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Fig. 1. Rendered results of our reconstruction pipeline for thin translucent materials. We jointly reconstruct geometry and materials through di�erentiable
rendering to obtain spatially varying optical properties for a position-free layered volumetric model to simulate the appearance of objects like paper or leaves.

The joint reconstruction of shape and appearance for translucent objects
from real-world data poses a challenge in computer graphics, especially
when dealing with complex layered materials like leaves or paper. The tra-
ditional assumption of di�use transmittance falls short, and more accurate
Monte-Carlo-based models are often needed to reproduce their appearance.
To accurately capture the translucent appearance, an acquisition system
needs to be carefully designed. Additionally, there are three challenges for
inverse rendering: First, a large number of unknown parameters make the
optimization problem di�cult. Second, the Monte Carlo (MC) renderer intro-
duces noise, which the optimization is sensitive to, especially when dealing
with complex material models such as rough dielectric surfaces and highly
scattering participating media. Last, MC estimators using long light paths (up
to 32 bounces in our case) create a large computation graph in memory, mak-
ing the gradient back-propagation costly. To address those challenges, we
present an a�ordable and fast acquisition pipeline that can capture spatially-
varying re�ectance and transmission at the same time, using a two-phase
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optimization. We �rst initialize the geometry with the traditional vision
method and then �t a simple and fast appearance model. Thereafter, we use
the estimated parameters to initialize a second optimization using a more
expensive volumetric model, which converges faster and more reliably from
this favorable starting position. We also introduce a way to analyze each
parameter’s sensitivity to the noise in the measurements, which can be used
in optimally selecting useful measurements for optimization. Furthermore,
instead of iterating on the camera system, we also introduce a weighted `2
loss as an alternative for selecting useful pixels from existing measurements.
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1 INTRODUCTION
Translucent thin objects with multi-layer structure, such as plant
leaves and papers, are seen everywhere in our daily life; however, it
remains di�cult to model these objects’ appearance with su�cient
detail for high-quality rendering. This group of materials exhibits
non-di�use transmittance due to multiple scattering between layers
which gives them a striking appearance when back-lit, and they can
look markedly di�erent between the two sides when front-lit.

Appearance capture research has produced many good meth-
ods for measuring opaque surfaces and �tting spatially-varying
re�ectance models. Extending this work to thin translucent objects
requires a model that encompasses both front and back re�ectance
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Fig. 1. Rendered results of our reconstruction pipeline for thin translucent materials. We jointly reconstruct geometry and materials through differentiable
rendering to obtain spatially varying optical properties for a position-free layered volumetric model to simulate the appearance of objects like paper or leaves.

The joint reconstruction of shape and appearance for translucent objects
from real-world data poses a challenge in computer graphics, especially
when dealing with complex layered materials like leaves or paper. The tra-
ditional assumption of diffuse transmittance falls short, and more accurate
Monte-Carlo-based models are often needed to reproduce their appearance.
To accurately capture the translucent appearance, an acquisition system
needs to be carefully designed. Additionally, there are three challenges for
inverse rendering: First, a large number of unknown parameters make the
optimization problem difficult. Second, the Monte Carlo (MC) renderer intro-
duces noise, which the optimization is sensitive to, especially when dealing
with complex material models such as rough dielectric surfaces and highly
scattering participating media. Last, MC estimators using long light paths (up
to 32 bounces in our case) create a large computation graph in memory, mak-
ing the gradient back-propagation costly. To address those challenges, we
present an affordable and fast acquisition pipeline that can capture spatially-
varying reflectance and transmission at the same time, using a two-phase
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optimization. We first initialize the geometry with the traditional vision
method and then fit a simple and fast appearance model. Thereafter, we use
the estimated parameters to initialize a second optimization using a more
expensive volumetric model, which converges faster and more reliably from
this favorable starting position. We also introduce a way to analyze each
parameter’s sensitivity to the noise in the measurements, which can be used
in optimally selecting useful measurements for optimization. Furthermore,
instead of iterating on the camera system, we also introduce a weighted ℓ2
loss as an alternative for selecting useful pixels from existing measurements.

CCS Concepts: • Computing methodologies → Rendering.

Additional Key Words and Phrases: differentiable rendering, inverse render-
ing, 3D reconstruction

ACM Reference Format:
Xi Deng, Lifan Wu, Bruce Walter, Ravi Ramamoorthi, Eugene d’Eon, Steve
Marschner, and Andrea Weidlich. 2024. Reconstructing Translucent Thin
Objects from Photos. 1, 1 (October 2024), 11 pages. https://doi.org/10.1145/
3680528.3687572

1 INTRODUCTION
Translucent thin objects with multi-layer structure, such as plant
leaves and papers, are seen everywhere in our daily life; however, it
remains difficult to model these objects’ appearance with sufficient
detail for high-quality rendering. This group of materials exhibits
non-diffuse transmittance due to multiple scattering between layers
which gives them a striking appearance when back-lit, and they can
look markedly different between the two sides when front-lit.

Appearance capture research has produced many good meth-
ods for measuring opaque surfaces and fitting spatially-varying
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reflectance models. Extending this work to thin translucent objects
requires a model that encompasses both front and back reflectance
and non-diffuse transmittance, along with measurement and fitting
methods to determine the parameters.

In this work, we propose a new appearance capture method for
translucent thin objects. A key principle of our work is to use a
unified physics-based model that determines reflectance and trans-
mittance under illumination and viewing from both sides, all from
one set of parameters. Specifically, we adopt a model using thin
volumetric layers separated by rough interfaces [Jakob et al. 2014],
and compute the appearance using Monte Carlo methods [Guo et al.
2018]. As opposed to using separate models for the two sides’ re-
flectances and for transmittance, a single model holds the promise
of generalizing better from fewer observations, because it inher-
ently produces a globally physically consistent appearance. We also
propose a simple capture device to rapidly measure translucent sur-
faces, and a multi-phase inverse rendering pipeline to recover the
parameters for rendering.

Using inverse rendering optimization to reproduce the spatially
varying translucent appearance poses several challenges. First, the
number of unknown geometry and material parameters is huge.
Without a proper initialization scheme, the optimization cannot con-
verge stably, so we use a two-phase optimization: first we optimize
a simple surface BSDF model, and then we optimize a position-free
layered volumetric model, initializing based on the result of the
first step. The second challenge is that the optimization is sensitive
to Monte Carlo noise from the differentiable renderer. To address
that, we exploit sensitivity analysis to design a robust loss func-
tion for faster and more robust convergence. Finally, differentiable
rendering involving long light paths is computationally expensive.
To accelerate rendering and optimization, we introduce a new pre-
integration technique to accelerate the computation of reflectance
or transmittance from the physical parameters.

We demonstrate our system by measuring a number of plant
leaves and art papers, materials with interesting spatially varying
appearances. The raw measurements from our device will be re-
leased as a dataset to be used in material appearance research.

All together, the main contributions of our work include:

• A simple and fast acquisition system that captures images of
reflected and transmitted light from several viewpoints under
a number of lighting conditions, which is tailored to rapidly
provide sufficient data to fit our models.
• A new pipeline to jointly reconstruct both shape and physics-

based appearance parameters using differentiable rendering.
• An improvement to the position-free layered material model

by pre-integrating one dimension of distance sampling.
• A robust loss function for the appearance optimization, se-

lected based on sensitivity analysis.
• A dataset including measurements and reconstructions of

leaves and paper materials.

These contributions advance the field of inverse rendering by show-
ing how to apply the new tools of differentiable physics based ren-
dering to a practical problem in appearance modeling. Our work

shows that while inverse rendering is a flexible and powerful ap-
proach, care in the choice of model and optimization strategy is
required to actually achieve the results this paradigm is capable of.

2 RELATED WORK
Appearance capture. There have been lots of efforts in capturing

the optical properties of real-world objects including leaves [Bous-
quet et al. 2005], paper [Papas et al. 2014], wood [Marschner et al.
2005], human hair [Marschner et al. 2003], animal fur [Yan et al.
2015], etc. These works usually rely on sophisticated acquisition
systems built with complex physical devices with moving parts,
such as spherical gantries or gonio-photometers [Dupuy and Jakob
2018; Guarnera et al. 2016; Matusik et al. 2003]. In contrast, our
acquisition device is quite simple, with only fixed lights and cam-
eras and no moving parts. Some SVBRDF capture systems [Aittala
et al. 2015; Ma et al. 2023; MÃĳller et al. 2005; Nam et al. 2018]
also use fixed or uncalibrated cameras and lights, e.g. by using a
light dome or a hand-held camera with built-in flash. Like our work
this avoids the need for moving parts, but these works focus on
standard surface reflectance models and don’t support transmission.
To handle transmission, we put cameras and lights on both sides of
the object during measurement. Unlike existing work that measures
translucency [Gardner et al. 2003; Merzbach et al. 2019], we measure
both directional and spatial variation in transmittance.

Modeling translucent materials. Subsurface scattering in translu-
cent materials is governed by the radiative transfer equation [Chan-
drasekar 1960]. However, simulating full volumetric light transport
in 3D volumes is computationally expensive [Novák et al. 2018] and
is unsuitable for our use. We show that a thin layered (plane-parallel)
approximation is expressive enough to model the appearance of
thin translucent objects such as leaves and papers, but simple and
fast enough to use in inverse rendering.

Researchers have proposed various physically based layered ma-
terial models [Belcour 2018; Guo et al. 2018; Hanrahan and Krueger
1993; Jakob 2015; Jakob et al. 2014; Weidlich and Wilkie 2007; Zelt-
ner and Jakob 2018] in past decades. Among those layered models,
we choose to use the stochastic ones [Guo et al. 2018; Xia et al.
2020] because they do not rely on empirical approximations or on
precomputations that limit parameter variation. As a result, our
reconstructed layered model can reproduce the real captured ap-
pearance accurately, without the concern of quality loss due to the
use of a restricted or less expressive model.

Simulating multiple scattering in layered materials is easier than
in 3D geometry but still requires a Monte Carlo integration with
many samples. For more efficiency, recent learning-based layered
models [Fan et al. 2022; Guo et al. 2023; Wang et al. 2022] use neural
networks to approximate the multiple-scattering BSDFs of layered
materials. Using such approximations to accelerate our rendering
and optimization is possible, but we decided to keep our approach
physically-based to avoid errors in generalization.

Physically based differentiable rendering. Physically based differ-
entiable rendering is the key component of optimization-based
inverse rendering, which has been used to solve for the optical
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Fig. 2. Overview of our acquisition pipeline. We (2a) first capture the object with three cameras and eleven lights before we reconstruct the geometry (2b). We
use a simplified model to capture the principal appearance of the object (2c) with di�erentiable rendering, convert the data, and feed the output to a volumetric
layered model (2d) which can be�er capture the shape of the transmission lobe. The resulting material model can be used in a classic path tracer (2e).

algorithms [Bangaru et al. 2020; Jiang et al. 2020; Li et al. 2018; Lou-
bet et al. 2019; Zhang et al. 2020, 2019] addressed this problem and
properly handled the discontinuities, allowing joint optimization of
shapes and materials [Deng et al. 2022; Luan et al. 2021; Xing et al.
2023, 2022; Yan et al. 2023]. Our inverse rendering pipeline is based
on the path-space di�erentiable rendering formulation [Zhang et al.
2020] and jointly optimizes the shape and material properties of
translucent thin objects.

Several works have applied variance reduction techniques such
as control variates [Nicolet et al. 2023], antithetic sampling [Yu et al.
2022; Zhang et al. 2021], and resampled importance sampling [Chang
et al. 2023; Wang et al. 2023] to the often noisy derivative estimators.
We also propose a way to reduce variance in our path integral
by substituting an analytic solution for some sampled dimensions,
which is orthogonal to these variance reduction methods.

3 OVERVIEW
Our reconstruction pipeline aims to jointly infer the geometry and
appearance of a translucent thin object. It consists of four stages:
photo acquisition, geometry reconstruction, simple material recon-
struction, and position-free material model reconstruction. The
input for our pipeline is a thin translucent material sample such as
paper, a leaf, a petal, etc. The desired output is a model for both the
shape and the optical scattering properties of the object.

Acquisition System. Our apparatus, detailed in Sec. 4, consists of
three cameras and eleven light sources �xed in space on both sides
of the sample. The lights are switched on in succession to capture
HDR images for all light/camera pairs in a few minutes. This speed
is important because thin biological samples like leaves would dry
and change shape and appearance during a longer measurement.

Material Model. Objects like leaves and paper are geometrically
thin, but thick in an optical sense—light bounces multiple times
inside the material before it �nally exits, and negligible light passes
directly through. Their properties vary across the surface, but slowly
compared to the thickness, so we adopt the position-free approach
[Guo et al. 2018] and assume that re�ection and transmission at any

point on the surface are de�ned by light scattering in a homogeneous
layered medium [Jakob et al. 2014].

Depending on the type of object being captured, various layer
con�gurations could be used, but for all the examples in our paper
we used a stack of two volume layers, with rough dielectric inter-
faces on the top and bottom. To account for the surface shape, we
use a displacement map. Thus in total our model is fully described
by �ve textures—height, front and back albedo, front and back opti-
cal thickness—and �ve global parameters: front and back surface
roughness, the mean cosine of the phase function per layer, and
a single index of refraction. Our optimization also uses a simpli-
�ed model to locate a starting point, which replaces the volume
layers with separate di�use re�ectances for front and back, plus a
di�use transmittance. Details of the two models and our methods
for rendering them are in Sec. 5.

Optimization. Unlike most 2D appearance capture systems, we
adopt a full inverse rendering approach for �tting the model pa-
rameters to our observations. This is necessary because the model
parameters de�ne the surface appearance via a Monte Carlo ren-
dering process, and once we adopt this approach it gives us the
freedom to use any type of lighting and to optimize the surface
shape jointly with the optical properties. By giving it the right in-
put, we enable the optimizer to automatically employ strategies
that encompass stereo triangulation and re�ectance and scattering
property estimation to best explain the observations.

Previous work in di�erentiable rendering in principle solves the
problem of appearance �tting. When reconstructing a few appear-
ance parameters in synthetic scenarios [Li et al. 2018; Loubet et al.
2019; Zhang et al. 2020] or simpler material models from real data
[Deng et al. 2022; Luan et al. 2021], standard stochastic optimiz-
ers have been shown to �nd solutions when initialized randomly.
However, for our problem, the optimization converges poorly be-
cause of the ill-conditioned nature of the problem. Similarity theory
[Zhao et al. 2014] shows there are approximate null directions in
the parameter space, along which changes to the parameters have
minimal e�ect on the external appearance. The slow convergence is
compounded by the expense of computing derivatives of renderings
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Fig. 2. Overview of our acquisition pipeline. We (??) first capture the object with three cameras and eleven lights before we reconstruct the geometry (??). We
use a simplified model to capture the principal appearance of the object (??) with differentiable rendering, convert the data, and feed the output to a volumetric
layered model (??) which can better capture the shape of the transmission lobe. The resulting material model can be used in a classic path tracer (??).

parameters of a wide range of materials such as translucent vol-
umes [Gkioulekas et al. 2013; Hašan and Ramamoorthi 2013] and
cloth [Khungurn et al. 2016; Zhao et al. 2016]. Most of those works
assume the scene geometry to be static to avoid discontinuities
caused by visibility. Recent advances in differentiable rendering
algorithms [Bangaru et al. 2020; Jiang et al. 2020; Li et al. 2018; Lou-
bet et al. 2019; Zhang et al. 2020, 2019] addressed this problem and
properly handled the discontinuities, allowing joint optimization of
shapes and materials [Deng et al. 2022; Luan et al. 2021; Xing et al.
2023, 2022; Yan et al. 2023]. Our inverse rendering pipeline is based
on the path-space differentiable rendering formulation [Zhang et al.
2020] and jointly optimizes the shape and material properties of
translucent thin objects.

Several works have applied variance reduction techniques such
as control variates [Nicolet et al. 2023], antithetic sampling [Yu et al.
2022; Zhang et al. 2021], and resampled importance sampling [Chang
et al. 2023; Wang et al. 2023] to the often noisy derivative estimators.
We also propose a way to reduce variance in our path integral
by substituting an analytic solution for some sampled dimensions,
which is orthogonal to these variance reduction methods.

3 OVERVIEW
Our reconstruction pipeline aims to jointly infer the geometry and
appearance of a translucent thin object. It consists of four stages:
photo acquisition, geometry reconstruction, simple material recon-
struction, and position-free material model reconstruction. The
input for our pipeline is a thin translucent material sample such as
paper, a leaf, a petal, etc. The desired output is a model for both the
shape and the optical scattering properties of the object.

Acquisition System. Our apparatus, detailed in Sec. 4, consists of
three cameras and eleven light sources fixed in space on both sides
of the sample. The lights are switched on in succession to capture
HDR images for all light/camera pairs in a few minutes. This speed
is important because thin biological samples like leaves would dry
and change shape and appearance during a longer measurement.

Material Model. Objects like leaves and paper are geometrically
thin, but thick in an optical sense—light bounces multiple times

inside the material before it finally exits, and negligible light passes
directly through. Their properties vary across the surface, but slowly
compared to the thickness, so we adopt the position-free approach
[Guo et al. 2018] and assume that reflection and transmission at any
point on the surface are defined by light scattering in a homogeneous
layered medium [Jakob et al. 2014].

Depending on the type of object being captured, various layer
configurations could be used, but for all the examples in our paper
we used a stack of two volume layers, with rough dielectric inter-
faces on the top and bottom. To account for the surface shape, we
use a displacement map. Thus in total our model is fully described
by five textures—height, front and back albedo, front and back opti-
cal thickness—and five global parameters: front and back surface
roughness, the mean cosine of the phase function per layer, and
a single index of refraction. Our optimization also uses a simpli-
fied model to locate a starting point, which replaces the volume
layers with separate diffuse reflectances for front and back, plus a
diffuse transmittance. Details of the two models and our methods
for rendering them are in Sec. 5.

Optimization. Unlike most 2D appearance capture systems, we
adopt a full inverse rendering approach for fitting the model pa-
rameters to our observations. This is necessary because the model
parameters define the surface appearance via a Monte Carlo ren-
dering process, and once we adopt this approach it gives us the
freedom to use any type of lighting and to optimize the surface
shape jointly with the optical properties. By giving it the right in-
put, we enable the optimizer to automatically employ strategies
that encompass stereo triangulation and reflectance and scattering
property estimation to best explain the observations.

Previous work in differentiable rendering in principle solves the
problem of appearance fitting. When reconstructing a few appear-
ance parameters in synthetic scenarios [Li et al. 2018; Loubet et al.
2019; Zhang et al. 2020] or simpler material models from real data
[Deng et al. 2022; Luan et al. 2021], standard stochastic optimiz-
ers have been shown to find solutions when initialized randomly.
However, for our problem, the optimization converges poorly be-
cause of the ill-conditioned nature of the problem. Similarity theory
[Zhao et al. 2014] shows there are approximate null directions in
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the parameter space, along which changes to the parameters have
minimal effect on the external appearance. The slow convergence is
compounded by the expense of computing derivatives of renderings
with long scattering paths, even using state-of-the-art differentiation
frameworks on powerful GPUs.

Sec. 6 details how we greatly improve the convergence of the
optimization by first solving a sequence of easier fitting problems
to obtain a good starting point for optimizing the full model, and
Sec. 5.4 introduces a new pre-integration technique to improve the
per-iteration performance.

4 ACQUISITION
Our acquisition system, which can be seen in Fig. 2(a) is meant
to rapidly capture enough image data to sufficiently constrain the
parameters of our appearance model. This requires observations of
both sides of the surface under illumination from both sides, with
enough viewing and illumination directions to observe the 3D shape
and the non-diffuse reflection and transmission. In this section we
describe the design considerations and summarize the procedures
for calibration and data processing.

4.1 System Design
In our system the measurement sample must be held in place while
being illuminated and photographed from both sides. The samples
we measure are typically flexible and lightweight; this makes the sys-
tem prone to problems with vibration, but also makes it unnecessary
to have a very rigid support for the sample.

Considerations of vibration and cost/complexity led us to a design
with no moving parts, but instead a set of fixed cameras and lights.
With no vibration in the system, we decided not to use a rigid
support such as a sheet of glass, which would cause problems with
refraction and unwanted reflections. Instead the object is held in
place using a sparse grid made of thin fishing line. Pixels that are
affected by the lines could be masked out in the optimization loss
and filled in from other cameras, but in this paper we have simply
used the complete images directly.

Number of lights and cameras. For each point on the surface,
we need to infer displacement, per-layer volume parameters, and
surface roughness on two sides; a fundamental design question is
how many views and how many illumination conditions per view
are needed. We use three cameras: two on the front, which provide
the ability to triangulate the height and additional views of specular
reflections (which are typically stronger on the front side of leaves),
plus one on the back. One extra camera is placed on the front only
for the geometry reconstruction purpose and collecting data for
validation. Since the object is translucent, lighting it from either
side gives useful data from cameras on both sides. We use a set
of lights that are turned on one by one, so we obtain three RGB
measurements per camera, per light.

Our system uses 11 lights, 6 on the front and 5 on the back,
which are positioned to provide a range of illuminations including
specular, near-retroreflection, and grazing angles. This provides in
total 33 RGB measurements per surface position, which provides
sufficient redundancy over the 13 spatially varying parameters of
the two-layered model used in our results.
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with long scattering paths, even using state-of-the-art di�erentiation
frameworks on powerful GPUs.

Sec. 6 details how we greatly improve the convergence of the
optimization by �rst solving a sequence of easier �tting problems
to obtain a good starting point for optimizing the full model, and
Sec. 5.4 introduces a new pre-integration technique to improve the
per-iteration performance.

4 ACQUISITION
Our acquisition system, which can be seen in Fig. 2(a) is meant
to rapidly capture enough image data to su�ciently constrain the
parameters of our appearance model. This requires observations of
both sides of the surface under illumination from both sides, with
enough viewing and illumination directions to observe the 3D shape
and the non-di�use re�ection and transmission. In this section we
describe the design considerations and summarize the procedures
for calibration and data processing.

4.1 System Design
In our system the measurement sample must be held in place while
being illuminated and photographed from both sides. The samples
we measure are typically �exible and lightweight; this makes the sys-
tem prone to problems with vibration, but also makes it unnecessary
to have a very rigid support for the sample.

Considerations of vibration and cost/complexity led us to a design
with no moving parts, but instead a set of �xed cameras and lights.
With no vibration in the system, we decided not to use a rigid
support such as a sheet of glass, which would cause problems with
refraction and unwanted re�ections. Instead the object is held in
place using a sparse grid made of thin �shing line. Pixels that are
a�ected by the lines could be masked out in the optimization loss
and �lled in from other cameras, but in this paper we have simply
used the complete images directly.

Number of lights and cameras. For each point on the surface,
we need to infer displacement, per-layer volume parameters, and
surface roughness on two sides; a fundamental design question is
how many views and how many illumination conditions per view
are needed. We use three cameras: two on the front, which provide
the ability to triangulate the height and additional views of specular
re�ections (which are typically stronger on the front side of leaves),
plus one on the back. One extra camera is placed on the front only
for the geometry reconstruction purpose and collecting data for
validation. Since the object is translucent, lighting it from either
side gives useful data from cameras on both sides. We use a set
of lights that are turned on one by one, so we obtain three RGB
measurements per camera, per light.

Our system uses 11 lights, 6 on the front and 5 on the back,
which are positioned to provide a range of illuminations including
specular, near-retrore�ection, and grazing angles. This provides in
total 33 RGB measurements per surface position, which provides
su�cient redundancy over the 13 spatially varying parameters of
the two-layered model used in our results.

Hardware. We use 5MP RGB cameras from Allied Vision (Alvium
1800 U-500C), paired with Fujinon 9mm lenses providing a �eld of
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Fig. 3. BTDFs from leaf measurements [Roth 2020] (first and third rows)
compared against fits with the basic and position-free appearance models
(second and fourth rows). The data shows non-di�use transmi�ance, and
the di�use transmi�ance assumption of the basic model is inadequate. The
position-free model fits the data much be�er.

view around 30�. With this setup, we are able to completely measure
samples with dimensions of up to 10cm ⇥ 11cm. The light sources
are chip-on-board LED arrays, each acting as a 6.0mm diameter
circular Lambertian source.

4.2 Image Processing
For each exposure we capture an exposure series, beginning with a
2s exposure time and successively halving the time until no pixels
are saturated. Including waiting time for camera synchronization
the full capture sequence takes approximately 25 minutes for 52
high dynamic range images. The cameras record 10-bit one-channel
images in a Bayer color pattern; we use standard methods to merge
the exposures into a �oating-point high dynamic range (HDR) image,
then demosaic the image in the HDR domain using the adaptive
homogeneity-directed (AHD) algorithm [Hirakawa and Parks 2003].

The resulting image is in the color space of the camera sensor,
and we apply white balancing and a color matrix transformation,
using parameters determined during calibration, to transform into
the linear sRGB color space.

5 APPEARANCE MODELS

5.1 Calibration
The calibration of our measurement setup involves determining
the camera intrinsics, the 3D poses of all the cameras and sources
relative to the object plane, the color characteristics of the cameras,
and the intensities of the light sources.

Camera intrinsics calibration was carried out using the OpenCV
camera calibration toolkit. The locations of the light sources and of
a number of reference points within the apparatus were determined
by photographing a collection of Aruco markers using a mobile
phone camera and running a bundle adjustment using OpenCV. A
subset of those markers visible to each camera was used to calibrate
that camera’s pose, and a subset of the markers located on the ap-
proximate object plane were used to establish coordinates centered
on that plane. (The object plane does not need to be located exactly
because it is only a reference plane for displacement and the object
surface need not be exactly in this plane.)

A gray card was photographed in several orientations so that
it was seen by each camera and illuminated by each source. The
pixel intensities in these images were used to establish per-camera
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Fig. 3. BTDFs from leaf measurements [Roth 2020] (first and third rows)
compared against fits with the basic and position-free appearance models
(second and fourth rows). The data shows non-diffuse transmittance, and
the diffuse transmittance assumption of the basic model is inadequate. The
position-free model fits the data much better.

Hardware. We use 5MP RGB cameras from Allied Vision (Alvium
1800 U-500C), paired with Fujinon 9mm lenses providing a field of
view around 30◦. With this setup, we are able to completely measure
samples with dimensions of up to 10cm × 11cm. The light sources
are chip-on-board LED arrays, each acting as a 6.0mm diameter
circular Lambertian source.

4.2 Image Processing
For each exposure we capture an exposure series, beginning with a
2s exposure time and successively halving the time until no pixels
are saturated. Including waiting time for camera synchronization
the full capture sequence takes approximately 25 minutes for 52
high dynamic range images. The cameras record 10-bit one-channel
images in a Bayer color pattern; we use standard methods to merge
the exposures into a floating-point high dynamic range (HDR) image,
then demosaic the image in the HDR domain using the adaptive
homogeneity-directed (AHD) algorithm [Hirakawa and Parks 2003].

The resulting image is in the color space of the camera sensor,
and we apply white balancing and a color matrix transformation,
using parameters determined during calibration, to transform into
the linear sRGB color space.

5 APPEARANCE MODELS

5.1 Calibration
The calibration of our measurement setup involves determining
the camera intrinsics, the 3D poses of all the cameras and sources
relative to the object plane, the color characteristics of the cameras,
and the intensities of the light sources.

Camera intrinsics calibration was carried out using the OpenCV
camera calibration toolkit. The locations of the light sources and of
a number of reference points within the apparatus were determined
by photographing a collection of Aruco markers using a mobile
phone camera and running a bundle adjustment using OpenCV. A
subset of those markers visible to each camera was used to calibrate
that camera’s pose, and a subset of the markers located on the ap-
proximate object plane were used to establish coordinates centered
on that plane. (The object plane does not need to be located exactly
because it is only a reference plane for displacement and the object
surface need not be exactly in this plane.)
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Fig. 4. Illustrating a path sample z in the position-free layered BSDF for-
mulation. The transmittances of tk−1 and tk (shown in orange) are pre-
integrated.

A gray card was photographed in several orientations so that
it was seen by each camera and illuminated by each source. The
pixel intensities in these images were used to establish per-camera
and per-light scale factors that correct for camera sensitivity and
light intensity so that pixel values can be interpreted as radiance
measurements relative to a unit source intensity.

Photographs of the Macbeth Color Checker test chart were used to
obtain color balancing factors and a camera-to-sRGB transformation
matrix for each camera.

In this section, we will introduce two appearance models we
use in the inverse rendering process: the basic two-sided SVBSDF
model and the position-free layered model [Guo et al. 2018] (see
Fig. 2 for a schematic illustration) and will discuss the parameter
conversion between the two models for initializing the layered
model. In addition, we propose a modification to the position-free
layered model by pre-integraing one dimension of distance sampling,
which can significantly improve the rendering efficiency.

5.2 Two-Sided SVBSDF Model
To represent the different appearances of an object when viewing
it from opposite sides, our simple two-sided SVBSDF model (illus-
trated in Fig. 2(c)) consists of two opaque reflectance layers, and
each reflectance layer has a Lambertian diffuse lobe and a glossy
GGX lobe [Walter et al. 2007]. In addition, we add a Lambertian
transmission lobe in the middle to handle translucency. Given a
point x, the incident direction ωi , and the outgoing direction ωo ,
our two-sided SVBSDF

Fs (x,ωi ,ωo ) =


w front

D f front
D + f front

GGX +wT fT, cosωi > 0,

wback
D f back

D + f back
GGX +wT fT, cosωi < 0,

(1)

where f front
D , f front

GGX , f back
D , f back

GGX , and fT are SVBRDFs or SVBTDFs
(their input parameters x, ωi , and ωo are omitted in the equation),
and the accompanying BSDF lobe weightsw front

D ,wback
D andwT con-

tain the residual energy of the GGX lobe on which we apply energy
correction [Turquin 2019] to avoid darkening. A similar SVBSDF
formulation has been used for modeling leaf appearance [Bousquet
et al. 2005; Wang et al. 2005].

5.3 Position-Free Layered Model
The major weakness of our basic two-sided surface model is its crude
approximation of translucency and multiple scattering. A more accu-
rate appearance model is the physically based position-free layered
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Fig. 4. Illustrating a path sample z in the position-free layered BSDF for-
mulation. The transmi�ances of tk�1 and tk (shown in orange) are pre-
integrated.

and per-light scale factors that correct for camera sensitivity and
light intensity so that pixel values can be interpreted as radiance
measurements relative to a unit source intensity.

Photographs of the Macbeth Color Checker test chart were used to
obtain color balancing factors and a camera-to-sRGB transformation
matrix for each camera.

In this section, we will introduce two appearance models we
use in the inverse rendering process: the basic two-sided SVBSDF
model and the position-free layered model [Guo et al. 2018] (see
Fig. 2 for a schematic illustration) and will discuss the parameter
conversion between the two models for initializing the layered
model. In addition, we propose a modi�cation to the position-free
layered model by pre-integraing one dimension of distance sampling,
which can signi�cantly improve the rendering e�ciency.

5.2 Two-Sided SVBSDF Model
To represent the di�erent appearances of an object when viewing
it from opposite sides, our simple two-sided SVBSDF model (illus-
trated in Fig. 2(c)) consists of two opaque re�ectance layers, and
each re�ectance layer has a Lambertian di�use lobe and a glossy
GGX lobe [Walter et al. 2007]. In addition, we add a Lambertian
transmission lobe in the middle to handle translucency. Given a
point x, the incident direction �i , and the outgoing direction �o ,
our two-sided SVBSDF

Fs (x,�i ,�o ) =

8>>><>>>:
w front

D f front
D + f front

GGX +wT fT, cos�i > 0,

wback
D f back

D + f back
GGX +wT fT, cos�i < 0,

(1)

where f front
D , f front

GGX , f back
D , f back

GGX , and fT are SVBRDFs or SVBTDFs
(their input parameters x, �i , and �o are omitted in the equation),
and the accompanying BSDF lobe weightsw front

D ,wback
D andwT con-

tain the residual energy of the GGX lobe on which we apply energy
correction [Turquin 2019] to avoid darkening. A similar SVBSDF
formulation has been used for modeling leaf appearance [Bousquet
et al. 2005; Wang et al. 2005].

5.3 Position-Free Layered Model
The major weakness of our basic two-sided surface model is its crude
approximation of translucency and multiple scattering. A more accu-
rate appearance model is the physically based position-free layered
model [Guo et al. 2018] because it simulates light transport within
the object in an unbiased way. Its only assumption is that the light
entrance and exiting locations are the same, which is approximately

Fig. 5. Results of pre-integration for one dimension in single sca�ering. From
le� to right: Reference, position-free model and pre-integrated position-free
model, showing the lower hemisphere for an incident direction in the upper
hemisphere, both computed with 100 samples/pixel. Note the reduction in
noise compared to the non-integrated version.

true when the surface is thin geometrically. Our position-free lay-
ered model consists of two dielectric interfaces on the front and
the back side of a surface and two volumetric layers in between
(shown in Fig. 2(d)). The dielectric layers have spatially homoge-
neous roughness values, and the volumetric layers have spatially
varying single-scattering albedo c and extinction coe�cients �t .

Given a point x and a pair of directions �i and �o , the layered
BSDF Fp (x,�i ,�o ) aggregates the light scattering inside layers,
which can be formulated as an integral over light paths z:

Fp (x,�i ,�o ) =

Z
f (z)dµ (z), (2)

where a path sample z is de�ned by a sequence of distance t and
directions �, i.e., z = (�i ,�1, t1, . . . ,�k , tk ,�o ) as shown in Fig. 4,
and f is the measurement contribution function:

f (z) = � (�i ,�1)� (�k ,�o )Tr(tk )
k�1Y

i=1
� (�i ,�i+1)Tr(ti ). (3)

The scattering function � is either a BSDF or a phase function,
depending on the current depth inside the layers, and Tr is the
transmittance function in volumetric rendering. For simplicity in
this formulation, rays passing between the layers are handled with
a null-scattering event represented by a delta phase function. The
position-free layered BSDF Fp can be estimated using Monte Carlo
integration, and we use the unidirectional path tracing to sample.

5.4 Pre-Integrating One Dimension of Distance
The noise introduced by the Monte Carlo estimation of the position-
free layered model poses additional challenges in forward and in-
verse rendering. To reduce noise, we reformulate the integration
and improve the estimation e�ciency with negligible computational
cost. The idea is to analytically pre-integrate the last distance sam-
pling dimension along the ray, and then to replace the innermost
integral over the two exponential terms in transmittance with a
closed-form solution, which turns out to be another exponential
term weighted by direction cosines (see Fig. 4).

By expanding Eq. (2) and rearranging the integrals, we have

Fp (x,�i ,�o ) = ID

Z r1

0
· · ·
Z rk�1

0

kY

i=1
Tr(ti )dtk�1 · · · dt1, (4)

with ID =
R

S · · ·
R

S � (�i ,�1)� (�k ,�o )
Qk�1

i=1 � (�i ,�i+1)d�k · · · d�1,
S is the solid angle domain for directional samples and ri is the dis-
tance between point zi and the surface boundary along the direction
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Fig. 5. Results of pre-integration for one dimension in single scattering. From
left to right: Reference, position-free model and pre-integrated position-free
model, showing the lower hemisphere for an incident direction in the upper
hemisphere, both computed with 100 samples/pixel. Note the reduction in
noise compared to the non-integrated version.

model [Guo et al. 2018] because it simulates light transport within
the object in an unbiased way. Its only assumption is that the light
entrance and exiting locations are the same, which is approximately
true when the surface is thin geometrically. Our position-free lay-
ered model consists of two dielectric interfaces on the front and
the back side of a surface and two volumetric layers in between
(shown in Fig. 2(d)). The dielectric layers have spatially homoge-
neous roughness values, and the volumetric layers have spatially
varying single-scattering albedo c and extinction coefficients σt .

Given a point x and a pair of directions ωi and ωo , the layered
BSDF Fp (x,ωi ,ωo ) aggregates the light scattering inside layers,
which can be formulated as an integral over light paths z:

Fp (x,ωi ,ωo ) =

∫
f (z)dµ (z), (2)

where a path sample z is defined by a sequence of distance t and
directions ϕ, i.e., z = (ωi ,ϕ1, t1, . . . ,ϕk , tk ,ωo ) as shown in Fig. 4,
and f is the measurement contribution function:

f (z) = ρ (ωi ,ϕ1)ρ (ϕk ,ωo )Tr(tk )
k−1∏

i=1
ρ (ϕi ,ϕi+1)Tr(ti ). (3)

The scattering function ρ is either a BSDF or a phase function,
depending on the current depth inside the layers, and Tr is the
transmittance function in volumetric rendering. For simplicity in
this formulation, rays passing between the layers are handled with
a null-scattering event represented by a delta phase function. The
position-free layered BSDF Fp can be estimated using Monte Carlo
integration, and we use the unidirectional path tracing to sample.

5.4 Pre-Integrating One Dimension of Distance
The noise introduced by the Monte Carlo estimation of the position-
free layered model poses additional challenges in forward and in-
verse rendering. To reduce noise, we reformulate the integration
and improve the estimation efficiency with negligible computational
cost. The idea is to analytically pre-integrate the last distance sam-
pling dimension along the ray, and then to replace the innermost
integral over the two exponential terms in transmittance with a
closed-form solution, which turns out to be another exponential
term weighted by direction cosines (see Fig. 4).

By expanding Eq. (2) and rearranging the integrals, we have

Fp (x,ωi ,ωo ) = ID

∫ r1

0
· · ·
∫ rk−1

0

k∏

i=1
Tr(ti )dtk−1 · · · dt1, (4)
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with ID =
∫
S · · ·

∫
S ρ (ωi ,ϕ1)ρ (ϕk ,ωo )

∏k−1
i=1 ρ (ϕi ,ϕi+1)dϕk · · · dϕ1,

S is the solid angle domain for directional samples and ri is the dis-
tance between point zi and the surface boundary along the direction
ϕi . where a = |cosθ | is the absolute cosine value between ϕk and
the surface normal. After rearranging Eq. (4), we get

∫ r1

0
· · ·
∫ rk−2

0

k−2∏

i=1
Tr(ti )Ik−1dtk−2 · · · dt1, (5)

where Ik−1 =
∫ rk−1

0 Tr(tk−1)Tr(tk )dtk−1 and it equals to


Tr(rk−1/ak )ak−1
σt (ak−ak−1 )

(1.0 − Tr(σt /ak−1 − σt /ak )), ↑↑ ,
Tr(ζ −rk−1ak /ak )ak−1

σt (ak+ak−1 )
(1.0 − Tr(σt /ak−1 + σt /ak )), ↑↓ ,

(6)

where ζ is the depth of the layer. This will give us an integral with
one fewer dimension:

Fp (x,ωi ,ωo ) = ID

∫ r1

0
· · ·
∫ rk−2

0
Ik−1

k−2∏

i=1
Tr(ti )dtk−2 · · · dt1

In theory, one can pre-integrate all the distance dimensions,
and Bitterli and d’Eon [2022] have shown that the transmittance
term can be estimated as a sum of exponential terms. However,
this is limited to a single-layer configuration, and the performance
degrades after ten bounces in our experiments. Since we want to
keep the computation vectorizable for any path inside any layer
for multiple bounces, as well as keeping the computational graph
simple enough for differentiable rendering, our 1D pre-integration
works best in our scenario.

5.5 Parameter Conversion
In our optimization we use the strategy of fitting a basic two-sided
surface model and using the result to initialize the position-free
layered model. These models use different input parameters: the
basic one uses diffuse reflectance and diffuse transmittance whereas
the position-free model needs c and σt as input. We achieve this by
computing values of c andσt that will result in the diffuse reflectance
computed in the first phase.

As can be seen in Fig. 6, directly interpreting the diffuse re-
flectance albedo as the volumetric single-scattering albedo leads to
an appearance that depends on surface roughness, IOR, and phase
function, and is generally a poor fit. Instead, we utilize an albedo
mapping scheme [d’Eon 2022] that is commonly used in content
production. Note that we do not need to convert the surface rough-
ness or IOR of the GGX BRDF, because in this case the same model
is shared by both phases.

6 OPTIMIZATION
Our inverse-rendering optimization relies on physically based differ-
entiable rendering [Zhang et al. 2020] to estimate derivatives with
respect to shape and material parameters. Due to the large num-
ber of unknown parameters, the ill conditioned nature of volume
parameter inversion, and the Monte Carlo noise from derivative
estimation, our optimization problem is quite prone to difficulties
with convergence in practice, To make the optimization tractable,
we reconstruct the shape and material of a thin translucent object in
three steps. We first optimize the shape of the target object (Sec. 6)

Fig. 6. Mapping reflectance to scattering albedo. The diffuse reflectance tex-
ture fit in the first reflectance optimization phase (left) contains information
about the volumetric single-scattering albedo, but the reflectance values
are far from the optimum scattering albedo (right). Our albedo mapping
step computes a scattering albedo texture (center) that is much closer to the
optimum, making it a good starting point for the final optimization phase.
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Fig. 6. Mapping reflectance to sca�ering albedo. The di�use reflectance tex-
ture fit in the first reflectance optimization phase (le�) contains information
about the volumetric single-sca�ering albedo, but the reflectance values
are far from the optimum sca�ering albedo (right). Our albedo mapping
step computes a sca�ering albedo texture (center) that is much closer to the
optimum, making it a good starting point for the final optimization phase.

�i . where a = |cos� | is the absolute cosine value between �k and
the surface normal. After rearranging Eq. (4), we get

Z r1

0
· · ·
Z rk�2

0

k�2Y

i=1
Tr(ti )Ik�1dtk�2 · · · dt1, (5)

where Ik�1 =
R rk�1

0 Tr(tk�1)Tr(tk )dtk�1 and it equals to

8>><>>:
Tr(rk�1/ak )ak�1
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Tr(� �rk�1ak /ak )ak�1
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where � is the depth of the layer. This will give us an integral with
one fewer dimension:

Fp (x,�i ,�o ) = ID

Z r1

0
· · ·
Z rk�2

0
Ik�1

k�2Y

i=1
Tr(ti )dtk�2 · · · dt1

In theory, one can pre-integrate all the distance dimensions,
and Bitterli and d’Eon [2022] have shown that the transmittance
term can be estimated as a sum of exponential terms. However,
this is limited to a single-layer con�guration, and the performance
degrades after ten bounces in our experiments. Since we want to
keep the computation vectorizable for any path inside any layer
for multiple bounces, as well as keeping the computational graph
simple enough for di�erentiable rendering, our 1D pre-integration
works best in our scenario.

5.5 Parameter Conversion
In our optimization we use the strategy of �tting a basic two-sided
surface model and using the result to initialize the position-free
layered model. These models use di�erent input parameters: the
basic one uses di�use re�ectance and di�use transmittance whereas
the position-free model needs c and �t as input. We achieve this by
computing values of c and�t that will result in the di�use re�ectance
computed in the �rst phase.

As can be seen in Fig. 6, directly interpreting the di�use re-
�ectance albedo as the volumetric single-scattering albedo leads to
an appearance that depends on surface roughness, IOR, and phase
function, and is generally a poor �t. Instead, we utilize an albedo
mapping scheme [d’Eon 2022] that is commonly used in content
production. Note that we do not need to convert the surface rough-
ness or IOR of the GGX BRDF, because in this case the same model
is shared by both phases.

Mask 3D edge points Init Result Rendering

Fig. 7. Phases of geometry reconstruction. Le� to right: one input image
with its foreground mask; the 3D edge points colored by height; the smooth
initial displacement map; the optimized displacement map; and the render-
ing matching the le� image.

6 OPTIMIZATION
Our inverse-rendering optimization relies on physically based di�er-
entiable rendering [Zhang et al. 2020] to estimate derivatives with
respect to shape and material parameters. Due to the large num-
ber of unknown parameters, the ill conditioned nature of volume
parameter inversion, and the Monte Carlo noise from derivative
estimation, our optimization problem is quite prone to di�culties
with convergence in practice, To make the optimization tractable,
we reconstruct the shape and material of a thin translucent object in
three steps. We �rst optimize the shape of the target object (??) and
�x it afterward. Then, we optimize the material parameters of our
basic two-sided SVBSDF model. Finally, we solve for the volumetric
material parameters of our position-free layered model, using the
SVBSDF parameters for initialization (Sec. 5.5). We discuss the loss
functions we use in Sec. 6.2.

6.1 Geometry Optimization
Correctly modeling the deviation of our object from a planar surface
is important to avoid misregistration and inaccurate shading, as
shown in Fig. 7. Since our objects are overall nearly planar, we
take a 2.5D approach and use a displacement map to represent the
object’s surface, implemented by displacing the vertices of a regular
mesh in the x-� plane only along the z-direction. This reduces the
number of unknown geometry parameters compared to optimizing
the 3D vertex positions, avoiding unwanted tangential motion and
improving convergence.

In practice it is important to start the geometry optimization with
a reasonable estimate of the geometry, particularly around the edges
of the object. Since our input includes foreground masks that accu-
rately locate the edges in image space, we use the three front views
in a simple multi-view triangulation method to estimate the height
at the edge. Speci�cally, we use edge detection on the masks to
locate the edge, and then for each edge pixel in one view we search
for edges along the epipolar lines in the other two views. Where all
three images �nd edges consistent with a 3D point, we use the cor-
responding depth. We project the 3D boundary to the displacement
base surface and solve a Laplace equation to �nd a smooth initial
displacement map that is consistent with the reconstructed heights
at the edge. We use this map to project the foreground masks and
derive a consensus mask that is used to de�ne the edges of the
surface during optimization.

Starting from this initialization, we optimize the displacement
map using the “large steps” preconditioner (Nicolet et al. [2021]).
This phase produces as output a single one-channel displacement
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Fig. 7. Phases of geometry reconstruction. Left to right: one input image
with its foreground mask; the 3D edge points colored by height; the smooth
initial displacement map; the optimized displacement map; and the render-
ing matching the left image.

and fix it afterward. Then, we optimize the material parameters
of our basic two-sided SVBSDF model. Finally, we solve for the
volumetric material parameters of our position-free layered model,
using the SVBSDF parameters for initialization (Sec. 5.5). We discuss
the loss functions we use in Sec. 6.2.

6.1 Geometry Optimization
Correctly modeling the deviation of our object from a planar surface
is important to avoid misregistration and inaccurate shading, as
shown in Fig. 7. Since our objects are overall nearly planar, we
take a 2.5D approach and use a displacement map to represent the
object’s surface, implemented by displacing the vertices of a regular
mesh in the x-y plane only along the z-direction. This reduces the
number of unknown geometry parameters compared to optimizing
the 3D vertex positions, avoiding unwanted tangential motion and
improving convergence.

In practice it is important to start the geometry optimization with
a reasonable estimate of the geometry, particularly around the edges
of the object. Since our input includes foreground masks that accu-
rately locate the edges in image space, we use the three front views
in a simple multi-view triangulation method to estimate the height
at the edge. Specifically, we use edge detection on the masks to
locate the edge, and then for each edge pixel in one view we search
for edges along the epipolar lines in the other two views. Where all
three images find edges consistent with a 3D point, we use the cor-
responding depth. We project the 3D boundary to the displacement
base surface and solve a Laplace equation to find a smooth initial
displacement map that is consistent with the reconstructed heights
at the edge. We use this map to project the foreground masks and
derive a consensus mask that is used to define the edges of the
surface during optimization.
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Fig. 8. Sensitivity and convergence analysis for fi�ing albedo and extinction coe�icient textures. (a) We analyzed the sensitivity of the parameters to errors in
the measurements using (A) `2 loss, (B) `2 loss over tone-mapped images, and (C) our variance-weighted `2 loss. With loss (A) the albedo is highly sensitive to
views (7, 8, 15), and with loss (B) the extinction coe�icient is highly sensitive to views (6, 17, 25). Loss (C) has low and balanced sensitivity to the inputs. We
also show the mean and maximum intensity in each view, revealing that bright pixels are sometimes but not always associated with high sensitivity to noise.
(b-c) We ran optimizations with the three losses, showing that losses (A) and (B) get stuck in local minima with high error, while loss (C) finds a good solution.
The worst and best optimization performance are associated with the highest and lowest variation in sensitivity.

texture and coarse roughness and re�ectance values for the basic
model.

Our material optimization consists of two stages. For the �rst
stage, we use our basic two-sided SVBSDF model. The goal is to
�nd a set of surface re�ectance and transmission parameters that
result in a reasonable appearance match, so that they can be used
for initializing the position-free layered model to further improve
the reconstruction quality. During this stage, we keep the shape
�xed and only optimize the material parameters, and all the training
view-light pairs are used (except any that are held out as a test set
as discussed in Sec. 7). This process converges quickly and produces
texture maps for front and back di�use re�ectance and for di�use
transmittance, along with single parameters for front roughness,
back roughness, and index of refraction. Then, we switch from the
basic model to our position-free layered model by converting the
re�ectance maps to the spatially varying single-scattering albedo
as described in Sec. 5.5.

6.2 Loss Functions
In constructing photometric loss functions for use with high dy-
namic range images, care is needed to balance the in�uence of bright
and dark pixels. To study the choice of loss function, we performed a
sensitivity analysis, shown in Fig. 8. By analyzing the loss derivative
at the converged solution in a simple synthetic �tting problem with
constant albedo and transmittance, we computed the sensitivity
of each of these parameters on all the pixel values. We repeated
this for each of three candidate losses: a standard `2 loss, an `2 loss
computed on tonemapped images, and an `2 loss weighted by the
inverse of the per-pixel variance of the rendered image. Fig. 8(a)
shows that in both the `2 loss and in the tonemapped loss, the
parameters are highly sensitive to pixel values in certain images,
whereas with our weighted loss the sensitivity is well balanced. This
advantage plays out in the optimization results shown in (b) and (c),
where the optimization with our loss converges faster and to lower
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Fig. 9. We validate the optimization on synthetic data to reconstruct optical
properties of the layers. The camera and light setup is the same as for the
real system. In the third row, we color code the relative root mean square
error between the reference and reconstructed data. Both measurements
and parameter values are reconstructed with good quality.

residuals than with the other losses. For these reasons we use the
variance-weighted loss in all the results shown in this paper.

We also apply the total variation loss for smoother texture maps,
as well as a range loss to limit the parameters to physically mean-
ingful ranges. Note that at high roughness value (> 0.5) the GGX
lobe has signi�cant energy loss, which makes the energy correction
mentioned in Sec. 5.2 necessary to prevent the optimization from
over-�tting dark views.

7 EXPERIMENTS
We implement our di�erentiable rendering pipeline in the PSDR
framework [Zhang et al. 2020] using Dr.Jit [Jakob et al. 2022]. The
derivative of our appearance models (i.e., @Fs/@� and @Fp/@� ) can
be computed using automatic di�erentiation. To capture multiple
scattering, we set the maximum path length to 32 in all experiments.
The PSDR method handles di�erentiating cast shadows, which are
signi�cant for grazing illumination when objects are signi�cantly
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Fig. 8. Sensitivity and convergence analysis for fitting albedo and extinction coefficient textures. (a) We analyzed the sensitivity of the parameters to errors in
the measurements using (A) ℓ2 loss, (B) ℓ2 loss over tone-mapped images, and (C) our variance-weighted ℓ2 loss. With loss (A) the albedo is highly sensitive to
views (7, 8, 15), and with loss (B) the extinction coefficient is highly sensitive to views (6, 17, 25). Loss (C) has low and balanced sensitivity to the inputs. We
also show the mean and maximum intensity in each view, revealing that bright pixels are sometimes but not always associated with high sensitivity to noise.
(b-c) We ran optimizations with the three losses, showing that losses (A) and (B) get stuck in local minima with high error, while loss (C) finds a good solution.
The worst and best optimization performance are associated with the highest and lowest variation in sensitivity.

Starting from this initialization, we optimize the displacement
map using the “large steps” preconditioner (Nicolet et al. [2021]).
This phase produces as output a single one-channel displacement
texture and coarse roughness and reflectance values for the basic
model.

Our material optimization consists of two stages. For the first
stage, we use our basic two-sided SVBSDF model. The goal is to
find a set of surface reflectance and transmission parameters that
result in a reasonable appearance match, so that they can be used
for initializing the position-free layered model to further improve
the reconstruction quality. During this stage, we keep the shape
fixed and only optimize the material parameters, and all the training
view-light pairs are used (except any that are held out as a test set
as discussed in Sec. 7). This process converges quickly and produces
texture maps for front and back diffuse reflectance and for diffuse
transmittance, along with single parameters for front roughness,
back roughness, and index of refraction. Then, we switch from the
basic model to our position-free layered model by converting the
reflectance maps to the spatially varying single-scattering albedo
as described in Sec. 5.5.

6.2 Loss Functions
In constructing photometric loss functions for use with high dy-
namic range images, care is needed to balance the influence of bright
and dark pixels. To study the choice of loss function, we performed a
sensitivity analysis, shown in Fig. 8. By analyzing the loss derivative
at the converged solution in a simple synthetic fitting problem with
constant albedo and transmittance, we computed the sensitivity
of each of these parameters on all the pixel values. We repeated
this for each of three candidate losses: a standard ℓ2 loss, an ℓ2 loss
computed on tonemapped images, and an ℓ2 loss weighted by the
inverse of the per-pixel variance of the rendered image. Fig. 8(a)
shows that in both the ℓ2 loss and in the tonemapped loss, the
parameters are highly sensitive to pixel values in certain images,
whereas with our weighted loss the sensitivity is well balanced. This
advantage plays out in the optimization results shown in (b) and (c),
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also show the mean and maximum intensity in each view, revealing that bright pixels are sometimes but not always associated with high sensitivity to noise.
(b-c) We ran optimizations with the three losses, showing that losses (A) and (B) get stuck in local minima with high error, while loss (C) finds a good solution.
The worst and best optimization performance are associated with the highest and lowest variation in sensitivity.

texture and coarse roughness and re�ectance values for the basic
model.

Our material optimization consists of two stages. For the �rst
stage, we use our basic two-sided SVBSDF model. The goal is to
�nd a set of surface re�ectance and transmission parameters that
result in a reasonable appearance match, so that they can be used
for initializing the position-free layered model to further improve
the reconstruction quality. During this stage, we keep the shape
�xed and only optimize the material parameters, and all the training
view-light pairs are used (except any that are held out as a test set
as discussed in Sec. 7). This process converges quickly and produces
texture maps for front and back di�use re�ectance and for di�use
transmittance, along with single parameters for front roughness,
back roughness, and index of refraction. Then, we switch from the
basic model to our position-free layered model by converting the
re�ectance maps to the spatially varying single-scattering albedo
as described in Sec. 5.5.

6.2 Loss Functions
In constructing photometric loss functions for use with high dy-
namic range images, care is needed to balance the in�uence of bright
and dark pixels. To study the choice of loss function, we performed a
sensitivity analysis, shown in Fig. 8. By analyzing the loss derivative
at the converged solution in a simple synthetic �tting problem with
constant albedo and transmittance, we computed the sensitivity
of each of these parameters on all the pixel values. We repeated
this for each of three candidate losses: a standard `2 loss, an `2 loss
computed on tonemapped images, and an `2 loss weighted by the
inverse of the per-pixel variance of the rendered image. Fig. 8(a)
shows that in both the `2 loss and in the tonemapped loss, the
parameters are highly sensitive to pixel values in certain images,
whereas with our weighted loss the sensitivity is well balanced. This
advantage plays out in the optimization results shown in (b) and (c),
where the optimization with our loss converges faster and to lower
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Fig. 9. We validate the optimization on synthetic data to reconstruct optical
properties of the layers. The camera and light setup is the same as for the
real system. In the third row, we color code the relative root mean square
error between the reference and reconstructed data. Both measurements
and parameter values are reconstructed with good quality.

residuals than with the other losses. For these reasons we use the
variance-weighted loss in all the results shown in this paper.

We also apply the total variation loss for smoother texture maps,
as well as a range loss to limit the parameters to physically mean-
ingful ranges. Note that at high roughness value (> 0.5) the GGX
lobe has signi�cant energy loss, which makes the energy correction
mentioned in Sec. 5.2 necessary to prevent the optimization from
over-�tting dark views.

7 EXPERIMENTS
We implement our di�erentiable rendering pipeline in the PSDR
framework [Zhang et al. 2020] using Dr.Jit [Jakob et al. 2022]. The
derivative of our appearance models (i.e., @Fs/@� and @Fp/@� ) can
be computed using automatic di�erentiation. To capture multiple
scattering, we set the maximum path length to 32 in all experiments.
The PSDR method handles di�erentiating cast shadows, which are
signi�cant for grazing illumination when objects are signi�cantly
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Fig. 8. Sensitivity and convergence analysis for fitting albedo and extinction coefficient textures. (a) We analyzed the sensitivity of the parameters to errors in
the measurements using (A) ℓ2 loss, (B) ℓ2 loss over tone-mapped images, and (C) our variance-weighted ℓ2 loss. With loss (A) the albedo is highly sensitive to
views (7, 8, 15), and with loss (B) the extinction coefficient is highly sensitive to views (6, 17, 25). Loss (C) has low and balanced sensitivity to the inputs. We
also show the mean and maximum intensity in each view, revealing that bright pixels are sometimes but not always associated with high sensitivity to noise.
(b-c) We ran optimizations with the three losses, showing that losses (A) and (B) get stuck in local minima with high error, while loss (C) finds a good solution.
The worst and best optimization performance are associated with the highest and lowest variation in sensitivity.

texture and coarse roughness and reflectance values for the basic
model.

Our material optimization consists of two stages. For the first
stage, we use our basic two-sided SVBSDF model. The goal is to
find a set of surface reflectance and transmission parameters that
result in a reasonable appearance match, so that they can be used
for initializing the position-free layered model to further improve
the reconstruction quality. During this stage, we keep the shape
fixed and only optimize the material parameters, and all the training
view-light pairs are used (except any that are held out as a test set
as discussed in Sec. 7). This process converges quickly and produces
texture maps for front and back diffuse reflectance and for diffuse
transmittance, along with single parameters for front roughness,
back roughness, and index of refraction. Then, we switch from the
basic model to our position-free layered model by converting the
reflectance maps to the spatially varying single-scattering albedo
as described in Sec. 5.5.

6.2 Loss Functions
In constructing photometric loss functions for use with high dy-
namic range images, care is needed to balance the influence of bright
and dark pixels. To study the choice of loss function, we performed a
sensitivity analysis, shown in Fig. 8. By analyzing the loss derivative
at the converged solution in a simple synthetic fitting problem with
constant albedo and transmittance, we computed the sensitivity
of each of these parameters on all the pixel values. We repeated
this for each of three candidate losses: a standard ℓ2 loss, an ℓ2 loss
computed on tonemapped images, and an ℓ2 loss weighted by the
inverse of the per-pixel variance of the rendered image. Fig. 8(a)
shows that in both the ℓ2 loss and in the tonemapped loss, the
parameters are highly sensitive to pixel values in certain images,
whereas with our weighted loss the sensitivity is well balanced. This
advantage plays out in the optimization results shown in (b) and (c),
where the optimization with our loss converges faster and to lower
residuals than with the other losses. For these reasons we use the
variance-weighted loss in all the results shown in this paper.

Re
co

ns
t.

Re
fe

re
nc

e.
Re

lM
SE

:0
.03

5

Measurements Parameters

0.0320.014

Fig. 9. We validate the optimization on synthetic data to reconstruct optical
properties of the layers. The camera and light setup is the same as for the
real system. In the third row, we color code the relative root mean square
error between the reference and reconstructed data. Both measurements
and parameter values are reconstructed with good quality.

We also apply the total variation loss for smoother texture maps,
as well as a range loss to limit the parameters to physically mean-
ingful ranges. Note that at high roughness value (> 0.5) the GGX
lobe has significant energy loss, which makes the energy correction
mentioned in Sec. 5.2 necessary to prevent the optimization from
over-fitting dark views.

7 EXPERIMENTS
We implement our differentiable rendering pipeline in the PSDR
framework [Zhang et al. 2020] using Dr.Jit [Jakob et al. 2022]. The
derivative of our appearance models (i.e., ∂Fs/∂π and ∂Fp/∂π ) can
be computed using automatic differentiation. To capture multiple
scattering, we set the maximum path length to 32 in all experiments.
The PSDR method handles differentiating cast shadows, which are
significant for grazing illumination when objects are significantly
non-flat. We use the Adam optimizer [Kingma and Ba 2014] for

, Vol. 1, No. 1, Article . Publication date: September 2024.

Fig. 9. We validate the optimization on synthetic data to reconstruct optical
properties of the layers. The camera and light setup is the same as for the
real system. In the third row, we color code the relative root mean square
error between the reference and reconstructed data. Both measurements
and parameter values are reconstructed with good quality.

where the optimization with our loss converges faster and to lower
residuals than with the other losses. For these reasons we use the
variance-weighted loss in all the results shown in this paper.

We also apply the total variation loss for smoother texture maps,
as well as a range loss to limit the parameters to physically mean-
ingful ranges. Note that at high roughness value (> 0.5) the GGX
lobe has significant energy loss, which makes the energy correction
mentioned in Sec. 5.2 necessary to prevent the optimization from
over-fitting dark views.

7 EXPERIMENTS
We implement our differentiable rendering pipeline in the PSDR
framework [Zhang et al. 2020] using Dr.Jit [Jakob et al. 2022]. The
derivative of our appearance models (i.e., ∂Fs/∂π and ∂Fp/∂π ) can
be computed using automatic differentiation. To capture multiple
scattering, we set the maximum path length to 32 in all experiments.
The PSDR method handles differentiating cast shadows, which are
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Fig. 10. Validation of reconstruction quality in novel lighting. Under new lighting, we show the root mean square error maps (RMSE) between the captured
photo and the rendering of the reconstructed models and compare the reconstruction using a basic model and a position-free model initialized with the basic
model. This validation experiment shows the quality of the reconstruction for both models. While the basic model can already capture the appearance quite
well, the more accurate physically-based model has less energy mismatch in translucent energy numerically. Please note that for this experiment we omi�ed
images we would normally use from the reconstruction process, i.e we have only 10 lights in this setup.

non-�at. We use the Adam optimizer [Kingma and Ba 2014] for
inverse rendering. At each iteration, a view-light pair is randomly
selected from the training set.

Capturing one sample takes around 25 minutes. The optimization
for the geometry pass requires roughly an hour whereas the basic
model takes about 40 minutes for 5000 iterations. Afterwards, the
position-free model (128spp per iteration) runs for around 2 hours
(2500 iterations again), using RTX 3090. All output textures have a
resolution of 512x512 except the displacement map for which we
use 256x256 size textures.

In Fig. 12, we show the validation of the geometry reconstruction
on synthetic data where we reconstruct the geometry model from
renderings of maple and Ginko leaves. The optimized parameters
are displacement map and single value for re�ectance and rough-
ness. The "Init.Reconst." shows the result of the �rst phase of the
geometry reconstruction and the "Opt.Reconst." shows the result of

the gradient descent phase which re�nes the details in the interior.
We use the Hausdor� distance to measure the di�erence between
the ground truth and the reconstructions.

In Fig. 10 we validate our BSDF �ts by holding out three im-
ages during the reconstruction process and testing the �tted model
against these images, which show lighting directions that were not
seen in the optimization. As can be seen, even our basic model is ca-
pable of reconstructing the appearance. However, the position-free
model is consistently better at simulating the shape of the transmis-
sion lobes and is able to better predict these reference views.

A crucial requirement for successful optimization with the position-
free model is to �nd good initialization values. Fig. 13 shows the
outcome of initializing the position-free model with random num-
bers compared to initializing it with our basic model. The randomly
initialized version struggles with the sharpness of the textures and
sometimes fails to reconstruct the optical properties. Additionally,
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Fig. 10. Validation of reconstruction quality in novel lighting. Under new lighting, we show the root mean square error maps (RMSE) between the captured
photo and the rendering of the reconstructed models and compare the reconstruction using a basic model and a position-free model initialized with the basic
model. This validation experiment shows the quality of the reconstruction for both models. While the basic model can already capture the appearance quite
well, the more accurate physically-based model has less energy mismatch in translucent energy numerically. Please note that for this experiment we omitted
images we would normally use from the reconstruction process, i.e we have only 10 lights in this setup.

significant for grazing illumination when objects are significantly
non-flat. We use the Adam optimizer [Kingma and Ba 2014] for
inverse rendering. At each iteration, a view-light pair is randomly
selected from the training set.

Capturing one sample takes around 25 minutes. The optimization
for the geometry pass requires roughly an hour whereas the basic
model takes about 40 minutes for 5000 iterations. Afterwards, the
position-free model (128spp per iteration) runs for around 2 hours
(2500 iterations again), using RTX 3090. All output textures have a
resolution of 512x512 except the displacement map for which we
use 256x256 size textures.

In Fig. 12, we show the validation of the geometry reconstruction
on synthetic data where we reconstruct the geometry model from
renderings of maple and Ginko leaves. The optimized parameters

are displacement map and single value for reflectance and rough-
ness. The "Init.Reconst." shows the result of the first phase of the
geometry reconstruction and the "Opt.Reconst." shows the result of
the gradient descent phase which refines the details in the interior.
We use the Hausdorff distance to measure the difference between
the ground truth and the reconstructions.

In Fig. 10 we validate our BSDF fits by holding out three im-
ages during the reconstruction process and testing the fitted model
against these images, which show lighting directions that were not
seen in the optimization. As can be seen, even our basic model is ca-
pable of reconstructing the appearance. However, the position-free
model is consistently better at simulating the shape of the transmis-
sion lobes and is able to better predict these reference views.
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Fig. 11. We render the reconstructions with a light moving le�wards behind the objects (see a�ached videos). It can be seen that the transmission of the basic
model is fla�er than our position-free model. We also show the di�erence between two models by visualizing the BRDF and BTDF value at a randomly picked
point on the object (with incident cosines equal to 0.4, 0.99, -0.99).

Init Reconst. Opt. Reconst. Ground Truth Ground TruthOpt. Reconst.Init. Reconst.

dist: 4.125e-3 dist: 3.614e-3dist: 5.518e-3 dist: 1.178e-3

Fig. 12. We validate the geometry reconstruction on synthetic data. The camera and light setup is the same as for the real system. The first and the second
columns are di�erent phases of the geometry reconstruction which correspond to the 3rd and 4th column of Fig. 7 We use Hausdor� distance to measure the
di�erence between the reconstructed shape and the reference shape. Both geometries are reconstructed with good quality.

Reference (a) (b) Reference (b)(a) Reference (a) (b)
Fig. 13. We compare the reconstruction quality at the 1000th iteration between (a) random initialization and (b) initialization with the parameters of the basic
model. With random initialization, all the parameters are optimized at the same time while our method allows us fix the parameters that are converted from
the basic model, like roughness and single sca�ering albedo. The position-free model takes three times longer per iteration than the basic model.

the randomly initialized version will need more iterations to achieve
a similar quality, and it also takes approximately three times longer
per iteration than the basic model.

In the supplementary video we rendered various objects lit from
behind by moving lights. Since we use a physically based model,
we avoid over�tting to certain directions and keep the appearance
plausible when relighting. Stills from the video can be seen in Fig. 11.

8 CONCLUSION AND DISCUSSION
In this paper we presented a method for capturing both re�ection
and transmission from thin, translucent objects by physics-based
inverse rendering, showing how di�erentiable rendering can be a
tool for modeling the appearance of real materials in practice. Our
work addresses applied inverse rendering, a topic that needs to be

, Vol. 1, No. 1, Article . Publication date: September 2024.

Fig. 11. We render the reconstructions with a light moving leftwards behind the objects (see attached videos). It can be seen that the transmission of the basic
model is flatter than our position-free model. We also show the difference between two models by visualizing the BRDF and BTDF value at a randomly picked
point on the object (with incident cosines equal to 0.4, 0.99, -0.99).
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Fig. 11. We render the reconstructions with a light moving le�wards behind the objects (see a�ached videos). It can be seen that the transmission of the basic
model is fla�er than our position-free model. We also show the di�erence between two models by visualizing the BRDF and BTDF value at a randomly picked
point on the object (with incident cosines equal to 0.4, 0.99, -0.99).
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Fig. 12. We validate the geometry reconstruction on synthetic data. The camera and light setup is the same as for the real system. The first and the second
columns are di�erent phases of the geometry reconstruction which correspond to the 3rd and 4th column of Fig. 7 We use Hausdor� distance to measure the
di�erence between the reconstructed shape and the reference shape. Both geometries are reconstructed with good quality.

Reference (a) (b) Reference (b)(a) Reference (a) (b)
Fig. 13. We compare the reconstruction quality at the 1000th iteration between (a) random initialization and (b) initialization with the parameters of the basic
model. With random initialization, all the parameters are optimized at the same time while our method allows us fix the parameters that are converted from
the basic model, like roughness and single sca�ering albedo. The position-free model takes three times longer per iteration than the basic model.

the randomly initialized version will need more iterations to achieve
a similar quality, and it also takes approximately three times longer
per iteration than the basic model.

In the supplementary video we rendered various objects lit from
behind by moving lights. Since we use a physically based model,
we avoid over�tting to certain directions and keep the appearance
plausible when relighting. Stills from the video can be seen in Fig. 11.

8 CONCLUSION AND DISCUSSION
In this paper we presented a method for capturing both re�ection
and transmission from thin, translucent objects by physics-based
inverse rendering, showing how di�erentiable rendering can be a
tool for modeling the appearance of real materials in practice. Our
work addresses applied inverse rendering, a topic that needs to be
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Fig. 11. We render the reconstructions with a light moving leftwards behind the objects (see attached videos). It can be seen that the transmission of the basic
model is flatter than our position-free model. We also show the difference between two models by visualizing the BRDF and BTDF value at a randomly picked
point on the object (with incident cosines equal to 0.4, 0.99, -0.99).

Init Reconst. Opt. Reconst. Ground Truth Ground TruthOpt. Reconst.Init. Reconst.

dist: 4.125e-3 dist: 3.614e-3dist: 5.518e-3 dist: 1.178e-3

Fig. 12. We validate the geometry reconstruction on synthetic data. The camera and light setup is the same as for the real system. The first and the second
columns are different phases of the geometry reconstruction which correspond to the 3rd and 4th column of Fig. 7 We use Hausdorff distance to measure the
difference between the reconstructed shape and the reference shape. Both geometries are reconstructed with good quality.

Reference (a) (b) Reference (b)(a) Reference (a) (b)
Fig. 13. We compare the reconstruction quality at the 1000th iteration between (a) random initialization and (b) initialization with the parameters of the basic
model. With random initialization, all the parameters are optimized at the same time while our method allows us fix the parameters that are converted from
the basic model, like roughness and single scattering albedo. The position-free model takes three times longer per iteration than the basic model.

outcome of initializing the position-free model with random num-
bers compared to initializing it with our basic model. The randomly
initialized version struggles with the sharpness of the textures and
sometimes fails to reconstruct the optical properties. Additionally,
the randomly initialized version will need more iterations to achieve

a similar quality, and it also takes approximately three times longer
per iteration than the basic model.

In the supplementary video we rendered various objects lit from
behind by moving lights. Since we use a physically based model,
we avoid overfitting to certain directions and keep the appearance
plausible when relighting. Stills from the video can be seen in Fig. 11.
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Fig. 12. We validate the geometry reconstruction on synthetic data. The camera and light setup is the same as for the real system. The first and the second
columns are different phases of the geometry reconstruction which correspond to the 3rd and 4th column of Fig. 7 We use Hausdorff distance to measure the
difference between the reconstructed shape and the reference shape. Both geometries are reconstructed with good quality.
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Fig. 11. We render the reconstructions with a light moving le�wards behind the objects (see a�ached videos). It can be seen that the transmission of the basic
model is fla�er than our position-free model. We also show the di�erence between two models by visualizing the BRDF and BTDF value at a randomly picked
point on the object (with incident cosines equal to 0.4, 0.99, -0.99).
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Fig. 12. We validate the geometry reconstruction on synthetic data. The camera and light setup is the same as for the real system. The first and the second
columns are di�erent phases of the geometry reconstruction which correspond to the 3rd and 4th column of Fig. 7 We use Hausdor� distance to measure the
di�erence between the reconstructed shape and the reference shape. Both geometries are reconstructed with good quality.

Reference (a) (b) Reference (b)(a) Reference (a) (b)
Fig. 13. We compare the reconstruction quality at the 1000th iteration between (a) random initialization and (b) initialization with the parameters of the basic
model. With random initialization, all the parameters are optimized at the same time while our method allows us fix the parameters that are converted from
the basic model, like roughness and single sca�ering albedo. The position-free model takes three times longer per iteration than the basic model.

the randomly initialized version will need more iterations to achieve
a similar quality, and it also takes approximately three times longer
per iteration than the basic model.

In the supplementary video we rendered various objects lit from
behind by moving lights. Since we use a physically based model,
we avoid over�tting to certain directions and keep the appearance
plausible when relighting. Stills from the video can be seen in Fig. 11.

8 CONCLUSION AND DISCUSSION
In this paper we presented a method for capturing both re�ection
and transmission from thin, translucent objects by physics-based
inverse rendering, showing how di�erentiable rendering can be a
tool for modeling the appearance of real materials in practice. Our
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Fig. 11. We render the reconstructions with a light moving leftwards behind the objects (see attached videos). It can be seen that the transmission of the basic
model is flatter than our position-free model. We also show the difference between two models by visualizing the BRDF and BTDF value at a randomly picked
point on the object (with incident cosines equal to 0.4, 0.99, -0.99).
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Fig. 11. We render the reconstructions with a light moving le�wards behind the objects (see a�ached videos). It can be seen that the transmission of the basic
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Fig. 12. We validate the geometry reconstruction on synthetic data. The camera and light setup is the same as for the real system. The first and the second
columns are di�erent phases of the geometry reconstruction which correspond to the 3rd and 4th column of Fig. 7 We use Hausdor� distance to measure the
di�erence between the reconstructed shape and the reference shape. Both geometries are reconstructed with good quality.

Reference (a) (b) Reference (b)(a) Reference (a) (b)
Fig. 13. We compare the reconstruction quality at the 1000th iteration between (a) random initialization and (b) initialization with the parameters of the basic
model. With random initialization, all the parameters are optimized at the same time while our method allows us fix the parameters that are converted from
the basic model, like roughness and single sca�ering albedo. The position-free model takes three times longer per iteration than the basic model.

the randomly initialized version will need more iterations to achieve
a similar quality, and it also takes approximately three times longer
per iteration than the basic model.

In the supplementary video we rendered various objects lit from
behind by moving lights. Since we use a physically based model,
we avoid over�tting to certain directions and keep the appearance
plausible when relighting. Stills from the video can be seen in Fig. 11.
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Fig. 12. We validate the geometry reconstruction on synthetic data. The camera and light setup is the same as for the real system. The first and the second
columns are different phases of the geometry reconstruction which correspond to the 3rd and 4th column of Fig. 7 We use Hausdorff distance to measure the
difference between the reconstructed shape and the reference shape. Both geometries are reconstructed with good quality.
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Fig. 13. We compare the reconstruction quality at the 1000th iteration between (a) random initialization and (b) initialization with the parameters of the basic
model. With random initialization, all the parameters are optimized at the same time while our method allows us fix the parameters that are converted from
the basic model, like roughness and single scattering albedo. The position-free model takes three times longer per iteration than the basic model.

outcome of initializing the position-free model with random num-
bers compared to initializing it with our basic model. The randomly
initialized version struggles with the sharpness of the textures and
sometimes fails to reconstruct the optical properties. Additionally,
the randomly initialized version will need more iterations to achieve

a similar quality, and it also takes approximately three times longer
per iteration than the basic model.

In the supplementary video we rendered various objects lit from
behind by moving lights. Since we use a physically based model,
we avoid overfitting to certain directions and keep the appearance
plausible when relighting. Stills from the video can be seen in Fig. 11.
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Fig. 13. We compare the reconstruction quality at the 1000th iteration between (a) random initialization and (b) initialization with the parameters of the basic
model. With random initialization, all the parameters are optimized at the same time while our method allows us fix the parameters that are converted from
the basic model, like roughness and single scattering albedo. The position-free model takes three times longer per iteration than the basic model.

A crucial requirement for successful optimization with the position-
free model is to find good initialization values. Fig. 13 shows the
outcome of initializing the position-free model with random num-
bers compared to initializing it with our basic model. The randomly
initialized version struggles with the sharpness of the textures and

sometimes fails to reconstruct the optical properties. Additionally,
the randomly initialized version will need more iterations to achieve
a similar quality, and it also takes approximately three times longer
per iteration than the basic model.

, Vol. 1, No. 1, Article . Publication date: October 2024.
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Fig. 14. We compare the renderings of models reconstructed from photos
of a piece of printed paper against the photos. The renderings are rendered
under three di�erent viewing and lighting conditions, showing e�icient
reconstruction of transmi�ance, reflectance, and specular lobe. The param-
eters we reconstruct are the same as the leaves in Fig. 10 except for the
roughness being a texture map.

explored further to develop the techniques to set up and success-
fully solve large and complex inverse problems using di�erentiable
renderers.

Currently we ignore the output of the transmission map recon-
structed from the simple model, not yet converting it to initialize
the parameters in the position-free model, but we think we could
improve the initialization further by utilizing a two-stream model.
We also do not reconstruct normal maps which would be able to sim-
ulate �ne geometric di�erences on the front and back side, which a
single displacement map cannot account for. We show in Fig. 14 ren-
derings of reconstructed printed paper where the roughness varies
spatially depending on where the printings are. Though spatially
varying roughness is supported, a higher resolution of roughness
map requires denser angular measurements and remains a good
future extension of the system. One good future direction for per-
formance improvement is to enable Path Replay Backpropagation
[Vicini et al. 2021] inside the evaluation of the stochastic BSDF to
allow for higher sample counts in inverse rendering.

ACKNOWLEDGMENTS
We are grateful to Aaron Lefohn for his support. This work starts
with Xi’s internship project at NVIDIA. We would like to thank
Kai Yan and Zihan Yu for sharing their early version of PSDR-JIT
code and Yu Guo for providing the Mitsuba version of position-free
code for reference. We also would like to thank Beibei Xu, Yunchen
Yu and Zhenli Wu for mailing leaves from the south to Ithaca in
winter when there were no leaves. This work was supported in
part by the Cornell Institute for Digital Agriculture, the National
Science Foundation under award 2212084, and by a gift from NVIDIA
Corporation.

REFERENCES
Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2015. Two-shot SVBRDF Capture for

Stationary Materials. ACM Trans. Graph. 34, 4 (2015), 110:1–110:13.
Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area

Sampling for Di�erentiable Rendering. ACM Trans. Graph. 39, 6 (2020), 245:1–245:18.
Laurent Belcour. 2018. E�cient Rendering of Layered Materials using an Atomic

Decomposition with Statistical Operators. ACM Transactions on Graphics 37, 4
(2018), 1.

Benedikt Bitterli and Eugene d’Eon. 2022. A PositionâĂŘFree Path Integral for Homo-
geneous Slabs and Multiple Scattering on Smith Microfacets. Computer Graphics
Forum 41 (2022). https://api.semanticscholar.org/CorpusID:248495919

Laurent Bousquet, Stéphane Jacquemoud, and Ismael Moya. 2005. Leaf BRDF and BTDF
measurements and model. In ISPMSRS 2005 Conference Proceedings. 459–461.

S. Chandrasekar. 1960. Radiative Transfer. Dover Publications.
Wesley Chang, Venkataram Sivaram, Derek Nowrouzezahrai, Toshiya Hachisuka, Ravi

Ramamoorthi, and Tzu-Mao Li. 2023. Parameter-space ReSTIR for Di�erentiable
and Inverse Rendering. In ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH
’23). Association for Computing Machinery, New York, NY, USA, Article 18, 10 pages.
https://doi.org/10.1145/3588432.3591512

Xi Deng, Fujun Luan, Bruce Walter, Kavita Bala, and Steve Marschner. 2022. Reconstruct-
ing Translucent Objects Using Di�erentiable Rendering. In ACM SIGGRAPH 2022
Conference Proceedings. Association for Computing Machinery, Article 38, 10 pages.

Eugene d’Eon. 2022. A Hitchhiker’s Guide to Multiple Scattering: Exact Analytic, Monte
Carlo and Approximate Solutions in Transport Theory.

Jonathan Dupuy and Wenzel Jakob. 2018. An adaptive parameterization for e�cient
material acquisition and rendering. ACM Trans. Graph. 37, 6, Article 274 (2018),
14 pages.

Jiahui Fan, Beibei Wang, Miloš Hašan, Jian Yang, and Ling-Qi Yan. 2022. Neural Layered
BRDFs. In Proceedings of SIGGRAPH 2022.

Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul Debevec. 2003. Linear light
source re�ectometry. 22, 3 (2003), 749âĂŞ758.

Ioannis Gkioulekas, Bei Xiao, Shuang Zhao, Edward H. Adelson, Todd Zickler, and
Kavita Bala. 2013. Understanding the Role of Phase Function in Translucent Ap-
pearance. ACM Transactions on Graphics 32, 5 (Oct. 2013), 147:1–147:19. https:
//doi.org/10/gfzp5h

D. Guarnera, G.C. Guarnera, A. Ghosh, C. Denk, and M. Glencross. 2016. BRDF Repre-
sentation and Acquisition. Computer Graphics Forum 35, 2 (2016), 625–650.

Jie Guo, Zeru Li, Xueyan He, Beibei Wang, Wenbin Li, Yanwen Guo, and Ling-Qi Yan.
2023. MetaLayer: A Meta-Learned BSDF Model for Layered Materials. ACM Trans.
Graph. 42, 6, Article 222 (2023), 15 pages.

Yu Guo, Miloš Hašan, and Shaung Zhao. 2018. Position-Free Monte Carlo Simulation
for Arbitrary Layered BSDFs. ACM Trans. Graph. 37, 6 (2018).

Pat Hanrahan and Wolfgang Krueger. 1993. Re�ection from Layered Surfaces Due to
Subsurface Scattering. New York, NY, USA, 165–174. https://doi.org/10/b4tw3j

Milovš Hašan and Ravi Ramamoorthi. 2013. Interactive Albedo Editing in Path-Traced
Volumetric Materials. ACM Transactions on Graphics 32, 2 (April 2013), 11:1–11:11.
https://doi.org/10/gfz5nk

K. Hirakawa and T.W. Parks. 2003. Adaptive homogeneity-directed demosaicing al-
gorithm. In Proceedings 2003 International Conference on Image Processing (Cat.
No.03CH37429), Vol. 3. III–669. https://doi.org/10.1109/ICIP.2003.1247333

Wenzel Jakob. 2015. layerlab: A computational toolbox for layered materials. In
SIGGRAPH 2015 Courses (SIGGRAPH ’15). ACM, New York, NY, USA. https:
//doi.org/10.1145/2776880.2787670

Wenzel Jakob, Eugene d’Eon, Otto Jakob, and Steve Marschner. 2014. A Comprehen-
sive Framework for Rendering Layered Materials. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 33, 4 (July 2014), 118:1–118:14. https://doi.org/10/f6cpsq

Wenzel Jakob, SÃľbastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. Dr.Jit:
A Just-In-Time Compiler for Di�erentiable Rendering. Transactions on Graphics
(Proceedings of SIGGRAPH) 41, 4 (July 2022). https://doi.org/10.1145/3528223.3530099

Y. Jiang, D. Ji, Z. Han, and M. Zwicker. 2020. SDFDi�: Di�erentiable Rendering of
Signed Distance Fields for 3D Shape Optimization. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 1248–1258. https://doi.org/10.1109/CVPR42600.2020.00133

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
2016. Matching Real Fabrics with Micro-Appearance Models. 35, 1, Article 1 (dec
2016).

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980 (2014).

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Di�erentiable
Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018),
222:1–222:11.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing
discontinuous integrands for di�erentiable rendering. ACM Trans. Graph. 38, 6
(2019), 228:1–228:14.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Uni�ed Shape and
SVBRDF Recovery using Di�erentiable Monte Carlo Rendering. Computer Graphics
Forum 40 (2021).

Xiaohe Ma, Xianmin Xu, Leyao Zhang, Kun Zhou, and Hongzhi Wu. 2023. OpenSVBRDF:
A Database of Measured Spatially-Varying Re�ectance. ACM Trans. Graph. 42, 6,
Article 254 (2023), 14 pages.

Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat
Hanrahan. 2003. Light Scattering from Human Hair Fibers. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 22, 3 (July 2003), 780. https://doi.org/10/b4cprd

Stephen R. Marschner, Stephen H. Westin, Adam Arbree, and Jonathan T. Moon. 2005.
Measuring and modeling the appearance of �nished wood. ACM Trans. Graph. 24, 3
(2005), 727âĂŞ734.

Wojciech Matusik, Hanspeter P�ster, Matt Brand, and Leonard McMillan. 2003. A
Data-Driven Re�ectance Model. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 22, 3 (July 2003), 759–769. https://doi.org/10/fjjgv8

, Vol. 1, No. 1, Article . Publication date: September 2024.

Fig. 14. We compare the renderings of models reconstructed from photos
of a piece of printed paper against the photos. The renderings are rendered
under three different viewing and lighting conditions, showing efficient
reconstruction of transmittance, reflectance, and specular lobe. The param-
eters we reconstruct are the same as the leaves in Fig. 10 except for the
roughness being a texture map.

In the supplementary video we rendered various objects lit from
behind by moving lights. Since we use a physically based model,
we avoid overfitting to certain directions and keep the appearance
plausible when relighting. Stills from the video can be seen in Fig. 11.

8 CONCLUSION AND DISCUSSION
In this paper we presented a method for capturing both reflection
and transmission from thin, translucent objects by physics-based
inverse rendering, showing how differentiable rendering can be a
tool for modeling the appearance of real materials in practice. Our
work addresses applied inverse rendering, a topic that needs to be
explored further to develop the techniques to set up and success-
fully solve large and complex inverse problems using differentiable
renderers.

Currently we ignore the output of the transmission map recon-
structed from the simple model, not yet converting it to initialize
the parameters in the position-free model, but we think we could
improve the initialization further by utilizing a two-stream model.
We also do not reconstruct normal maps which would be able to sim-
ulate fine geometric differences on the front and back side, which a
single displacement map cannot account for. We show in Fig. 14 ren-
derings of reconstructed printed paper where the roughness varies
spatially depending on where the printings are. Though spatially
varying roughness is supported, a higher resolution of roughness
map requires denser angular measurements and remains a good
future extension of the system. One good future direction for per-
formance improvement is to enable Path Replay Backpropagation
[Vicini et al. 2021] inside the evaluation of the stochastic BSDF to
allow for higher sample counts in inverse rendering.
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