that learns to generalize by train-
ing on procedurally generated synthetic data, and show that this
strategy leads to generalization across real and cartoon images
with little fine-tuning (approx. 20 minutes on a NVIDIA A100
GPU).

• To foster research and better evaluation in this challenging task,
we build the first 2D video dataset spanning both humanoids and
non-humanoids with per-frame keypoint annotations to evaluate
performance in this generalized problem setting.

Canonical Image Fine-Tuning Examples
Pose Conditions

Generated Frames

Figure 2: Automatic Rigging From Hand-Drawn Example
Frames Here we show results of using our tool to rig and animate
based on three example frames taken from an old archival public
domain Betty Boop cartoon [Bet]. These frames were hand-drawn
in the original animation, but can be used to automatically create
a rig with our tool.

• We demonstrate that our approach is able to effectively infer the
parameters of classical non-neural rigging methods such as As-
Rigid-As-Possible (ARAP) [SA07], and Bounded Biharmonic
Weights (BBW) [JBPS11] from the provided examples. This lets
us understand our approach as a way to infer and use such rig-
ging behavior from more general image inputs, including hand-
drawn example frames (e.g., Figure 2).

2. Related Works

2.1. Diffusion-Based Video Synthesis

Diffusion models [SME20,SSDK∗20] were first developed to gen-
erate images [RDN∗22, NDR∗21]. As these image-based mod-
els demonstrate increasingly impressive power and is more com-
putationally efficient than its video-based counterparts [HSG∗22,
HCS∗22, SCS∗22], how to adapt them for video generation has
become an active research topic. AnimateDiff [GYR∗23] expands
the dimension on which the model operates from two to three by
adding trainable weights for temporal attention between frames.
After pre-training, this plug-in module can then be used with most
image models to render consecutive dynamic frames. Our model is
also image-based, and we include AnimateDiff as an optional el-
ement, though we find even without it our model is able to gen-
erate outputs stable across time. A popular sub-topic of video
generation is video editing, and the most common way to con-
trol the editing is via text prompts. Tune-A-Video [WGW∗23] al-
lows changing video content while preserving motions by finetun-
ing an text-to-image diffusion model with a single text-video pair.
FateZero [QCZ∗23] proposes a training-free method by injecting
the cross-attention map of the source video and modifying attention
layers. Customize-a-Video [RZY∗24] and Lamp [WCY∗23] learns
the motion directly with example video(s). These approaches could
be viewed as transferring the motion from an original appearance
to a new appearance, and differ from pose-conditioned method like
ours in two crucial ways. First, the target appearance images are
translated from the source image and the target motion is ideally
the same as the input motion. Our method does not involve any
image translation and the target motion is assumed to be different
from the one in the input video. Second, such methods usually con-
dition on a text prompt describing the goal of scene translation, and
have no explicit modeling for the pose and geometry. Our work
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condition on the target appearance and a skeleton image instead of
text, thus controlling the appearance and pose more directly.

2.1.1. Pose-Conditioned Animation

Harnessing the generation power of diffusion models has been an
active research direction. Many formats of conditioning have been
proposed: Animate Anything [DZY∗23] uses a mask to indicate
which part of the image needs to be animated. The motion is de-
scribed by a text prompt, and the “strength” could roughly con-
trol the intensity of the motion. Other methods [?, ?, ?, ?] condi-
tion on a mouse drag that indicates the movement trajectory. Al-
though these methods could animate objects other than humanoids,
their controls are less precise as a tradeoff for convenience. On
the other hand, methods that enable more accurate pose controls
have been focusing on humans, partially due to the lack of an-
notated data in other domains. These works usually acquire the
skeleton annotations with an off-the-shelf human pose estimation
method, such as DensePose [GNK18] and OpenPose [CSWS17,
WRKS16, SJMS17, CHS∗19]. DreamPose [KHWKS23] proposes
an adapter to fuse the CLIP text embedding with the CLIP image
embedding of the appearance image, and feed a projected version
of the fused feature into the diffusion model for cross-attention. As
their method was only trained on fashion datasets, the variation of
appearances and poses is very limited. Later on, more generaliz-
able approaches [XZL∗23, ZZY∗24, MHC∗24] emerged and could
achieve satisfactory zero-shot animation quality. DisCo [WLL∗23]
focuses on disentangled control of the foreground, background and
pose, which enables human video generation with changeable fore-
ground, background and motion. Animate Anyone [HGZ∗23] de-
signs a ReferenceNet to extract detail appearance features from
reference images to serve as extra cross-attention values for the
denoising UNet. The skeleton image is combined with the noisy
latents to be the input. MagicPose [CSG∗23] is another state-of-
the-art that shares similar design ideas and produces better facial
expressions. We find the architecture of Animate Anyone achieves
a balance between fine-tuning efficiency and performance, and thus
adopt it for our method.

2.2. Classical Rigging and Skinning

Speeding up and improving the quality of rigging and skinning has
been a long-standing topic in computer graphics. Some of the most
fundamental algorithms include linear blend skinning, dual quater-
nions, and rigid skinning. After placing handles during the bind
time, most methods that are fast at pose time compute the transfor-
mation at each object point by using a weighted blend of handle
transformations. The specific optimization and weights vary across
methods. Among methods that work on 2D and have code avail-
able, As-Rigid-As-Possible (ARAP) [SA07] and Bounded Bihar-
monic Weights (BBW) [JBPS11] are exemplary methods that have
been widely adopted into animation engines. In Sec. 4, we will
show that our model could infer a plausible interpolation between
provided poses regardless of the underlying rendering engine that
was used to generate the fine-tuning examples. Therefore, the user
no longer needs to figure out the entire rig through trial and error –
they only need to annotate the keypoints on few frames, and let the
diffusion model to implicitly do the reverse inference. This is one of

our key strengths over non-neural methods, and with our ordering-
aware skeleton bone representation, the user further avoids the need
to manually separate the image frame into parts. Our model is able
to infer the layer ordering and generate correct occlusions.

3. Method

Our method involves two stages: (1) training on a large synthetic
dataset to learn rigid rigging of diverse shapes, and (2) fine-tuning
on the given unseen test character (in Sec 4, we will show that even
only trained on rigid deformations, our model can adapt to arbitrary
non-rigid deformations after this quick fine-tuning). We will first
introduce our model architecture in Sec. 3.1, then data synthesis
and training strategy in Sec. 3.2, and finally the fine-tuning and
optional extensions in Sec. 3.5.

3.1. Preliminaries on Diffusion Models

Diffusion models [HJA20] have demonstrated impressive image
generation capabilities through iterative denoising process. Diffu-
sion models consist of two Markov chains: a forward chain that per-
turbs data to noise, and a reverse chain that converts noise back to
data. For an input image x0, the Gaussian noise is gradually added
to x0 through the forward Markov Chain:

q(xt |xt−1) =N (xt ;
√

1−βtxt−1,βtI) (1)

where t = 1, ...,T denotes the timesteps, βt is a predefined vari-
ance schedule. At inference time, Gaussian noise is sampled from
N (0,I) and gradually denoised into the data distribution:

pθ(xt−1|xt) =N (xt−1;µθ(xt , t),σ2
t I) (2)

where σ
2
t is a predefined variance schedule and the denoiser µθ is

parameterized by a neural network.

Denoising in pixel space is inefficient and can not scale up to
high-resolution. To address this issue, Latent Diffusion [RBL∗22]
propose to denoise in latent space. More specifically, a VAE is first
trained to compress images into latent space, and then the diffusion
denoiser is trained to denoise in the latent space. The result of de-
noising process is decoded back to pixel space by the VAE decoder.

3.1.1. Architecture

Our model builds upon the architecture of Animate Anyone, as em-
pirically we find it achieves a better balance between performance
and efficiency than other concurrent methods. The inputs are an im-
age of the target character for appearance reference, and an image
showing the skeleton in the target new pose (Fig. 3.a). The skeleton
image is encoded using a Pose Guider and fused with noisy latents
as inputs to the Denoising UNet. The appearance reference image
is fed through CLIP image encoder to produce semantic features
for the cross attention layers. It is also fed through a ReferenceNet
to produce spatial features, replacing the self-attention in the UNet.

Our model defaults to working on a white background, and we
trained a useful variation that works on other backgrounds. Ani-
mate Anyone and most other existing methods assume the back-
ground of the reference appearance image is the same as what is
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Figure 3: Training Pipeline. (a) Our model takes in a appearance reference image and a skeleton image as inputs. (b) For the first training
stage, these are randomly generated through our data pipeline. With more than 3e10 possible combinations of texture, shape, and topology,
our synthetic dataset is more challenging than any real-life datasets, which forces our model to learn the correct binding and deformations.
Our skeleton representation for this wide range of topologies is also unique: in the Red and Green channel of this RGB image, we color pixels
according to their x and y coordinates. When a user specifies a new target pose, this skeleton is transformed accordingly, which means that
the value of pixels in the target skeleton image now refer to source coordinates in the starting rest pose. We use the Blue channel to embed
layer ordering of each part of the body, which is crucial for characters that contain parts of different depths. For each appearance we train
the model multiple target poses and layer orderings, as shown in the two dashed boxes in (b). When the new pose causes occlusions as in the
two left columns, the supervising ground truth appearance is different when the order changes. Thus, our model is forced to understand the
influence of layer ordering to appearance.

desired for the output. However, in many real life videos the back-
ground is also moving. To reduce this constraint, we use Grounded-
SAM to segment the foreground object and place it onto a white
background following our default input format of appearance refer-
ance. Then we use Remove Anything [YFF∗23] to inpaint the back-
ground. To add the condition of background, we find it effective to
extract features with the same ReferenceNet and add them into the
spatial attention module. In this way, the user could use a back-
ground for the target new pose that is different from the one in the
reference image. We will show results with different backgrounds
in Fig. 6.

3.2. Training Data Synthesis

What distinguishes us from other works is the data generation and
model training pipeline. Acquiring enough annotated data for the
ambitious goal of animating arbitrary topology is very expensive,
so we develop a synthetic dataset that generalizes well to real cases
during test time. Our pipeline generates a pair of appearance image
and its corresponding skeleton image at a time. For each training
iteration, we generate two pairs of (appearance, skeleton) image.
We first generate a character at a rest pose, and the appearance im-
age of this pair will be used as the reference image for the network.
Then we randomly deform it to a new pose. For this second pair,
the skeleton image of this pair will be used as the skeleton input to
the network, and the appearance image would be the desired out-
put, so it would be used as the ground truth to compute the training
loss. We now detail the generation process of such paired data.

3.2.1. Topology

We first generate a random tree structure to be the topology of our
abstract character: we generate nodes of a random quantity within a

predefined maximum, and for each node randomly assign a parent
node. Then we plot the tree graph with random edge length. As the
appearance reference ideally should provide as much texture infor-
mation as possible, it is beneficial to avoid occlusions of body parts,
and thus we define the “rest” pose of an arbitrary topology charac-
ter as the force-directed layout. In fact, for humanoid topologies,
this layout is close to the commonly-used T-shape rest pose, which
supports the validity of our design choice.

3.2.2. Texture

Given a tree structure, we connect each node and its parent to form
an enclosed shape. As there is only one root node, we associate
each shape to the child node, and the root node has no association.
Suppose one axis of the shape is the line connecting the node and
its parent, then we sample several points within a random aspect
ratio in the direction orthogonal to the axis, and on both sides of
it. With these control points, we draw Bezier curves to form a ran-
dom shape. Parameters for the Bezier curves, such as the radius and
the maximal number of random control points, are pre-defined. We
also generate a mask for each shape. The back-to-front ordering
of these shapes are randomly generated, and the complete charac-
ter is acquired using alpha composition following that order. We
use the enclosed shape as a mask over a random image from our
texture image dataset to produce the final textured blob. To let our
model handle both real-life textures and more artistic or cartoon
styles, our texture dataset include at least 10000 random image
samples from Cartoon Classification [car], LAION Art [SBV∗22]
and MSCOCO [LMB∗14] (we only need raw images from these
datasets).
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Figure 4: Training Data Visualizations. Here we show more ex-
amples of the random data generated during training. For each
appearance, we show two permutations of layer ordering, which
changes the skeleton representation and the new pose ground truth.
The rightmost column (particularly the regions highlighted by the
red rectangles) shows our model is able to distinguish such differ-
ence and predicts the occlusions correctly.

3.2.3. New Pose

To form the second pair of data in a target new pose, we ran-
domly transform the first rest-posed pair. We randomly select sev-
eral branches of the graph, and rotate each shape in that branch by
a random degree. Then the entire character is randomly rotated and
translated by a random vector.

3.3. Skeleton Representation

Previous works focusing on a specific category of characters, such
as humanoids or quadruple animals [XCH∗24] assume the number
of keypoints is fixed, and use a predefined color to draw each joint
and bone. Therefore, the model may exploit the association be-
tween a specific color and the corresponding body part. For exam-
ple, in skeleton images drawn by OpenPose [CSWS17, WRKS16,
SJMS17, CHS∗19], the red color always correspond to the right
shoulder of a person. However, as we are not targeting at any spe-
cific topology, we discourage the binding of color with semantic
meaning. On the other hand, we hope the color provides informa-
tion about the spatial transformations from the rest post to the target
new pose. Therefore, we represent the position of each pixel with
a linear mapping from its coordinate to a color value. Given an im-
age of resolution (A,B), and a point of coordinate (x,y), our design
is to color the bone at that pixel with RGB value (c ∗ x

A ,c ∗
y
B ),

where c is some scaling constant. For example, for an image of size
255× 255 (Fig. 3), we can set c = 255 and color a skeletal bone
passing through a pixel at (x,y) directly by setting the Red channel
color value to x, and Green channel to y, in uint8 RGB space.

For the Blue channel, we encode the layer ordering into it. We
evenly divide the color space, and assign a value to each bone of the
skeleton based on its layer index. For example, if there are five parts
at most, then the back-most bone would have blue value 255/5 =
51, and the foremost bone 255. The background is set to all zeros
such that its value never overlaps with a potential bone color. The
final RGB skeleton representation can be seen in Fig. 3.a.

For the second pair at a new pose, instead of re-drawing the
skeleton image with the updated position, we transform the bones
in the rest pose to build the spatial correspondence that could be
informed now by the RGB values: the current position of the bone
is the desired new pose, yet its color implies where it comes from.
Fig. 4 shows more training data generated on-the-fly.

3.4. Training

As there are 3× 10000 = 30000 texture image candidates, and we
set the maximum number of bones in a topology to be 10, the
combination of texture, topology and blob shapes are far beyond
30000× 10! = 3.6288e10, while we only train for 30000 steps for
our experiments. Therefore, as almost no data would be encoun-
tered twice, the model must learn to correctly decode the informa-
tion in our skeleton representation, and learn to correctly bind and
transform the abstract shapes based on the conditioning images in-
stead of memorizing biases.

For each abstract character, we generate multiple target poses
and multiple layer orderings to facilitate model understanding. As
in Fig. 3.b, when there is occlusion for the same new pose, the
desired appearance is different when the layer ordering changes.
The model has to figure out the cause of this difference to further
reduce the training loss.

3.5. Second Stage: Character Fine-tuning

After training, our mode can already re-pose unseen test charac-
ter zero-shot, even though real life characters look very different
from the training abstract shapes to human eyes. To improve the
performance, we can fine-tune it on a few frames. Note that some
of the top-performing works focusing on humanoids is able to get
rid of this step, yet it is necessary in our case due to the much more
relaxed assumption of the character appearance and topology. As
shown in Fig. 3.a, We require the user to provide a few keypoint-
annotated frames, the connection of these joints, and the layer or-
dering of the connecting bones, and have built a front-end for the
annotation process.

3.6. Implementation

We train for 30000 steps for stage 1, and 2000 steps for stage 2
on 2 A100 GPUs. The learning rate is 1e-5 and the image resolu-
tion is 512× 512. Both ReferenceNet and the Denoising UNet are
initialized from Stable Diffusion v1–5 [RBL∗22], and during our
training, only the Pose Guider, the Denoising UNet and the Refer-
enceNet are tuned.
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Figure 5: AniDiffusion Dataset. We establish the first 2D animation dataset with accurate keypoint annotations, part segmentations and
alpha masks (See (a), where keypoints are labelled in green). We use Adobe Character Animator to create more than 120 characters (c) with
approx. 100 types of motion for each (b).

4. Evaluation

For better evaluation of this novel task, we establish a dataset of 2D
characters with keypoint annotations, which is composed two types
of contents. The first component is the our AniDiffusion Dataset,
which contains 135 characters with various poses, and, to the best
of our knowledge, is the first cartoon dataset that provides per-
frame accurate keypoint annotations and alpha mattes for the char-
acter. The data generation software is Adobe Character Animator
(Ch), which comes with rich character and motion libraries. The
topologies of many characters resemble humans, but the appear-
ances are much more varied, as shown in Fig. 5.a. There is a Mo-
tion Library that defines more than 140 motions for each character,
ranging from walking to fighting (Fig. 5.c), and the keypoints def-
initions correspond to other widely-used packages such as Open-
Pose [CSWS17] (Fig. 5.a). For other characters that do not have
motions programmed, we script the software to pose each joint at
multiple evenly spaced angles with respect to its parent joint, and
permute over all angle combinations of available joints. We also
render each primitive body part of the character in separate for each
frame, to clarify the occluded regions, and enable more flexible
compositions, such as borrowing a tail from an elephant charac-
ter to add to a cartoon human. Finally, we provide 48 background
images that could be composed with the character RGBA image.

As Character Animator focuses on animating humanoid charac-
ters, the second component of our evaluation dataset is videos with
appropriate copyright licenses containing objects of more diverse
topologies and appearance from the Internet, ranging from insects,
marine livings, to machines and toys. We use a mixture of Co-
tracker [KRG∗23] and manual annotation to label keypoints. The
keypoint locations are selected such that the major motion could
be described concisely by the resulting skeleton, and are verified
by the authors. We use the first frame as the appearance reference
image, and two frames, the middle and the ending one of the se-
quence, as the fine-tuning frames. The video length spans from 12
to 67 frames. As our selected clips all contain non-repetitive mo-
tions that span over the entire sequence, usually these three frames
have distinguished poses and the test poses are smooth interpola-
tions of them (a small portion would be mild extrapolations). This

fixed selection strategy lets us use informative fine-tuning samples
without cherry-picking.

4.1. Qualitative Evaluation

We start by showing sequential results of a wide range of topolo-
gies, styles, and motions in Fig. 6. Then we compare with two
state-of-the-art pose-conditioned diffusion methods, Animate Any-
one [KHWKS23] and MagicDance [CSG∗23]. As there is no exist-
ing methods that target for arbitrary topologies, we need to modify
the skeleton representation and fine-tune these methods. To reveal
the fundamental ability of the re-posing component, we keep the
comparison fair by omitting training the temporal component, and
use the same seeding for all. As Animate Anyone and MagicDance
use OpenPose [CHS∗19] skeleton images targeted at humans, we
modify the plotting function such that it could map each keypoint
in a video to a fixed color for all frames. The mapping uses the layer
ordering indices, which is also part of the inputs to our model.

Fig. 7.a shows a robot arm catching a fly. The fly is detached
from the arm and is not yet into the picture in the first frame, which
we used as the reference image. The longest line in our pose im-
age points from the arm base to the fly, and therefore entends to
the edge of the canvas when the fly is absent. The deformations of
the robot is mostly rigid. The texture mapping from the reference
to the skeleton for Animate Anyone is poor, whereas MagicDance
overfits to the 3 training poses and could not smoothly interpolate
to generate new poses, and could not synthesize small objects like
the fly consistently.

Fig. 7.b is a sketch example of finger walking. This is a very
challenging task as the two moving fingers have similar appear-
ances, and accurate texture-skeleton mapping becomes necessary.
As Animate Anyone is lacking in this ability, it gets the order wrong
for the middle row, and omits the separating line that should tells
the order for the first and the third row. MagicDance is better at this
example, yet its generation quality is not as high, such as in the first
row.

In the rightmost column of Robot Arm, we showed our best ef-
forts to deform the reference image to the target shape using the
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Figure 6: Result Visualizations. In the left most column, we show the reference image, the only two fine-tuned frames (in thumbnails). On
the right we show equal-spaced consecutive frames from our model outputs. After a 20-minute fine-tuning on only these three frames, our
results show impressive identity preservation, motion interpolation quality, and temporal coherency. From cartoons on the Internet to real
life clips in the DAVIS 2017 dataset [PTPC∗17], our model works on a wide range of styles.

Puppet Pin Tool in After Effects, which is powered by a collection
of widely-used classical deformation methods. The yellow circles
are the placed pins. It always needs more control points tha neural
methods, and the set of necessary points are different for differ-
ent poses, which means the user needs to “overfit” to each pose
through lots of trial and error. There are also many distortion ar-
tifacts caused by the fact that there is no easy way for classical
methods to separate out multiple layers from an image input. For
Finger Walk, we instead tried to use the same set of keypoints that
were used for neural methods. Severe distortions occur near the fin-
ger tips. As there is no longer enough pins to fix certain parts, the
displacement of one point incorrectly influences too many of its
neighbor pixels.

It is noteworthy that we fine-tune Animate Anyone using the
same setup as ours due to model similarity. Both takes approx. 20
minutes on one A100. However, for MagicDance we need to train
it for 10000 steps for each of its 2 stages, taking around 3 hours in
total. Our method is fast, and gives superior results in comparison.

4.2. Smooth Interpolation for Non-Rigid Deformations

We find diffusion models possesses the surprising power to inter-
polate reasonably no matter what underlying algorithm was used to
create the input images. In Fig. 8 we provide an essential demon-
stration by bending the same grid rectangle with different classical
algorithms: (a) ARAP, (b) rigid rotation and (c) Puppet Pin Tool.
We fix the control points, and therefore our model takes in identical
skeleton images, and must reversely infer the deformation mecha-
nism from the three fine-tune examples (one is the rest-pose appear-
ance image, and two in other poses as shown in the first two rows).
For BBW, due to difficulties in Python re-implementation, we use
the demo example, an alligator image, in the original Matlab code.
We deformed the tail with a control point defined in the paper. Our
model adapts to a reasonable deformation pattern for all methods.
Although the generation might not be strictly following that par-
ticular algorithm, the visual quality is already reasonable, and we
leave more thorough quantification of this ability as an interesting
future investigation.
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Figure 7: Qualitative Comparisons. We compare with two top-performing pose-conditioned diffusion methods, Animate Anyone and Mag-
icDance, and one standard editing tool powered by multiple classical deformation algorithms, Puppet Pin Tool in Adobe After Effects. The
bone representations are shown on the left to the matching results, and are the same for Animate Anyone and MagicDance.

4.3. Quantitative Evaluation and Ablations

We run quantitative evaluation on a subset of our data with white
backgrounds. Our method beats the others in all metrics. For ab-
lations, we turn off one key component at a time. We first omit
the spatial information embeded in the Red and Green channel of
our skeleton images. The Blue channel is still able to differentiate
bones based on layer ordering, but the correspondences get poorer
(see w/o SE in Table 1 and Fig. 9). Our results are all generated
by fine-tuning on three images: one reference and two new poses.
If we take one pose out, the performance decreases unsurprisingly
(Table 1 FT 1). If we still use two poses, but choose sequential
ones (equally spaced by 1 frame between each and from the refer-
ence image pose) that cover much less of the pose space, the per-
formance decreases even more (Table 1 FT 2 Seq). The diversity of
the fine-tuned poses is more important than pure quantity.

5. Discussion and Limits

Currently our model only works in 2D. Its relaxed assumption on
object appearance comes at the cost of the inability to predict con-
tents unseen in the fine-tuning examples. For example, if the refer-
ence appearance image shows the front of a person, we cannot sim-
ulate the person turning around. Another improvement that could
greatly expand our use case is to combine other forms of condi-
tioning, as we cannot control contents that are not captured by the
skeleton and the reference image. We believe these are interesting
future directions.

6. Conclusion

This works presents a pioneering step towards taming the power-
ful diffusion models for pose-controlled diverse cartoon generation.
We propose a rigging model with great generalizability to a wide
range of textures and topologies, and AniDiffusion Dataset, the first
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(a) ARAP (b) Rigid (c) Puppet
Pin Tool

(d) BBW

First Row: 
Reference Image

Second Row: 
Fine-tune Examples

Figure 8: Interpolation Results. Our model interpolate between
fine-tuned example smoothly regardless of the underlying deforma-
tion algorithms.

cartoon dataset with accurate joints annotations to facilitate future
related research. With extensive experiments, we demonstrate why
adapting existing humanoid-focused methods to this task is non-
trivial, and how our method can fill this blank and has the ability to
synthesize high-quality re-posed cartoon characters.

Reference Image Fine-tune Example 1 Fine-tune Example 2

(c) Full Method

(b) No Spatial Representation

(a) OpenPose Modified Representation 

(a) Ground Truth

Figure 9: Ablation of Skeleton Representation. Correct results are
marked by green frames, and incorrect ones by red. Our full method
generates all three images correctly, the ablated version generates
one correctly, and Animate Anyone memorizes and repeats the fine-
tuned examples as the outputs, getting all three wrong.

Method MSE↓ PSNR↑ FID↓ LPSIS↓

MagicDance 15.51 1.64 294.44 9.03
Animate Anyone 12.44 1.88 3.35 4.73

Ours 8.61 2.04 2.87 3.77

w/o SE 8.74 2.02 3.90 3.63
FT 1 10.55 1.95 3.47 4.41

FT 2 Seq 13.78 1.86 11.06 5.99

Table 1: Quantitative Comparison and Ablations. The scale of
MSE, PSNR, FID and FID is 1e-3, 1e+1, 1e-2, 1e-2. The best re-
sults in the comparison with other methods (top three rows) are
highlighted. In the ablations (bottom three rows), w/o SE refers
to our skeleton representation scheme without the Red and Green
channel spatial encoding, FT 1 refers to fine-tuning our complete
method on only one new pose example, and FT 2 Seq refers to fine-
tuning on two consecutive new poses.
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