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Abstract - With the increasing needs of security, 
cryptographic functions have been exploited in network 
devices. Besides time consuming, security protocols are 
flexible in algorithm selections. Fortunately, network 
processors, which serve as the backbone of intelligent 
network devices, hold performance and flexibility at the 
same time. In this article, we investigate several 
principles that can be used with implementing and 
optimizing cpptographic algorithms on network 
processors. Also, these principles are applied in real life 
algontltms, including stream ciphers, block ciphers and 
digital signatures. Related experiments and benchmark 
results on Intel LYPl200 network processor are provided. 

Keywords: Cryptographic algorithms, network processor, 
optimization. 

1 Introduction 
Salient trend has it that many network devices 

integrate cryptographic functions to gratify the increasing 
needs of security. Especially, encryptioddecryption and 
digital signature algorithms are expensive and 
dramatically affect the all overall performance. Hardware 
solutions [ I ]  suffer from the cost and flexibility, while 
software approaches compensate the drawbacks at the cost 
of performance. Network processor, a device between 
GPP (General Purpose Processor) and ASIC (Application 
Specific Integrated Circuit) caters for the requirements of 
performance and flexibility simultaneously. Unfortunately, 
several difficulties do exist to hinder the elevation. First, 
most cryptographic algorithms are designed without a full 
appreciation of network processors. Second, several 
preliminary results [2], [12] show encryption algorithms 
have much more complexity than other header processing 
applications. Third, many commercial network processors 
are RISC based and have limited MIPS. Besides, no cache 
or small cache is built on chip. Hence, optimizing 
cryptographic algorithms on network processor is not only 
close to software manners hut also a challenging job. 

Some related works on GPPs have been done recent 
years. Bruce Schneier [ 111 has presented several general 

optimization principles on Intel Pentium processors. It 
mainly focuses on “register poor” processors and takes 
more concem on instruction pairing and snperscalar 
processing, which are not possessed by network 
processors. However, latency hiding and parallel 
processing are conspicuous means. Erich Nahum [4] has 
involved parallel processing on share memory 
multiprocessor systems and discussed three types of 
parallelism: per-connection, per-packet, and intra-packet 
parallelism. Thread parallel techniques will be 
emphasized in conjunction with latency hidmg in onr 
discussions. 

In this article, we analyze the general architecture of 
prevailing commercial network processors, using Intel 
IXP series as an example. Then, we propose three 
catalogs of optimization principles. Due to some hardware 
limits, implementing expensive algorithms (e.g., RSA [7]) 
on fast path of network processors is not feasible. Thus, 
we implement and benchmark some compact encryption 
algorithms and MD5 [6] digital signature algorithm on 
Intel IXP1200 network processor. 

2 Architecture of network processors 
To satisfy the requirements of intelligent processing, 

most commercial network processors are designed with 
following technologies: 

Pipeline and Parallel. mechanism. Network 
processors contain multiple processing elements 
(PES) which organized either in pipeline or 
parallel manners. 

Optimized memory units. Memory access is an 
expensive task. This feature provides the 
feasibility of latency hiding and reimburses the 
drawback of small cache. 

Special ALU instructions. This is originally used 
to accelerate route applications, while still suits 
cryptographic applications’ needs. 
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Hardware multithread. Many network processors 
apply several ''Zero switching overhead" 
hardware threads to increase utilization rate. 

To be more specific, in this article we use Intel 
EF'1200 as the platform. It is a wide used network 
processor, which typically incarnates the characteristics 
mentioned above, shown in Figure 1. 
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Figure I. Hardware architecture of IXP1200 

D(p1200 is mainly made up of 6 high speed 
Microengines and one StrongAnn management core. Each 
Microengine owns 4 hardware threads and only one 
thread can be activated at anytime. Microengines and 
StrongAnn are all RISC based processors sharing memory, 
bus and other off chip resources, while Microengines 
carry fast path applications and StrongAnn does slow path 
jobs. Our optimizations will mainly focus on fast path, 
especially the four threads of one Microengine. Without 
any special indicate, in our benchmark parallel processing 
is refer to four threads of one Microengine. 

i 

and reduce calculations of iteration variables and 
array indexes. 

Take full advantage of rich register resources 
which could serve as cache, temporary storage 
and constant tables. 

Pre-calculate part of algorithms. For instance, 
setup S-Box entries with keys, compute array 
indexes and load immediate data into registers. 

3.2 Latency hiding 

Usually off-chip memory accesses generate long 
communication latency. During the access waiting time 
processors are in idle state, so the utilization rate of 
processors will he degraded. Network processors could 
improve this sitnation by controlling the waiting 
procedure manually. The core idea of latency hiding is to 
do something useful when waiting memory references. As 
a whole, the latency seems to he hided. 

3.3 Parallel processing 

On network processors, parallel processing can be 
exploited at Microengine level and hardware thread level. 
Microengine level is somewhat like the parallelism of 
SMP systems and related approaches have been studied in 
[4], [SI. Our methods cany more weights on hardware 
thread level parallelism in conjunction with the latency 
hiding technique. Since many multithread processors use 
non-preemptive context arbiters, thread switching can 
work in either of the two modes: 

Swap out immediately after issuing memory 
references. In this case, current thread will be 
deactivated waiting for the arbiter to wake up 
and next valid thread executes immediately. 

3 General optimization principles 
Firstly, we propose two goals for optimizations: one 

is to increase the utilization rate of Microengines. The 
other is to minimize memory accesses and communication 
latency. The former is to stretch the limited computation 
capacity to the outmost. The later is to downcast After issuing memory references finish some 
expensive memory operations. Regarding these, we operations and then swap out. This approach 
summarize some principles in the following three catalogs. combines the latency hiding technique. 

3.1 Computation oriented 

On RISC based network processors, most 
instructions could be -executed in one cycle and no 
instruction pattems are required. However, network 
processors exploit instruction pipeline techniques and 
their rich register resources will be highlighted. 

Avoid using complex instructions, which occupy 
more than one cycle of time. 

Unroll loops, avoid conditional jumps and thread 
swapping. These can stunt the flush of pipeline 

The second mode takes the latency hiding into 
account and seems perfect, but the latency hiding prevents 
other threads from execution until it swaps out. 
Functionally, thread level parallelism we encounter in this 
article mainly include the following forms: 

All threads serve as homogeneous "processors" 
and process similar jobs. This method is 
especially useful to some block ciphers which 
can be paralleled at data level. Also it is 
commonly used with connection level parallelism. 

Threads serve different functions and are 
organized as a functional pipeline. Similar work 
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can be found in researches of Simultaneous 
Multithreaded processor (SMT). One early topic 
by Zilles [I31 introduced the concept of helper 
thread prefetching memory to increase cache hit 
rate. Although cache behavior is not the major 
problem on network processors, memory access 
is still the bottleneck. Thus, we develop the 
original helper thread idea into a more complex 
one, by adding some non-critical operations to 
the helper thread. 

4 Analyze and benchmark existing 
algorithms 
In this section, we will apply our principles to some 

existing cryptographic algorithms. Up to now, most 
cryptographic algorithms are based on several time- 
consuming inner loops. Other portions either performed at 
startup time or sporadically, contribute little to the overall 
execution time Thus, the inner loops will be our major 
concems and their performance will be evaluated on Intel 
IXP1200 network processor, which is configured at 200 
MHz. All raw and unprocessed data are deposited in 
SRAM. 

. 

4.1 Block ciphers: Blowfish and KhufuKhafre 

Blowfish [lo] and KhufnKhafre [3] are concise and 
their instruction storage requirements are amenable to 
network processors. 

Precompntation. 
As these algorithms, S-Box and some arrays of 

constant are initialized with keys. During the tun time, 
they will not be changed 6equently. 
Blowfish: DWORD P[18], S[4][256] 

P and S are all initialized according to keys. P contains 
only 18 entries and can be stored in register, while S has 
to be placed in SRAM. 

The S-box of Khufu is key depended while Khake is 
not. Like Blowfish, the S-box of KhufujKhafre is also 
placed in SRAM. 

KhufnKhafre: DWORD S[ROUNDS/8][256] 

Optimizing inner loops. 
Blowfish: 
for (i=Oj<l6;j++) { 1/16 rounds 

L ”= Ph]; 
R 

swap(J-,R); //swap L, R 

((S[O][ L & OxFF] + S[l][(L >> 8 )  & OxFF])” 
S[2][(L >> 16) & OxFF])+ S[3][(L >> 24) & OxFF]; 

1 
L, R are two long words to be encrypted. The inner loop 
of Blowfish can be fully unrolled. Also it has some 
memory accesses and needs complex address calculations. 
For this reason, we bide these address calculations within 
the latency of memory references, shown in Figure 2. At 

cycle 5460, the fnst S-box read request is issued. Then we 
continue to calculate S-box indexes and request three more 
SRAM operations without swappmg out. Consequently, 8 
cycle computations have been hided. 

54M %E 5470 5475 5480 54% 
. !  , I  

Figure 2. The latency hiding effect of Blowfish 

The thronghput is more than three times of the raw one, 
illustrated in Figure 3. Owing to the data independence of 
block ciphers, each thread can serve a portion of sources 
and parallel at connection or packet level. In our 
experiments, we benchmark the multi-thread performance 
in two modes mentioned in section 3.3. Here, we name 
parallel without latency hiding “Ml” and parallel with 
latency hiding “ M Y .  As Blowfish, M2 is better than M1. 
But in KhufulKhafre, we draw the opposite conclusion. 

KhnfuRhafre: 
for (i=Oj<ROUNDS;j-H) { 

tmp = R A  S[ROUNDS/S][L & OxFF]; 
R =  L <<< C; L = tmp; 
} 

L, Rare two 32 bit blocks to be encrypted. C is a constant 
and determined according to j.  As the security is 
concemed, ROUNDS must exceed 16. In our experiments 
we choose 32. Obviously, it is perfect to unroll all the 
loops, thus the calculation of S-box indexes and rotation 
constants will be omitted. Besides, loop unrolling can help 
latency hiding among different rounds. Like Blowfish, we 
take the advantage of data independence and evaluate the 
parallel performance in two modes. The results are given 
in Figure 3. 

. . . . . .. . _. 
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Figure 3. Throughputs of Blowfish and KhufnKhafre 
with different optimization techniques 

4.2 Stream ciphers: SEAL, RC4 

In this section, SEAL [XI, RC4 [9] will be analyzed. 
Disparate from block ciphers, most stream ciphers can not 
be paralleled at data stream level, because of the strong 
dependence of encryption operations. As a result, 
connection level parallelism could not improve the 
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throughput of single connection. At this circumstance, the 
helper thread method will he the suitable solution for 
parallel processing. 

Precomputation. 
SEAL: DWORD T[512], S[256], N[4] 
RC4: DWORD S[256] 

be placed in SRAM 

e Optimizing inner loops. 
SEAL: 

These arrays are initialized based on keys and have to 

Initialize a,b,c,d, N[4] according to keys 
for (i=O;j<64j++) { 

p = a  & Ox7FC; b += T[p/4]; a=a >>> 9; bA=a; 
q = h & Ox7FC; c A= T[q/4]; b=b >>> 9; c+=b; 
p =(p+c) & Ox7FC; d += Tlp/4]; c=c >>> 9; dA=c; 
q =(q+d) & Ox7FC; a A= T[q/4]; d=d >>> 9; a+=& 
p =@+a) & Ox7FC; h Tlp/4]; a=a >>> 9; 
q =(q+b) & Ox7FC; c += T[q/4]; h=b >>> 9; 
p =(p+c) & Ox7FC; d A= T[p/4]; c=c >>> 9; 
q =(q+d) & Ox7FC; a += T[q/4]; d=d >>> 9; 
I* output 128hit data *I 
a+=N[Z*(i&l)]; c+=N[2*(j&1) + I]; 

1 
The inner loop of SEAL consists of initialization works 
and a 64-round loop. Apparently, the 64-round loop is the 
bottleneck. For the sake of simplicity, our benchmark only 
takes the 64-round loop into account. Owing to the large 
tables, SEAL has the most memory references among the 
algorithms we have benchmarked in this article. 

mw Cmn*h LI1Smyhidms ParaOllpmeuing 
m k m d  

Figure 4. Throughputs of SEAL with different 
optimization techniques 

Loop unrolling can only help to calculate the last two 
operations of the loop and contribute nothing to the T 
table index calculations. Also, the strong dependence of 
consecutive operations bogs down the effect of latency 
hiding. Only one circular rotation instruction can be hided 
with each T table reference, as Figure 4 shows the result. 
Although SEAL is a stream cipher, the generation of 
variable length outputs can still benefit i?om the simple 
parallelism used with block ciphers. 

RC4: 
for (i=j=O;cnt;cnt--,pt+) { 
i=(i+l) & OxFF; 
tmpI=S[i]; 

//update index i 
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j=(i+tmpI) & OxFF; //update index j 
tmpJ=S[i];S~]=tmpI; S[i]=tmpJ; //swap S[i], Sb] 
N calculate a random index of S-box 
t=(tmpI+tmpJ) & OxFF; 
*p A= S[t]; I/ XOR the raw data 

f 
The computation granularity of RC4 is 8 bit, so there are 
data align problems on 32 bit network processors. In our 
optimization, we unroll the loop to the multiple of 4 and 
align S-box entries to 32 hit. Additionally, the increment 
of i is only calculated every 4 or 8 rounds, thus raw or 
encrypted data can be easily cached in 32 bit registers. 
From the view point of latency hiding, we adjust the 
execution sequence of first two operations, that is to use 
the memory reference of S[i] to hide "i = (i + 1) & OxFF". 

I 
IbrpStbd, 

I*- 

I hrw- 
I 

0 10 W M 4a YI M 

%9*) 
Figure 5 .  Throughputs of RC4 with different optimization 

techniques 

On the parallel side, the helper thread idea has been 
introduced. We exploit one main thread to finish some 
serialized operations (fust four lines of the loop) and use 
one or more threads to accomplish the random index 
calculation, an XOR operation (the last two lines of the 
loop) and prefetch operations (e.g. raw data read or write). 
Moreover, memory operations have been classified to 
achieve optimized performance, utilizing memory priority 
features of IXP1200. That is to assign higher priority to 
the S-box swap operation which is crucial to the following 
accesses and lower priority to the encrypted data write 
hack. Here we benchmark their performances with 
different numbers of helper threads in Figure 5.  The 
results show that the more the helper threads the less the 
performance. This is because the workload of helper 
thread is relative lighter than that of the main thread. More 
helper threads compete more with the main thread and 
adversely degrade the performance. 

4.3 Digital signatures: MD5 

MD5 is a 128 bit hash function, which has enjoyed 
widespread use in practice. Like stream ciphers, strong 
dependence exists among consecutive operations of MD5. 
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Further, it requires little memory references except 
reading raw data. 

Precomputation. 
Unlike other encryption algorithms, MD5 does not 

have S-box or array initializations. Only 4 registers should 
be loaded with immediate data. On the other hand, MD5 
employs many 32 bit constants during the main loop. 
Whereas, calculations with 32 bit immediate data on many 
32 bit RISC based network processors require at least 3 
instructions (two for loading data into registers, one for 
ALU operation). Hence, in the precomputation stage we 
load these immediate data in advance. 

Optimizing inner loops. 
Reading raw data; 
(Round 1) Forj from 0 to 15 do the following: 

t = (A + f(B;C;D) + X[zb]] +YE]), 
(A;B;C;D)=(D; B+(t - su]);B; C). 

(Round 2) For j from 16 to 3 1 do the following: 
t = (A + g(B;C;D) + X[zLill+ ylil), 
(A,B;C;D)=(D; B+(t - su]);B, C). 

t = (A + h(B;C;D) + X[zu]] + yb]), 
(A,B;C;D)=(D; B+(t - sE1);B; C). 

t = (A+k(B;C;D)+X[zfi]]+ylj]). 
(A;B;C;D)=@;B+(t - sb]);B; C). 

(H1 ;H2;H3;H4) = (Hl+A;HZ+B;H3+C;H4+D). 
A,B,C,D are 32 bit variable. f,g,h& are functions made 
up of basic bit operations. X are raw data arrays. s, z ,y 
are constant arrays. Clearly, loop unrolling can avoid 
many may  indexes. Noticed that the majority of the main 
loop is composed of register calculations, latency hiding 
technology contribute little to the optimization. Moreover, 
MD5 is also a serial algorithm and allows the minimum 
inner connection parallelism. Therefore, helper thread 

(Round 3) For j from 32 to 47 do the following: 

(Round 4) For j from 48 to 63 do the following: 

(update chaining values) 

method has been involved like RC4. This time, the helper 
thread only performs raw data read opaations and uses 
thread signals to communicate with the main thread. 

0 20 40 W 80 I W  120 140 IM 180 

f i~ghpuqhmpr)  

Figure 6. Throughputs of MD5 with different optimization 
techniques 

Results in Figure 6 show that the latency hiding, helper 
thread and connection level parallelism all achieve 
throughputs at approximate 160 Mhps. The reason is that 
MD5 is a computation-intensive algorithm and memory 
references only occupy a small amount of time. Hence, 
optimizations towards memory access only make a little 
improvement. 

5 Conclusions 
Above, we have optimized and benchmarked 5 fast 

path cryptographic algorithms, which hold different 
characteristics. Finally, we compare their intrinsic 
properties on IXP1200 in Table 1. To show the 
efficiency of different optimization principles, SRAM 
throughput after applying different principles and 
Microengine utilization rate have been given in Table 2. 

Table 1. Characteristics of different cryptographic algorithms 

Table 2. SRAM throughput and Microengine utilization rate under different optimizations 
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In Table 2, column “Thread parallel” is refer to thread 
parallelism with or without the latency hiding technique 
and the best method is sampled here. 

From the tables above, we may draw the following 
conclusions: 

Algorithms with too many memory references 
often get poor performance. For examples, SEAL 
has 15 memory references per round and gets the 
lowest performance among the algorithms we 
have benchmarked. In contrast, KhufuKhafre, 
MD5 and Blowfish enjoy higher throughput. 

Computation oriented optimizations deliver very 
limited performance boost unless the algorithm 
relies seriously on the MIPS of processors (e.g. 
MD5). Due to the RISC architecture, this can be 
estimated by the instruction space of Table 1. 

Thread level parallelism and latency hiding are 
all used to increase the utilization rate of 
processors. In our experiments most algorithms 
improve a great deal with these optimizations. If 
the original algorithm already has a high 
processor utilization rate (like MD~) ,  these 
methods will not work perfectly. 

The helper thread is a good method to involve 
parallelism with “serial” algorithms. In the tests 
of RC4 and MD5, helper threads really improve 
the performance and get similar throughput @er 
thread) as connection level parallelism. 

e 

0 

In real world applications, IXP1200 is designed for 
access or edge devices and mainly supports IOOMbps 
links. According to our results, to keep np with the link 
speed, only one Microengine is not enough. Nevertheless, 
we do believe implementing some lightweight 
cryptographic algorithms with network processors is still 
a feasible solution. Although our work is preliminary and 
many factors remain to he explored, it still can be used 
with algorithm selections and designs on the platform. 
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