
Path Graphs: Iterative Path Space Filtering

XI DENG, Cornell University, USA

MILOŠ HAŠAN, Adobe Research, USA

NATHAN CARR, Adobe Research, USA

ZEXIANG XU, Adobe Research, USA

STEVE MARSCHNER, Cornell University, USA

path tracing path graph (ours)

denoised PT denoised PG ref

380 spp | relMSE: 1.02 200 spp | relMSE: 0.22

37 spp denoised denoised19 spp

reference

Fig. 1. Equal-time comparisons showing the improvement provided by the path graph in an indirect illumination-dominated scene. The top row shows a

higher sample count; 200 samples processed with the path graph takes less time than path tracing 380 samples without the path graph; noise is reduced

substantially. The bottom row shows the results of denoising a lower sample count; 19 path graph passes take less time than 37 samples of path tracing, and

the denoised result is markedly improved in resolving details of illumination. Scene: office.

To render higher quality images from the samples generated by path trac-
ing with a low sample count, we propose a novel path reuse approach that
processes a fixed collection of paths to iteratively refine and improve radi-
ance estimates throughout the scene. Our method operates on a path graph
consisting of the union of the traced paths with additional neighbor edges
inserted among clustered nearby vertices. Our approach refines the initial
noisy radiance estimates via an aggregation operator, treating vertices within
clusters as independent sampling techniques that can be combined using
MIS. In a novel step, we also introduce a propagation operator to forward

Authors’ addresses: Xi Deng, Cornell University, 345 Gates Hall, Ithaca, NY, 14850,
USA; Miloš Hašan, Adobe Research, 345 Park Avenue, San Jose, CA, 95110, USA;
Nathan Carr, Adobe Research, 345 Park Avenue, San Jose, CA, 95110, USA; Zexiang Xu,
Adobe Research, 345 Park Avenue, San Jose, CA, 95110, USA; Steve Marschner, Cornell
University, 313 Gates Hall, Ithaca, NY, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART1 $15.00
https://doi.org/10.1145/3478513.3480547

the refined estimates along the paths to successive bounces. We apply the ag-
gregation and propagation operations to the graph iteratively, progressively
refining the radiance values, converging to fixed-point radiance estimates
with lower variance than the original ones. We also introduce a decorrelation
(final gather) step, which uses information already in the graph and is cheap
to compute, allowing us to combine the method with standard denoisers.
Our approach is lightweight, in the sense that it can be easily plugged into
any standard path tracer and neural final image denoiser. Furthermore, it is
independent of scene complexity, as the graph size only depends on image
resolution and average path depth. We demonstrate that our technique leads
to realistic rendering results starting from as low as 1 path per pixel, even in
complex indoor scenes dominated by multi-bounce indirect illumination.

CCS Concepts: • Computing methodologies → Rendering; Ray trac-
ing.

Additional Key Words and Phrases: ray tracing, global illumination, Monte
Carlo, path graph, path space filtering

ACM Reference Format:
Xi Deng, Miloš Hašan, Nathan Carr, Zexiang Xu, and Steve Marschner. 2021.
Path Graphs: Iterative Path Space Filtering.ACM Trans. Graph. 40, 6, Article 1
(December 2021), 15 pages. https://doi.org/10.1145/3478513.3480547

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480547
https://doi.org/10.1145/3478513.3480547

1:2 • Deng et al.

1 INTRODUCTION

In rendering, variants of Monte Carlo global illumination algorithms
are ubiquitous. Among these, standard forward path tracing with
direct illumination (next-event estimation) remains most common.
Bidirectional approaches are also used, though their benefits do not
always outweigh the extra costs and complexity.
Certain practically important scenarios remain challenging for

all of these algorithms, such as indoor scenes lit predominantly by
external illumination entering through windows. Forward path trac-
ing struggles to connect shading points to the external illumination
sources. Bidirectional approaches do not fully resolve this issue,
since targeting the light through the windows becomes a non-trivial
research topic by itself. Path guiding and denoising approaches have
been shown to help. However, sparse sampling and reconstruction
often work better with more information about the underlying scene
(e.g. in the form of additional feature buffers), rather than just oper-
ating on the final radiances. We can go even further to extract more
information, using knowledge about paths and their relationships,
ultimately leading to more accurate input for a final denoiser.
Our goal is to extract more information from the paths con-

structed by the light transport method during the tracing of a single
sample per pixel. This is the problem of path reuse: designing esti-
mators that combine information available on a path vertex with
information from nearby vertices, without the need to trace more
rays. Many path reuse methods have been proposed [Davidovič et al.
2010; Keller et al. 2014; West et al. 2020], but in all of them, the reuse
is largely local. Instead, we study how to make this process global:
we take a local radiance estimate at a vertex, improve it through
path reuse from nearby vertices, and propagate the improvement to
other radiance estimates on other surfaces that may receive light
from this vertex.
In the context of forward path tracing, each pixel sample gives

rise to a “path,” which is really a tree: a vertex (shading point) is
typically connected with one edge to a light source and another
edge to a continuation vertex, gathering illumination by recursively
continuing the tree. Our approach is to take the union of such per-
pixel trees, and to further extend it by adding information-sharing
edges between spatially nearby vertices, by grouping vertices into
clusters of size 𝐾 (on average), and inserting edges among vertices
in each cluster.

The resulting graph has three kinds of edges: light edges sampled
for next-event estimation, continuation edges created through BSDF
sampling to extend paths, and neighbor edges, connecting to spatial
neighbors within each cluster. Neighbor edges do not represent
light path segments, but instead denote information flow during
path reuse. Given such a graph, we compute an improved per-pixel
radiance estimate by iteratively applying two operations: aggre-
gation (which locally improves the illumination estimate at each
shading point through path reuse within each cluster) and propaga-
tion (which refines the estimate by propagating over an additional
light bounce). As in radiosity methods, our solution converges to
a steady state. We discuss how to ensure the convergence of the
process. The additional computation needed for the construction
and analysis of such a graph is relatively cheap, but it can signif-
icantly reduce the noise of the resulting estimate without tracing

path tracing
(path guidance)

& clustering

path re-use via
aggregation &
propogation

final gather

reconstruction
& denoising

graph construction

iterative
refinement

paths samples

Fig. 2. Our method fits in between the traditional steps of path tracing

and denoising. This means that it can provide additional benefits on top of

(rather than replacing) techniques like modern CNN denoisers and path

guiding techniques.

any extra paths. Like other path filtering methods, this method in-
troduces bias by assuming the same incoming irradiance across a
neighborhood. However, the resulting smoothing only affects the
image via additional reflections, which reduces the visibility of this
bias. We show later in the paper an error analysis to illustrate how
this bias appears in images, showing its effects are subtle.
We believe ours is the first Monte Carlo light transport method

that globally refines the estimate extracted from a given set of paths.
While multiple path-reuse mechanisms have been proposed in pre-
vious work, and the idea of iterative refinement of a light transport
estimate has been used extensively in classical radiosity approaches
(using e.g. Gauss-Seidel or Jacobi iteration schemes), the combina-
tion of these concepts is largely missing from existing research. The
contributions of our paper include:

• Formalizing the problem of reconstructing an image from
traced light paths in a graph framework, where the initial
estimate can be iteratively refined through the application of
two operators (aggregation and propagation) over edges of
the graph, with no need to trace any further rays.
• An efficient aggregation operator derived using multiple im-
portance sampling (MIS). A straightforward application of
MIS requires 𝑂 (𝐾2) pdf evaluations to combine 𝐾 sampling
techniques, but we show that an 𝑂 (𝐾) approach is possible
for path reuse through MIS within clusters.
• An iterative solver to reach the steady state of the above
aggregation and propagation operators, and an analysis of its
convergence.
• A decorrelation (final gather) pass that produces images suit-
able for standard denoisers, at minimal additional cost and
using information already in the path graph.

The design of our algorithm leads to the following benefits:

• Independence of scene complexity; the graph size only de-
pends on image resolution and average path depth, and us-
ing the graph does not require any further queries to scene
geometry. This is beneficial in scenes where ray-tracing is
particularly expensive.
• An ability to integrate into any rendering system, using an
arbitrary path tracer to create the graph and an arbitrary
final denoiser (Fig. 2). Path guiding methods could also be
combined with our technique.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Path Graphs: Iterative Path Space Filtering • 1:3

Wedemonstrate our approach on a number of indoor architectural
scenes with indirect-dominated lighting conditions. Our method
could benefit practical renderers at a minor performance cost and
software engineering effort. We expect the benefits to be greatest
in domains that require very complex scenes, where ray-tracing is
most expensive, and where fast GPUs cannot fit the entire scene
due to their limited memory (since they can still fit our path graph).
We believe the scene-independent nature of the method, and its
orthogonality to denoising and path guiding, could make it a good
addition to practical rendering systems for such situations.

2 RELATED WORK

Radiosity methods. Early radiosity approaches to global illumi-
nation solve for diffuse inter-reflection among surfaces as a steady
state energy flow problem [Goral et al. 1984; Hanrahan and Salzman
1991]. The problem takes the form of a (dense) linear matrix sys-
tem (though further improvements address the dense nature of the
matrix, such as stochastic and hierarchical radiosity). The radiosity
matrix consists of form factors between discretized surface patches
that form the scene, essentially encoding a one-bounce transport op-
erator. While the solution to the linear system can be reached using
direct solvers, many implementations rely on iterative approaches
such as Jacobi or Gauss-Siedel. These iterative solvers propagate
light between surface locations, improving estimates until a steady
solution is encountered. Our approach takes inspiration from these
early works by iteratively refining estimates over a graph of path
vertices (shading and light points) to improve the solution. We do so,
however, in the context of modern Monte Carlo path-tracing captur-
ing arbitrary BRDFs and lighting, including image-based lighting.
Moreover, our operators are always sparse.

Monte Carlo methods. The rendering equation [Kajiya 1986] can
be effectively evaluated via Monte Carlo path tracing, which has
been widely used in the graphics industry for realistic global illu-
mination computation. However, standard path tracing can require
a large number of samples per pixel (spp) to reduce the variance
and compute a noise-free image, and in complex scenes the samples
can be expensive. Various more advanced Monte Carlo methods,
like bidirectional path tracing [Chaitanya et al. 2018; Lafortune and
Willems 1993; Veach 1997; Veach and Guibas 1995a], Metropolis
light transport [Cline et al. 2005; Pauly et al. 2000; Veach and Guibas
1995b], path guiding [Hey and Purgathofer 2002; Jensen 1995; Müller
et al. 2017; Vorba et al. 2014] and portal sampling [Bitterli et al. 2015],
have presented additional sampling techniques that can produce
better results in challenging scenes; however, path tracing is still
the most common choice for industrial applications. We base our
method on standard Monte Carlo path tracing; we can utilize the
noisy data from 1-spp path tracing to extract enough information
for high-quality rendering.

Previous work has extensively studied sparse sampling and recon-
struction for path tracing, in order to achieve high-quality low-spp
rendering (see a survey presented by [Zwicker et al. 2015]). Recently,
deep learning based de-noising techniques [Bako et al. 2017; Chai-
tanya et al. 2017; Gharbi et al. 2019] have been introduced in this
space and have outperformed traditional methods. These neural

methods reconstruct a high-quality image from the noisy screen-
space samples in path tracing. Our method can be combined with
screen-space denoising techniques. We demonstrate that our path-
graph filtering results can be effectively denoised by a standard deep
denoiser, not specialized to our outputs.

Reusing light transport computation. Much effort has gone into
finding ways to reuse paths to improve estimates of the rendering
equation integral. Irradiance caching [Ward et al. 1988] computes
accurate irradiance estimates at sampled spatial cache points, al-
lowing for smooth and efficient indirect lighting approximation via
interpolation; this technique has also been extended to radiance
caching [Křivánek et al. 2008], enabling efficient indirect lighting
computation for glossy surfaces. Several algorithms have also been
developed for reusing paths to improve convergence in both the pri-
mal and gradient domains [Bauszat et al. 2017; Bekaert et al. 2002].
To reduce the code complexity of coupling those path extension
techniques, Fascione et al. [2019] present the vertex graph, which
stores path information as vertices and segments for efficient query
and evaluation. Techniques exist that take advantage of temporal
coherence to improve rendering efficiency (e.g. [Bitterli et al. 2020]);
this could also be seen as a variant of path reuse but in a very dif-
ferent form. In contrast our work focuses on further improving the
efficiency of reuse within a single frame, which may benefit in the
future from additional temporal filtering. Keller et al. [2014; 2016]
directly consider the noisy radiance estimates on the path in Monte
Carlo path tracing; their method leverages a simple path-space fil-
tering analogous to our aggregation operation to reduce variance
and can use multiple aggregation passes for stronger smoothing,
but it does not include propagation.

These path reuse methods have recently been extended by West
et al. [2020], which we treat as state of the art for path reuse. Our
work can be seen as a further, iterative extension of their path-space
filtering application. Note that the continuous MIS concept was
used as inspiration by West et al., but is not actually necessary to
derive theirs or our aggregation approaches, which can be seen as a
discrete MIS combining a finite number of vertices in a neighbor-
hood. We extend their neighborhood aggregation by alleviating the
𝑂 (𝐾2) aggregation complexity to 𝑂 (𝐾). Furthermore, our method
can refine the radiance estimates through a new propagation and
iteration approach. We also introduce a new decorrelation (final
gather) step at minimal additional cost, making path reuse meth-
ods compatible with Monte Carlo denoisers, which was not trivial
before.

Multiple importance sampling. Themultiple importance sampling
(MIS) [Veach 1997; Veach and Guibas 1995b] has been widely used in
Monte Carlo rendering to combine different Monte Carlo estimators.
Recently, several advanced MIS techniques [Grittmann et al. 2019;
Karlík et al. 2019; Kondapaneni et al. 2019] have been proposed to
improve upon traditional MIS heuristics. West et al. [2020], already
mentioned above, introduce a continuous MIS that enables properly
combining an arbitrary (even uncountably infinite) set of estimators,
and showed how this can be applied this to path reuse, closely related
to our aggregation. Inspired by their path filtering application, we
present an aggregation operation in our path graph computation
that can be understood in an MIS framework; we combine it with a

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:4 • Deng et al.

propagation operation, which iteratively improves and propagates
radiance estimates in the graph.

Virtual point lights. Our approach is also related to prior work
based on virtual point lights (VPL), which are also a form of path
reuse. [Hašan et al. 2009, 2007; Keller 1997; Walter et al. 2006, 2012].
The VPL-based methods usually distribute virtual lights in the scene
by tracing paths from the light sources and then reuse these virtual
lights to compute indirect lighting by connecting them with shading
points. Some methods [Ou and Pellacini 2011; Wang et al. 2013]
cluster VPLs and refine lights locally, which resembles our clustering
of shading points, but our overall approach is quite different: it
uses forward path tracing and does iterative refinement and image
reconstruction in a very different way. Other works [Davidovič et al.
2010; Segovia et al. 2006] also propose creating virtual lights from
the camera subpaths, developing techniques which turn out to be
quite relevant to our work. We do not treat the vertices on the paths
as virtual lights (at least not in an obvious sense), but like the VPL
techniques, we do combine the vertex estimates to achieve path
reuse.

Photon mapping. Photon mapping techniques [Hachisuka et al.
2008; Jensen 1996; Knaus and Zwicker 2011] are a classical approach
for global illumination computation. Similar to VPL-based methods,
photon mapping methods also trace and reuse light subpaths; they
introduce some bias by merging nearby vertices while assuming
their incoming light subpaths are still valid. Gathering photons is
often based on a kernel density estimation framework; previous
work has presented many advanced kernel functions to improve
the reconstruction accuracy and efficiency [Jakob et al. 2011; Ka-
planyan and Dachsbacher 2013; Schjøth et al. 2008], recently also
including neural kernels [Zhu et al. 2020]. This technique has also
been combined with (bi-directional) path tracing [Georgiev et al.
2012; Hachisuka et al. 2012; Křivánek et al. 2014] and also extended
to unbiased solutions [Deng et al. 2019; Qin et al. 2015]. Our path
aggregation is very similar to the photon gathering process; how-
ever, we leverage camera (instead of light) path vertices with noisy
Monte Carlo radiance estimates (instead of light energies), and our
aggregation is based on multiple importance sampling (MIS), rather
than kernel density estimation.

3 PATH GRAPH FRAMEWORK

In this section, we will define the path graph framework in an ab-
stract form, while in the next section, we will introduce our specific
aggregation operators and further details.

3.1 Notation

We will use the following notation conventions, summarized in
Table 1. We construct a graph 𝐺 = (𝑉 , 𝐸), given by vertices 𝑉 and
directed edges 𝐸. The vertices represent points on the scene surfaces
and lights. We will use indices 𝑗, 𝑘, 𝑙 for vertices, and indices 𝑒, 𝑒 ′
for edges. (We avoid index 𝑖 to avoid confusion with “incoming.”)
The edges are equivalent to pairs of vertex indices and are directed
in the direction of light flow. Edges can have associated weights𝑤𝑒 .

camera

surface

surfa
ce

area
light

env.
light

light point

surface point

surface point j with labeled edges

continuation edge

neighbor edge light edge

ωe
ωe′

ωj

Fig. 3. Illustration of the path graph construction process from paths created

during a standard path tracing pass with direct illumination connections.

Surface shading points (path vertices) will be denoted by x𝑗 . If
a light connection succeeds (whether through next event estima-
tion or through hitting a light source directly), we will denote the
corresponding light points y𝑘 . All positions and directions will be
assumed to be in world space. The light points can be at infinity for
environment lights, so they can be considered as 4-element vectors
in homogeneous coordinates (with the fourth element being zero
for points at infinity).
Outgoing quantities at a shading point (i.e. the ones pointing

towards the camera side of the path), such as outgoing directions
and radiances, will be denoted with a left-facing arrow. Namely, ®𝜔 𝑗
is the outgoing direction at the 𝑗-th shading point, and ®𝐿 𝑗 is the
outgoing radiance in direction ®𝜔 𝑗 .

We index incoming quantities by the corresponding edge 𝑒 whose
endpoint is 𝑗 , rather than by the vertex index 𝑗 , since there could
be zero, one, or two valid direct edges for any shading point, and
since not every shading point has an incoming indirect edge (paths
have to eventually stop).

The BSDF at the shading point x𝑗 will be denoted by 𝑓𝑗 (𝜔), where
the vector 𝜔 is assumed to vary over incoming directions. We are
incorporating the dependence on x𝑗 and ®𝜔 𝑗 into 𝑓𝑗 ; the full defini-
tion would thus be 𝑓𝑗 (𝜔) = 𝑓𝑠 (x𝑗 , ®𝜔 𝑗 , 𝜔), where 𝑓𝑠 is the spatially-
varying BSDF.

The pdf from which the direction𝜔𝑒 was sampled will be denoted
as 𝑝𝑒 (𝜔) in the solid angle measure at x𝑗 ; any other measures can be
converted to solid angle. The pdf 𝑝𝑒 again incorporates the shading
point x𝑗 , its outgoing direction ®𝜔 𝑗 , as well as the chosen light, in
case 𝑒 is a direct connection to a light.

3.2 Path tracing summary

In terms of the above notation, a standard path tracing implemen-
tation with next event estimation will operate as follows: First,
through each pixel we will trace a single path tree, connecting each
surface hit to a light and then continuing recursively. When a sur-
face point is hit, the outgoing radiance in the negative ray direction

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Path Graphs: Iterative Path Space Filtering • 1:5

Table 1. Notation used in the paper.

Symbol Definition
x𝑗 surface shading point
y𝑘 light point (could be point at infinity)
𝑗, 𝑘, 𝑙 vertices (or vertex indices)
𝑒, 𝑒 ′ edges (or edge indices)
𝑤𝑒 weight of edge 𝑒
𝑋 set of shading points
𝑌 set of light points
𝑉 = 𝑋 ∪ 𝑌 set of path graph vertices
𝐸 set of path graph edges
𝐺 = (𝑉 , 𝐸) path graph
𝜔 direction on incoming sphere
𝑓𝑗 (𝜔) BSDF at x𝑗
®𝜔 𝑗 outgoing direction at x𝑗
𝜔𝑒 incoming direction along edge 𝑒
®𝐿 𝑗 outgoing radiance at x𝑗
®𝐿+𝑗 updated (improved) value of ®𝐿 𝑗
𝐿𝑒 incoming radiance along edge 𝑒
𝐿+𝑒 updated (improved) value of 𝐿𝑒
𝑝𝑒 (𝜔) BSDF sampling pdf along edge 𝑒
𝐾 cluster size (on average; may not be exact)
𝐶 (𝑗) indices in cluster containing 𝑗
𝐶𝐸 (𝑗) continuation edges with endpoints in 𝐶 (𝑗)
𝐿𝐸 (𝑗) light edges with endpoints in 𝐶 (𝑗)
⊔̂ direct aggregation operator
⊔ indirect aggregation operator

is estimated by a combination of two Monte Carlo sampling tech-
niques. The first one is direct light sampling (next event estimation),
resulting in choosing a light point. The second technique is BSDF
sampling, resulting in a path continuation direction. The tracing
continues recursively to estimate the incoming radiance from this
direction. Sometimes the recursive tracing hits a light source instead
of a surface, which means the illumination from this direction is
also treated as direct lighting.

This process computes a Monte Carlo estimate for the radiance at
each pixel, and can be repeated to average more samples per pixel.
The following exposition will assume a single sample per pixel (we
will later show that we can also progressively average single-sample
estimates). The data created during a single run of the above process
can be turned into a path graph 𝐺 = (𝑉 , 𝐸) as follows.

3.3 Constructing path graphs

Let 𝑋 = {x𝑗 } be the world positions of 𝑁 shading points (the union
of all path vertices x𝑗 on scene surfaces created during the path
tracing process). Let 𝑌 = {y𝑘 } be the set of 𝑁𝐿 light points resulting
from successful light connections (again note that some light points
may be at infinity). The set of vertices of the path graph will be
𝑉 = 𝑋 ∪ 𝑌 . We assume these sets are disjoint; if a BSDF-sampled
ray hits an area light that also has a valid BSDF, we treat this as two
separate edges and vertices.
The set of edges 𝐸 will include three types of edges (see also

Fig. 3). First, if the path continues from a shading point x𝑗 and hits

another valid surface point x𝑘 , we include these connections as
continuation edges 𝑒 = 𝑘 𝑗 . Note that some shading points may not
have continuation points, as paths have to end eventually, either
through hitting a light that does not have a valid nonzero BSDF,
exiting the scene, or being culled through Russian roulette.

Next, for every shading point x𝑗 that has a valid light connection
to a light point y𝑘 , we add this connection to the graph. We denote
these connections as light edges. Note again that light edges can
come from either light sampling (next event estimation) or hitting a
light directly (this includes exiting the scene and hitting the envi-
ronment light). Therefore, up to two light edges can exist at a given
shading point. These are commonly weighted by the MIS power
heuristic; we treat the corresponding MIS weights as edge weights
on the light edges. Continuation edges do not have MIS weights in
forward path tracing, so their edge weights are equal to 1.
Finally, we locally connect each shading point to approximately

𝐾 − 1 nearby shading points. We split the set of shading points
into clusters of size approximately 𝐾 , and connect points within
each cluster. Other metrics beyond Euclidean distance could be
used if desired (e.g. considering the normal as well). We denote
these connections as neighbor edges, in addition to the above light
edges and continuation edges. Neighbor edges are not segments of
physical light transport paths; they are instead denoting routes of
information flow between neighbors during path reuse.
Furthermore, let us denote the set of indices in the cluster con-

taining 𝑗 by 𝐶 (𝑗); by convention, we include 𝑗 ∈ 𝐶 (𝑗). We denote
the set of continuation edges pointing towards any point in𝐶 (𝑗) by
𝐶𝐸 (𝑗), and the set of light edges pointing towards 𝐶 (𝑗) by 𝐿𝐸 (𝑗).

3.4 Invalid samples and Russian roulette

Glossy/specular BSDF sampling can produce invalid samples in
many commonly used models [Walter et al. 2007]. This can be
modeled by modifying the domain over which the sampling pdf is
defined. Instead of a hemisphere (or sphere, for transmissive BSDFs),
we take the domain of the pdf to be the union with a special symbol
∅, which is returned in case of failure. In practice, this just means
that pdfs will integrate to less than 1 over the (hemi)sphere, and this
can be handled by our framework without any problems (standard
MIS heuristics also handle this case correctly).
Conveniently, we can also use this property to implement Rus-

sian roulette, which can be theoretically modeled as intentionally
increasing the failure rate of BSDF sampling. Say we would like to
apply Russian roulette at point x𝑗 with continuation probability 𝑞 𝑗 .
We terminate the path with probability 1−𝑞 𝑗 , and if the path has not
been terminated, we simply modify the pdf 𝑝 𝑗 (𝜔) by multiplying
with 𝑞 𝑗 . In summary, we just increased the probability of returning
∅, and the rest of our framework is unchanged.

3.5 Aggregation and propagation

Once we construct a path graph, we can use the information avail-
able in the cluster containing each shading point x𝑗 to improve
its estimate of its outgoing radiance. Furthermore, we can do this
iteratively: given estimates ®𝐿 𝑗 in a given iteration, we can compute

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:6 • Deng et al.

improved estimates ®𝐿+𝑗 , and then repeat this process until conver-
gence. Two operators are key to this refinement: aggregation and
propagation.

Aggregation operators. An aggregation operator combines the
incoming radiance estimates (direct and indirect) at neighbors of x𝑗
to compute an improved estimate of its outgoing radiance ®𝐿+𝑗 .
There is a subtle distinction between direct and indirect light

aggregation. We therefore split aggregation into direct and indirect
operators, and write them separately in an abstract form as

®𝐿+𝑗 = ⊔̂
𝑒∈𝐿𝐸 (𝑗)

𝐿𝑒 + ⊔
𝑒∈𝐶𝐸 (𝑗)

𝐿𝑒 . (1)

Here ⊔̂ is the direct aggregation operator that gathers and aggregates
light edges within the neighborhood and computes an updated
direct light estimate, while ⊔ is the indirect aggregation operator
that aggregates continuation edges (bringing indirect light from
other surfaces). The main reason behind this separation is that only
the indirect aggregation benefits from iterative refinement.
The aggregation is technically achieved by treating all points in

the cluster containing x𝑗 as independent sampling techniques that
can be combined using MIS; the details of this will be presented in
the next section.

Propagation operator. The propagation operator is much simpler:
it updates the incoming indirect radiance estimate at shading point
x𝑗 by copying the outgoing radiance from its continuation point x𝑘 .
That is, for a continuation edge 𝑒 = 𝑘 𝑗 ,

𝐿+𝑒 = ®𝐿𝑘 . (2)

Combining the operators. We can combine the above operators,
to get an iterative update of outgoing radiance at each shading
point. In other words, we are looking for outgoing radiance values
that form the fixed point of the combined aggregation/propagation
operator. One can observe some similarity to traditional radiosity
formulations. One corollary of the formulation is that direct aggre-
gation only needs to be computed once; it does not change with
iterative refinement, as propagation does not affect it. However,
this obviously skips over a number of details. In the next section,
we show how to actually define the aggregation operators, under
what conditions the iteration converges, and how to finally obtain
per-pixel estimates, and how to combine the framework with an
external denoiser.

4 AGGREGATION AND PROPAGATION

In this section, we will first look at the general problem of combining
𝑁 Monte Carlo estimators for a single integral, each with a different
probability distribution. Next, we apply the idea to the design of
our aggregation operator. Finally, we will complete the pipeline
by introducing the propagation operator and the entire iterative
pipeline.

4.1 Multi-sample Monte Carlo estimators

Consider the problem of computing an integral 𝐼 =
∫
𝐷
𝑓 (𝑥) 𝑑𝑥 , by

taking 𝑁 random samples on the integration domain 𝐷 . Rather than
the simple case where the samples 𝑥1, · · · , 𝑥𝑛 are all independently
taken from the same probability distribution, let us consider the

case of different, separate pdfs per sample, 𝑝1 (𝑥), · · · , 𝑝𝑛 (𝑥). We
will assume that at least one 𝑝 𝑗 (𝑥) is non-zero for every 𝑥 where
𝑓 (𝑥) is non-zero. Below we discuss two approaches to derive an
estimator for this problem, and show that they lead to equivalent
results. Note: in this subsection, and only this subsection, we use
𝑥 (with or without subscripts) to denote samples of any abstract
domain, not necessarily related to path graph vertices.

Using the marginal density. Let us define the marginal density to
be 𝜌 (𝑥) = ∑

𝑘 𝑝𝑘 (𝑥). The function 𝜌 (𝑥) is a generalization of a pdf
to 𝑛 samples, and its integral over domain 𝐷 is 𝑛. Our integral can
now be computed by the unbiased estimator:

𝐼 ≈
𝑛∑
𝑗=1

𝑓 (𝑥 𝑗)
𝜌 (𝑥 𝑗)

. (3)

One can easily check that this estimator is unbiased:
𝑛∑
𝑗=1

𝐸

[
𝑓 (𝑥 𝑗)
𝜌 (𝑥 𝑗)

]
=

𝑛∑
𝑗=1

∫
𝐷

𝑝 𝑗 (𝑥)
𝑓 (𝑥)
𝜌 (𝑥)𝑑𝑥 = 𝐼 . (4)

In fact, the estimator clearly remains unbiased even if the function
queries 𝑓 (𝑥 𝑗) are themselves independent random variables that
give unbiased approximations to the true function values.

UsingMIS. Combining the𝑛 different sampling techniques through
multiple importance sampling [Veach 1997; Veach andGuibas 1995b]
introduces weighting functions𝑤 𝑗 (𝑥) that sum to unity, leading to
an estimator

𝐼 ≈
𝑛∑
𝑗=1

𝑤 𝑗 (𝑥 𝑗)
𝑓 (𝑥 𝑗)
𝑝 𝑗 (𝑥 𝑗)

, (5)

where the weights can be chosen using different heuristics. The
commonly used balance heuristic makes the weights equal to the
corresponding pdfs, normalizing to sum to 1 for every 𝑥 :

𝑤 𝑗 (𝑥) =
𝑝 𝑗 (𝑥)∑𝑛
𝑗=1 𝑝𝑘 (𝑥)

. (6)

By plugging in this weighting approach into Eq. (5), we find that it
simplifies to the same form as Eq. (3). Note also that the evaluation
of the estimator requires 𝑛 evaluations of the integrand 𝑓 , but 𝑛2
evaluations of the pdfs 𝑝 𝑗 , since we need the values of 𝑝𝑘 (𝑥 𝑗) for all
pairs (𝑘, 𝑗). As we will see, amortization can reduce this quadratic
complexity , because within each cluster we need to compute a
number of integrals that share the underlying pdf computations.

4.2 Designing aggregation operators

Recall that the aggregation operator turns the incoming direct and
indirect radiance estimates of all points in the neighborhood of a
given shading point 𝑥 𝑗 into an updated outgoing radiance estimate.
In both the direct and the indirect case, we have a number of samples
of incoming radiance in 𝐶 (𝑗), with known pdfs. We can therefore
treat them as independent sampling techniques, and combine them
in a straightforward manner using the above estimator (Eq. (3)) to
compute an updated outgoing radiance estimate. For the indirect
aggregation operator, this becomes:

⊔
𝑒∈𝐶𝐸 (𝑗)

𝐿𝑒 =
∑

𝑒∈𝐶𝐸 (𝑗)

𝑓𝑗 (𝜔𝑒) |𝑛 𝑗 · 𝜔𝑒 | 𝐿𝑒
𝜌𝑒

, (7)

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Path Graphs: Iterative Path Space Filtering • 1:7

no cont. edge

: shading point : outgoing cont. edge

: incoming cont. edge: pdf lobe at neighbor

: BSDF lobe at shading point

: neighbor point

Fig. 4. The local neighborhood for the indirect aggregation operator around

a shading point (yellow) . Neighbor points (blue) may have incoming ra-

diance estimates (continuation edges) from indirect illumination (though

not all neighborhood points have continuation edges, due to paths exiting

the scene or terminating by Russian roulette). The aggregation operator

combines the incoming radiances to produce an updated outgoing radiance

estimate shown in red. The combination weights can be derived in several

ways including MIS; see Sec. 4.2.

where
𝜌𝑒 =

∑
𝑒′∈𝐶𝐸 (𝑗)

𝑝𝑒′ (𝜔𝑒) . (8)

The same idea can be applied to the direct aggregation operator:

⊔̂
𝑒∈𝐿𝐸 (𝑗)

𝐿𝑒 =
∑

𝑒∈𝐿𝐸 (𝑗)

𝑓𝑗 (𝜔𝑒) |𝑛 𝑗 · 𝜔𝑒 | 𝑤𝑒 𝐿𝑒
𝜌𝑒

, (9)

where
𝜌𝑒 =

∑
𝑒′∈𝐿𝐸 (𝑗)

𝑝𝑒′ (𝜔𝑒) . (10)

4.3 Bias in aggregation

The aggregation operators are making the approximation that in-
coming radiance estimated at neighbors are valid at the original
shading point. This approximation introduces bias. It is the exact
same approximation made byWest et al. [2020] and is closely related
to the approximation made in photon mapping (vertex merging)
approaches. While West et al. theoretically discuss making the ag-
gregation unbiased, they do not implement it, as it would not be
practical.
Instead, we can only obtain the following conditional unbiased

property: If we assume the incoming radiance estimates are unbiased
random approximations of their true values at 𝑥 𝑗 , then the results
of the aggregation operators will be unbiased approximations to the
true outgoing (direct and indirect) radiances. This follows directly
from the estimator in 𝐸𝑞. (4). In other words, the bias does not
come from the design of the aggregation operator, but from the
assumption that incoming radiance estimates at neighbors are still
valid at the original shading point.

4.4 Efficient aggregation

While these aggregation operators work well, there is a problem:
they require 𝑂 (𝐾2) computation per shading point for neighbor-
hoods with 𝐾 points, as the computation of marginal densities 𝜌𝑒
requires the evaluation of pdfs 𝑝𝑒′ (𝜔𝑒) for all pairs (𝑒, 𝑒 ′) of edges

incident to a cluster. This is a general problem when applying MIS
to combine 𝐾 estimators, and was also noted by West et al. [2020].
However, we note that these pdf evaluations 𝑝𝑒′ (𝜔𝑒) are shared
between aggregations happening at different shading points in a
cluster. This lets us achieve 𝑂 (𝐾) instead of 𝑂 (𝐾2) complexity per
shading point.
Since the set of neighbors of a point is the same as the set of

neighbors of any of its neighbors (namely, the cluster itself), we can
apply the following gather-scatter approach to compute the indirect
aggregation in 𝑂 (𝐾) time per point.

(1) Gather: For each continuation edge 𝑒 = 𝑘 𝑗 compute the mar-
ginal density of sampling 𝜔𝑒 :

𝜌𝑒←
∑

𝑘∈𝐶 (𝑗)
𝑝𝑘 (𝜔𝑒). (11)

(2) Scatter: For each continuation edge 𝑒 = 𝑘 𝑗 contribute outgo-
ing radiance to each point 𝑘 ∈ 𝐶 (𝑗):

®𝐿𝑘← ®𝐿𝑘 +
𝑓𝑘 (𝜔𝑒) |𝑛𝑘 · 𝜔𝑒 | 𝐿𝑒

𝜌𝑒
. (12)

The same approach can be used for the direct aggregation operator,
using the light edges rather than the continuation edges. Clearly,
the gather and scatter operations both take 𝑂 (𝐾) time per shading
point; furthermore, the algorithm exactly computes the operator
from Eq. (7), because 𝐶 (𝑗) = 𝐶 (𝑘) is always the same set of indices
in the cluster.

At a high level, this gather-scatter algorithm is analogous to one
used by [Davidovič et al. 2010] (sec. 5 of their paper), though in
their case, image-space tiles take the role of clusters, and the details
of the scattered contribution differ from ours.

5 LINEAR SYSTEM SOLUTION

Recall that we defined two update operations, aggregation and prop-
agation. These can be combined into a single update that improves
the outgoing radiance values:

®𝐿+𝑗 = ⊔̂
𝑒∈𝐿𝐸 (𝑗)

𝐿𝑒 + ⊔
𝑒∈𝐶𝐸 (𝑗)

®𝐿𝑘 , where 𝑒 = 𝑘 𝑗 . (13)

In this section we show how to ensure convergence of this iterative
process.

Our goal can be stated as finding a vector of outgoing radiances
®𝐿 𝑗 that is a fixed point of the update rule in Eq. (13), and proving
that the iteration converges to that fixed point. The operation is
clearly linear in the outgoing radiance values, so it is convenient to
rewrite it in matrix-vector form.
Since the direct aggregation has an input (𝐿𝑒 where 𝑒 is a light

edge) that does not depend on the variable being updated (®𝐿 𝑗), its
output is a constant in the iteration. Let B be the vector of direct
radiances, improved by a single application of the direct aggregation
operator. That is, B will have elements B𝑗 = ⊔̂𝑒∈𝐿𝐸 (𝑗) 𝐿𝑒 . Next, we
denote the unknown vector of fixed-point outgoing radiances by X,
with elements X𝑗 = ®𝐿 𝑗 .

We next express the indirect aggregation and propagation as a
matrix M = AP. The aggregation matrix A has rows corresponding
to path vertices and columns corresponding to continuation edges.
It is sparse and consists of one nonzero block corresponding to

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:8 • Deng et al.

each cluster. The elements within the blocks are defined by Eq. (7)
and Eq. (8). The propagation matrix P has rows corresponding to
continuation edges and columns corresponding to path vertices; it
has a single nonzero value per row and at most one per column, in
element (𝑒, 𝑘) for every continuation edge 𝑒 = 𝑘 𝑗 . Their product M
is square, mapping an outgoing total radiance per path vertex to an
outgoing indirect radiance per path vertex. The linear system we
are solving is

X = MX + B. (14)
We use a simple iteration scheme to find a fixed point of the com-
bined aggregation-propagation operator, by repeated application
of the simple update rule X+ = MX + B. We can initialize X either
to the noisy radiance estimate from path graph construction, or to
zero; both options typically lead to a good solution within a few
iterations.

5.1 Convergence of Jacobi iterative method

Since M has a zero diagonal (a point’s outgoing radiance never
contributes to updating itself), the simple update rule above is an
instance of the well-known Jacobi iterative method.
Jacobi iteration is guaranteed to converge if the spectral radius

of M (the magnitude of its maximum eigenvalue) is less than 1.
We will show that this property holds under the condition that
BSDF importance sampling always produces weights smaller than 1;
afterwards we will present a technique that guarantees convergence
even without this property.

Theorem. Assume the importance sampling weights of all ma-
terials in the scene (i.e. the values of the BSDF times cosine term
divided by the corresponding sampling pdf) are always less than
1. Then the spectral radius ofM is less than 1 and Jacobi iteration
converges.

Proof. To prove that the spectral radius of M is less than 1, we
will prove the stronger property that ∥MX∥1 < ∥X∥1. This implies
that ∥MX∥1/∥X∥1 is always less than 1, and the supremum of this
ratio is known to bound the spectral radius.

First, it is clear that ∥PX∥1 ≤ ∥X∥1, since propagation cannot in-
crease energy; it merely reorders the values of X and omits some of
them, since the first vertex on each path does not have an outgoing
continuation edge. Therefore, it is enough to show that ∥AX∥1 <

∥X∥1, which holds if for each cluster, the sum of outgoing indirect
radiance values is less than the sum of incoming indirect radiance
values. Intuitively, the indirect aggregation numerically “loses en-
ergy” in every cluster.

Take a cluster𝐶 . Let 𝐸 denote the set of incoming radiance edges
into this cluster, that is, 𝐸 = 𝐶𝐸 (𝑗) for any 𝑗 ∈ 𝐶 (these sets are all
equivalent for any 𝑗). Using our definition of indirect aggregation
in eq. Eq. (7), the sum 𝑆𝐶 of outgoing indirect radiance values of
this cluster can be written as:

𝑆𝐶 =
∑
𝑗 ∈𝐶

∑
𝑒∈𝐸

𝑓𝑗 (𝜔𝑒) |𝑛 𝑗 · 𝜔𝑒 | 𝐿𝑒
𝜌𝑒

, (15)

where
𝜌𝑒 =

∑
𝑗 ∈𝐶

𝑝 𝑗 (𝜔𝑒) . (16)

We can change the order of summation and rewrite the sum as
follows:

𝑆𝐶 =
∑
𝑒∈𝐸

(∑
𝑗 ∈𝐶 𝑓𝑗 (𝜔𝑒) |𝑛 𝑗 · 𝜔𝑒 |∑

𝑗 ∈𝐶 𝑝 𝑗 (𝜔𝑒)

)
𝐿𝑒 . (17)

Recall that we want to prove 𝑆𝐶 <
∑
𝑒∈𝐸 𝐿𝑒 , which is true if the term

in parentheses is bounded from above by 1. Note, the numerator
contains the sum of BSDF-times-cosine values, while the denomina-
tor is the sum of the corresponding importance sampling pdf values.
We assumed that all importance sampling weights are less than 1,
or equivalently, each BSDF-times-cosine value is less than its corre-
sponding pdf. Therefore, the sum of the BSDF-times-cosine values
has to be less than the sum of their corresponding pdfs, finishing
our proof. □

Clamping strategy. While we can design BSDF models and impor-
tance sampling strategies that always satisfy the sampling weight
property (and in fact it is trivial for Lambertian BRDFs used in tra-
ditional radiosity approaches), it can be inconvenient in practice.
Many rendering systems already implement complex materials that
would be difficult to modify to never break this property.

We introduce a simple clamping approach that guarantees con-
vergence even with the simple Jacobi solver. The idea is to enforce
∥MX∥1 < ∥X∥1 by explicitly making sure each cluster’s sum of out-
puts is less than its sum of inputs. Note that this is the same property
that holds automatically when the sampling weight property is true.
We compute the input and output sums, and clamp the latter to be
at most 1 − 𝜖 times the former, for every cluster and every iteration.
We find that this simple technique guarantees convergence with-
out visibly affecting the result in cases where convergence would
occur anyway. However, we did indeed observe cases that would
otherwise diverge.

5.2 Final gather

The solution of the above iterative process will generally have much
lower variance than the original one-sample path tracing estimate;
however, it has significant correlation between nearby points, and it
shows cluster boundaries, making it unsuitable for applying image-
space denoisers. Instead, we apply a “final gather” idea: after suf-
ficient convergence with an appropriate cluster size 𝐾 , we use a
single iteration with 𝐾 = 1 to compute final pixel values. This leads
to a solution with lower variance than the original path tracing
(especially under difficult indirect-dominated lighting), but with no
pixel correlation. A major benefit of this final gather step is that its
result can be fed to a standard Monte Carlo denoiser.

6 RENDERING SYSTEM

We implemented our method in the open-source renderer Mitsuba
[Jakob 2010]; however, most path graph operations are accelerated
on the GPU using CUDA. The implementation is summarized in
pseudocode in Figure 5. The phases of our system consist of path
graph construction (on the CPU), clustering (on the GPU), iterative
aggregation and propagation (GPU), final gather (GPU), and optional
denoising (CPU). We currently use the Intel Open Image Denoise
[Intel 2020] on the CPU, to which we feed additional feature buffers
(diffuse color, normal); any similar denoiser could be used.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Path Graphs: Iterative Path Space Filtering • 1:9

Image render(scene):
VertexSet 𝑋 —path vertices on surfaces
EdgeSet 𝐸𝐶 , 𝐸𝐿 , 𝐸𝑁 —edges of path graph
PerVertexData hitData —sampling directions, BSDFs, PDFs
GBuffer auxBuffer —normal, albedo per pixel
PerVertexRadiance ®𝐿𝑑 , ®𝐿 —direct and total outgoing radiance
®𝐿, auxBuffer, 𝑋, 𝐸𝐶 , 𝐸𝐿, hitData = pathTrace(scene)
𝐸𝑁 = cluster(𝑋)
®𝐿𝑑 = aggregate(𝐸𝐿, 𝐸𝑁 , 𝐿, hitData)
for 𝑁iter iterations:

PerEdgeRadiance 𝐿 —indirect radiance on continuation edges
𝐿 = propagate(𝐸𝐶 , ®𝐿)
®𝐿 = ®𝐿𝑑 + aggregate(𝐸𝐶 , 𝐸𝑁 , 𝐿, hitData)

PerSampleRadiance 𝐿 —radiance of image space samples
𝐿 = finalGather(𝐸𝐶 , ®𝐿, hitData)
return reconstructAndDenoise(𝐿, auxBuffer)

PerEdgeRadiance propagate(𝐸𝐶 , ®𝐿):
PerEdgeRadiance 𝐿
for 𝑒 = 𝑘 𝑗 in 𝐸𝐶 :

𝐿𝑒 = ®𝐿𝑘
return 𝐿

PerVertexRadiance aggregate(𝐸𝑎, 𝐸𝑁 , 𝐿, hitData):
PerVertexRadiance ®𝐿
PerEdgeScalar 𝜌
for 𝑒 = 𝑙 𝑗 in 𝐸𝑎 : %gather

for 𝑘 in 𝐶 (𝑗): —𝐶 (𝑗) = {𝑘 | 𝑗𝑘 ∈ 𝐸𝑁 } ∪ { 𝑗}
𝜌𝑒 += hitData.pdf(𝑘, 𝑒) —pdf at vertex 𝑘 evaluated for 𝜔𝑒

for 𝑒 = 𝑙 𝑗 in 𝐸𝑎 : —scatter
for 𝑘 in 𝐶 (𝑗):

𝑓 = hitData.bsdf(𝑘, 𝑒) —bsdf at vertex 𝑘 evaluated for 𝜔𝑒
𝜇 = hitData.cosine(𝑘, 𝑒) —|𝑛𝑘 · 𝜔𝑒 |
®𝐿𝑘 += 𝑓 𝜇 𝐿𝑒 𝑤𝑒/𝜌𝑒

return ®𝐿

PerSampleRadiance finalGather(𝐸𝐶 , ®𝐿𝑑 , ®𝐿, hitData):
PerVertexRadiance ®𝐿
®𝐿 = ®𝐿𝑑 + aggregate(𝐸𝐶 , {}, propagate(𝐸𝐶 , ®𝐿), auxData)
return firstBounce(®𝐿) —the first vertex of each path

Fig. 5. Algorithm summary, omitting clamping of outgoing radiance during

aggregation for simplicity.

The aggregation/propagation phase is implemented in CUDA to
leverage the GPU for these arithmetic-dense computations. This
requires porting BSDF and pdf evaluation to CUDA. This is a fairly
small part of the material system; importance sampling, texture
mapping, procedurals, displacements and other details can stay
within the path graph construction stage. Of course, one could port
the entire system to the GPU, though we envision a method like
ours to be most useful for complex scenes that do not fit into GPU
memory.

Path graph construction. The points of the path graph are recorded
during a standard path tracing process. For each pixel, a path is
traced, and every time the path hits a surface a feature vector for
the corresponding point is saved. This feature vector contains the
incoming/outgoing vectors, as well as enough information to locally
evaluate the point’s BSDF and pdf. The path terminates when it exits
the scene or by Russian roulette after a depth of 5, with the Russian
roulette probability derived from the maximum color channel of the
albedo. This provides all the vertices of the path graph, as well as
the continuation and light edges.

To construct the clustering, 𝑁 /𝐾 points are selected uniformly at
random as cluster centers, then we place each point in the cluster
corresponding to the nearest cluster center, using a spatial hashgrid
on the GPU to accelerate the search for the nearest center. This is
essentially one iteration of the 𝑘-means algorithm; we could run
more iterations but did not find it necessary.

7 EXPERIMENTS AND RESULTS

We evaluate our path graph framework on several scenes, especially
focusing on indoor environments with a strong indirect illumination
component. This choice of examples follows the intuition that the
primary benefit from our approach would occur in environments
that contain strong lighting contribution from indirect paths. For
example, a closed interior scene with light entering through win-
dows and doors requires light to propagate several bounces before
reaching the camera.
The hardware we use consists of an AMD Threadripper 2950

(48GB RAM), with 16 cores and 32 threads, and an Nvidia RTX2080Ti
(11GB). The CPU we use could be considered higher-end than the
GPU. A further opportunity to overlap CPU and GPU computation
also exists, but is not currently utilized.

The additional memory used for recording graph data is around
800MB. The resolution of most of the images is 1280x720 pixels, with
the exception of the caustics scene, which has an image resolution
of 1024x1024 pixels.

Comparison to West et al. In Fig. 6, we show a comparison of our
aggregation method to the one from the method ofWest et al. [2020].
We compare on two image tiles taken from indirectly lit areas of the
images shown on the left. The two methods compared are the West
et al. method (which is essentially equivalent to one application of
the 𝑂 (𝐾2) aggregation operator, using 𝐾 nearest neighbors insted
of clustering), and our faster scatter-gather approach (𝑂 (𝐾) with
propagation/iteration); we also use improved direct lighting through
direct aggregation. Our method is both faster and has lower error,
both when visualized directly and through the additional 1-sample
final gather.

Note that our approach can consistently improve the results and
reduce the variance. In general, we observe that our results with
𝐾 = 16 are already of sufficient quality, and increasing it does not
benefit the final result much. The results at 𝐾 = 16 only take less
than 1s to compute using our fast gather/scatter technique, giving a
highly efficient algorithm that can be easily used in practice. After
applying the final gather, the𝐾 = 16 results can be further effectively
denoised, leading to further gains in rendering quality.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:10 • Deng et al.

W
es
te

ta
l.
20

20
ou

rs
W
es
te

ta
l.
20

20
ou

rs

No Final Gather Final Gather
K=8 K=16 K=32 K=64 K=8 K=16 K=32 K=64

0.47 s0.47 s 1.69 s1.69 s 6.96 s6.96 s 29.4 s29.4 s

0.49 s0.49 s 0.80 s0.80 s 1.47 s1.47 s 2.84 s2.84 s

0.34 s0.34 s 0.56 s0.56 s 1.02 s1.02 s 1.90 s1.90 s

0.36 s0.36 s 1.28 s1.28 s 5.47 s5.47 s 22.8 s22.8 s

Fig. 6. Comparison of our aggregation method to West et al. [2020]. We compare on two image tiles taken from indirectly lit areas of the images on the left.

West et al. is essentially one𝑂 (𝐾2) aggregation using 𝐾 nearest neighbors. Our method uses clustering and scatter-gather (𝑂 (𝐾)) with propagation and

iteration. Our method is both faster and has the lower error/noise, both when visualized directly and through an extra 1-sample final gather. Scenes, top to

bottom: classroom, living-room-2.

In Fig. 8, we show an equal-time comparison to path tracing on
three scenes. In the time it takes to run our method, path tracing can
render several additional samples. Nevertheless, our result has lower
variance. Furthermore, while denoising the results of both compared
methods leads to smooth images in both cases, our RelMSE and
visual quality are better. The rightmost column shows the reference
computed with many samples per pixel. Note how our denoised
solution matches the reference color tint closer than the denoised
path tracing.

In Fig. 1, we show an equal-time comparison on a more complex
scene, with difficult illumination conditions: the windows are mostly
blocked by opaque window shades, and lighting is dominated by
multi-bounce indirect illumination. The results show a clear im-
provement provided by the path graph iteration and propagation in
this indirect-dominated scene. The top row shows a higher number
of samples (200) with our method, which takes less time than stan-
dard path tracing with 380 samples; noise is reduced substantially in
our result. The bottom row shows the results of denoising a lower
sample count (19spp) with our method, which took less time than
37 samples of standard path tracing. Our denoised result is much
better than denoised path tracing in terms of resolving details of
illumination, shown in the insets on the right.

In Fig. 9, we show an equal-time (30 seconds) comparison against
path tracing, path guiding [Müller et al. 2017] and bidirectional path
tracing on six scenes. Although path guiding can sometimes beat our
approach (path tracing + path graph) in RelMSE values, our method
could theoretically be used in the future together with path guiding
to further improve the efficiency. For heavily indirect-dominated
scenes such as office, our method is significantly better in terms
of RelMSE. Furthermore, our result quality is stable across different
kinds of illumination (direct, indirect, etc).

To illustrate the effects of bias, we compare reference renderings
on a variety of scenes including direct-lighting dominated scenes
(living-room, dining-room), indirect-lighting dominated scenes
(office) and the caustics scene. A subset is shown in Fig. 7, and
more results can be found in the supplementary materials. These
scenes show various materials including both diffuse and highly
specular surfaces (e.g. polished wooden floor, golden ring). The re-
sulting error is a combination of noise, aggregation bias and clamp-
ing bias. The error maps are absolute differences between path graph
images and references. Note the error curves in the bottom row,
showing that despite some bias, our method generally has much
lower overall error than unbiased path tracing.
In Table 2, we report detailed timings for different parts of our

pipeline. The 2nd to 4th columns are the average render time of 1
sample per pixel for both path tracing, revised path tracing with data
recording, and the total execution time of our path graph iteration.
The ratio is the number of samples that a path tracer could compute
during the same time of 1spp using our method, with path sample
recording overhead.

Temporal behavior. We currently do not utilize temporal coher-
ence in our method. Despite this, running our method for each
frame separately does not introduce unwanted temporal artifacts.
The supplementary material includes a video showing the temporal
behavior of our results. There is essentially no temporal coherence
across frames (since paths and clusters are chosen differently each
frame) and no low-frequency artifacts due to the presence of our
final gather step. A possible future direction of utilizing temporal
information would be to build our path graph over paths accumu-
lated through frames, selectively dropping paths from older frames;
the total graph size could stay constant.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Path Graphs: Iterative Path Space Filtering • 1:11
Re

fe
re
nc
es

O
ur
s

Er
ro
rM

ap
s

lg
(R
M
SR

E)

Office Living-room Dining-room Caustics

RelMSE: 7.03e-03, MSE: 3.56e-04 RelMSE: 4.7e-04, MSE: 1.994e-05 RelMSE: 1.40e-4, MSE: 2.25e-07 RelMSE: 2.0e-03, MSE: 6.63e-05

Fig. 7. Error analysis on images with high sampling rates. The first row shows converged path-traced reference images and the second row shows converged

renderings with our method, both with indirect illumination only. The third row visualizes the difference, divided by the norm of the reference image. The

fourth row shows the convergence of our method vs. path tracing for sampling rates from 100 spp to 20,000 spp; the vertical axis represents the root mean

square relative error with respect to the reference image. The RelMSE and MSE between the methods are also listed at the bottom.

Table 2. Detailed timing of our pipeline steps. The 2nd to 4th columns are the average render time of 1 sample per pixel for both path tracing, revised path

tracing with data recording, and the total execution time of our path graph iteration. The ratio is the number of samples that a path tracer could compute

during the same time of 1spp using our method, with path sample recording overhead.

Scene Name
time (s)

ratio

relMSE
for 1SPP pathtr:ours SPP

for equal time(30s)
Equal time RelMSE ratio

path tr: ourspath tr ours path
tr oursrecord path tr path graph

veach-ajar 0.28 0.5 0.75 4.5 39.6 7.72 107:24 1.80
staircase 0.59 0.7 0.61 2.2 20.6 5.79 50:23 1.68
office 0.8 0.9 0.63 1.9 491 48.8 37:19 4.74
kitchen 0.5 0.7 0.62 2.6 17.7 3.41 60:23 2.02

dining-room 0.45 0.6 0.60 2.7 5.09 1.21 66:24 1.38
classroom 0.49 0.7 0.60 2.7 14.7 4.79 61:23 1.05

living-room-2 0.51 0.8 0.77 3.1 1.28 0.31 58:18 1.15
dining-room-2 0.67 0.9 0.52 2.1 31.4 14.2 45:21 0.93

caustics 0.25 0.3 0.123 1.6 8.27 4.38 110:65 1.75

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:12 • Deng et al.

(a) PT (b) Ours (c) D-PT (d) D-Ours (e) Ref

3spp RelMSE: 2.473spp RelMSE: 2.47 1spp RelMSE: 1.211spp RelMSE: 1.21 3spp RelMSE: 0.0053spp RelMSE: 0.005 1spp RelMSE: 0.0031spp RelMSE: 0.003

3spp RelMSE: 4.363spp RelMSE: 4.36 1spp RelMSE: 3.421spp RelMSE: 3.42 3spp RelMSE: 0.023spp RelMSE: 0.02 1spp RelMSE: 0.011spp RelMSE: 0.01

3spp RelMSE: 7.143spp RelMSE: 7.14 1spp RelMSE: 6.551spp RelMSE: 6.55 3spp RelMSE: 0.033spp RelMSE: 0.03 1spp RelMSE: 0.021spp RelMSE: 0.02

Fig. 8. Equal time comparison between path tracing and our method (path tracing + path graph). We are showing indirect illumination only. In the time it

takes to run our method, path tracing can render 3 samples in these scenes. (a) Path tracer at 3 spp. (b) The result of our method applied to the path graph

constructed from 1 spp path tracing has lower variance. (c-d) Denoising the results from (a-b) leads to smooth images in both cases, but our RMSE and visual

quality are better. (f) Shows the reference computed with many samples per pixel. Note that our denoised solution matches the reference color tint closer than

the denoised path tracing. Scenes, top to bottom: dining-room, kitchen, staircase.

Direct illumination. We also show a comparison between our
method and path tracing in an indirect dominated scene (office), a
direct-dominated scene (living-room), and an open scene (caustics)
in Fig. 10. In this equal-time comparison, we keep the timing equal
by allowing our method to take more direct illumination samples
per pixel. Our method is generally more efficient in scenes domi-
nated by indirect lighting, and this comparison shows the transition
to where path tracing is more efficient when lighting becomes more
direct. Note that even in the living-room scene, which is well lit
by direct illumination, our method still shows benefits.

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

The main insight of this paper is that the noisy estimates of lighting
throughout a scene that are computed during path tracing contain
useful information that is lost when we only look at the final radi-
ance estimate for each path. We can squeeze more image quality
out of the same data by holding onto a collection of paths and pro-
cessing them globally to refine our estimates of radiometry in the
scene, then computing updated radiance estimates for use in image
reconstruction (denoising). The method is orthogonal to different
denoising and path guiding methods, and can be combined with

them for extra gains. Fundamentally, the size of path graph that
can be used is limited by available GPU memory. For preview or
interactive applications a single pass of our method can produce
a more useful image within a limited path budget, and for offline
rendering our method can be used to refine one batch of paths at a
time, producing cleaner estimates when they are averaged.
The practical advantage of our method hinges on its scene inde-

pendence. It competes against simply running the path tracer for
the additional time it takes to refine the path graph. Our current
implementation does provide practical improvements especially in
scenes that are difficult to path-trace, but we believe the benefits will
be even greater for even more complex scenes. While our method
is light-weight, scene-independent and efficient in complex scenes,
it also presents some limitations.

Bias. Like all other path reuse methods, we trade bias for variance.
There are two potential sources of bias. First, the aggregation across
clusters assumes the incoming radiance along one direction is the
same for all the shading points in the cluster. For low sample counts
this bias is generally dwarfed by the bias introduced in the denoiser,

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Path Graphs: Iterative Path Space Filtering • 1:13

(a) PT (b) Ours (c) Bidirectional PT (d) Path Guiding (e) Reference

RelMSE: 0.290RelMSE: 0.290 RelMSE: 0.141RelMSE: 0.141 RelMSE: 0.473RelMSE: 0.473 RelMSE: 0.123RelMSE: 0.123

RelMSE: 0.0223RelMSE: 0.0223 RelMSE: 0.0193RelMSE: 0.0193 RelMSE: 0.024RelMSE: 0.024 RelMSE: 0.0130RelMSE: 0.0130

RelMSE: 10.595RelMSE: 10.595 RelMSE: 2.301RelMSE: 2.301 RelMSE: 24.395RelMSE: 24.395 RelMSE: 54.482RelMSE: 54.482

RelMSE: 0.067RelMSE: 0.067 RelMSE: 0.048RelMSE: 0.048 RelMSE: 0.082RelMSE: 0.082 RelMSE: 0.020RelMSE: 0.020

RelMSE: 0.705RelMSE: 0.705 RelMSE: 0.758RelMSE: 0.758 RelMSE: 0.867RelMSE: 0.867 RelMSE: 1.759RelMSE: 1.759

RelMSE: 0.424RelMSE: 0.424 RelMSE: 0.254RelMSE: 0.254 RelMSE: 0.476RelMSE: 0.476 RelMSE: 1.197RelMSE: 1.197

Ki
tc
he

n
li
vi
ng

-r
oo

m
-2

of
fi
ce

di
ni
ng

-r
oo

m
di
ni
ng

-r
oo

m
-2

St
ai
rc

as
e

Fig. 9. Comparison between (a) path tracing, (b) our method (path tracing + path graph), (c) bidirectional path tracing and (d) path guiding on an equal

time (30sec). We are showing indirect illumination only. The path guiding out performs in most of the scenes but not in extremely difficult scenes. (office,

staircase), which are interior lit by natural light with one window open. In the direct dominated scenes Dining-room-2, living-room2, kitchen the RelMSE

value of path guiding and ours are close while ours remain more stable when it comes to indirect dominated scenes.

but it eventually becomes relevant as the result converges. In previ-
ous filtering work, the bias due to aggregation could affect e.g. hard
shadow edges, but our final gather means this bias only affects the
image indirectly. Furthermore, each 1-spp pass of our method has
different cluster boundaries, and clusters are small (typically up to
16 points), all of which work against visibility of this bias.

Second, an additional source of bias comes from the clamping
that is applied during aggregation when the total outgoing radiance
of a cluster is larger than the total incoming radiance. This case
is rare, but happens more frequently in scenes with many highly
specular surfaces. We use clamping in all results in this paper to
ensure that the method is provably convergent. The effect remains

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:14 • Deng et al.

O
ur
s

Pa
th

Tr
ac
in
g

RelMSE: 0.39RelMSE: 0.39RelMSE: 0.164RelMSE: 0.164RelMSE: 3.98RelMSE: 3.98

RelMSE: 0.16RelMSE: 0.16RelMSE: 0.193RelMSE: 0.193RelMSE: 9.61RelMSE: 9.61

Fig. 10. Equal-time (30s) comparison between the path graph with𝑛 indirect

samples and𝑚 direct samples (top row), and path tracing with𝑚 samples

(bottom row). The sample count𝑚 is determined by the speed of the path

tracer, and then 𝑛 is computed so that the two methods take the same

time to run; this provides a comparison with similar quality direct lighting.

The path graph is generally more efficient in scenes dominated by indirect

lighting, and this comparison shows the transition to where path tracing is

more efficient when lighting becomes more direct.

subtle, as shown in Fig. 7: the amount of this bias is comparable
or lower than the variance present in a path-traced rendering with
thousands of samples (see third column).

Participating media. In this work we assumed vacuum between
surfaces. Sceneswith participatingmedia are often indirect-dominated
and have long light paths, which may be a good opportunity for an
extension of our method.

Future work. The path graph framework opens up several op-
portunities for near-term improvements. In addition to the volume
extension, there may be considerable benefit in merging the path
graph and denoising phases, so that features deeper in the scene are
available when computing reconstruction weights. At the same time
it may be useful to replace our deterministic aggregation weights
with learned weights computed by a neural network, so path graph
refinement and image reconstruction become a unified averaging
process that can be tuned through machine learning.
Tuning the implementation can provide further gains, and per-

formance might be further improved by performing selective refine-
ment rather than uniformly refining all points on every iteration.
Path graphs could enable fast rendering of scenes that are too large
to trace enough paths for acceptable results with denoising alone,
and in interactive applications the path graph computation could
be pipelined with the path tracing phase, especially in cases where
the path graph fits in GPU memory but the scene does not.

REFERENCES

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-
lutional networks for denoising Monte Carlo renderings. ACM Transactions on
Graphics (TOG) 36, 4 (2017), 97.

Pablo Bauszat, Victor Petitjean, and Elmar Eisemann. 2017. Gradient-Domain Path
Reusing. ACM Trans. Graph. 36, 6, Article 229 (Nov. 2017), 9 pages. https://doi.org/
10.1145/3130800.3130886

Philippe Bekaert, Mateu Sbert, and John Halton. 2002. Accelerating Path Tracing by
Re-Using Paths. In Proceedings of the 13th Eurographics Workshop on Rendering
(EGRW ’02). Eurographics Association, Goslar, DEU, 125–134.

Benedikt Bitterli, Jan Novák, and Wojciech Jarosz. 2015. Portal-Masked Environment
Map Sampling. Computer Graphics Forum (Proceedings of EGSR) 34, 4 (June 2015).
https://doi.org/10.1111/cgf.12674

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech
Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with
dynamic direct lighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH)
39, 4 (July 2020). https://doi.org/10/gg8xc7

Chakravarty R. Alla Chaitanya, Laurent Belcour, Toshiya Hachisuka, Simon Premoze,
Jacopo Pantaleoni, and Derek Nowrouzezahrai. 2018. Matrix Bidirectional Path
Tracing. In Proceedings of the Eurographics Symposium on Rendering: Experimental
Ideas & Implementations (SR ’18). Eurographics Association, Goslar, DEU, 23–32.
https://doi.org/10.2312/sre.20181169

Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-
tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 98.

David Cline, Justin Talbot, and Parris Egbert. 2005. Energy redistribution path tracing.
In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 1186–1195.

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, Philipp Slusallek, and Kavita Bala.
2010. Combining global and local virtual lights for detailed glossy illumination.
ACM Transactions on Graphics (TOG) 29, 6 (2010), 1–8.

Xi Deng, Shaojie Jiao, Benedikt Bitterli, and Wojciech Jarosz. 2019. Photon Surfaces for
Robust, Unbiased Volumetric Density Estimation. ACM Trans. Graph. 38, 4, Article
46 (July 2019), 12 pages. https://doi.org/10.1145/3306346.3323041

Luca Fascione, Johannes Hanika, Daniel Heckenberg, Christopher Kulla, Marc Droske,
and Jorge Schwarzhaupt. 2019. Path Tracing in Production: Part 1: Modern Path
Tracing. In ACM SIGGRAPH 2019 Courses (SIGGRAPH ’19). Association for Comput-
ing Machinery, New York, NY, USA, Article 19, 113 pages. https://doi.org/10.1145/
3305366.3328079

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light
Transport Simulation with Vertex Connection and Merging. ACM Trans. Graph. 31,
6, Article 192 (Nov. 2012), 10 pages. https://doi.org/10.1145/2366145.2366211

Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-based Monte Carlo denoising using a kernel-splatting network. ACM Trans-
actions on Graphics (TOG) 38, 4 (2019), 1–12.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. 1984.
Modeling the Interaction of Light between Diffuse Surfaces. SIGGRAPH Comput.
Graph. 18, 3 (Jan. 1984), 213–222. https://doi.org/10.1145/964965.808601

Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, and Jaroslav Křivánek. 2019.
Variance-Aware Multiple Importance Sampling. ACM Trans. Graph. 38, 6, Arti-
cle 152 (Nov. 2019), 9 pages. https://doi.org/10.1145/3355089.3356515

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive photon
mapping. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 130.

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space
Extension for Robust Light Transport Simulation. ACM Trans. Graph. 31, 6, Article
191 (Nov. 2012), 10 pages. https://doi.org/10.1145/2366145.2366210

Pat Hanrahan and David Salzman. 1991. A rapid hierarchical radiosity algorithm. In
Computer Graphics. 197–206.

Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. 2009. Virtual spherical
lights for many-light rendering of glossy scenes. In ACM SIGGRAPH Asia 2009
papers. 1–6.

Miloš Hašan, Fabio Pellacini, and Kavita Bala. 2007. Matrix row-column sampling for
the many-light problem. In ACM SIGGRAPH 2007 papers. 26–es.

Heinrich Hey and Werner Purgathofer. 2002. Importance Sampling with Hemispherical
Particle Footprints. In Proceedings of the 18th Spring Conference on Computer Graphics
(SCCG ’02). Association for Computing Machinery, New York, NY, USA, 107–114.
https://doi.org/10.1145/584458.584476

Intel. 2020. Intel Open Image Denoise. https://www.openimagedenoise.org.
Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
Wenzel Jakob, Christian Regg, and Wojciech Jarosz. 2011. Progressive expectation-

maximization for hierarchical volumetric photon mapping. In Computer Graphics
Forum, Vol. 30. Wiley Online Library, 1287–1297.

H. Jensen. 1995. Importance Driven Path Tracing using the Photon Map. In Rendering
Techniques.

Henrik Wann Jensen. 1996. Global illumination using photon maps. In Rendering
Techniques’ 96. Springer, 21–30.

James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug.
1986), 143–150. https://doi.org/10.1145/15886.15902

Anton S Kaplanyan and Carsten Dachsbacher. 2013. Adaptive progressive photon
mapping. ACM Transactions on Graphics (TOG) 32, 2 (2013), 16.

Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, and Jaroslav Křivánek. 2019. MIS
Compensation: Optimizing Sampling Techniques in Multiple Importance Sampling.
ACM Trans. Graph. 38, 6, Article 151 (Nov. 2019), 12 pages. https://doi.org/10.1145/
3355089.3356565

Alexander Keller. 1997. Instant radiosity. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. 49–56.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://doi.org/10.1145/3130800.3130886
https://doi.org/10.1145/3130800.3130886
https://doi.org/10.1111/cgf.12674
https://doi.org/10/gg8xc7
https://doi.org/10.2312/sre.20181169
https://doi.org/10.1145/3306346.3323041
https://doi.org/10.1145/3305366.3328079
https://doi.org/10.1145/3305366.3328079
https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/964965.808601
https://doi.org/10.1145/3355089.3356515
https://doi.org/10.1145/2366145.2366210
https://doi.org/10.1145/584458.584476
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/3355089.3356565
https://doi.org/10.1145/3355089.3356565

Path Graphs: Iterative Path Space Filtering • 1:15

Alexander Keller, Ken Dahm, and Nikolaus Binder. 2014. Path Space Filtering. In ACM
SIGGRAPH 2014 Talks (SIGGRAPH ’14). Association for Computing Machinery, New
York, NY, USA, Article 68, 1 pages. https://doi.org/10.1145/2614106.2614149

Alexander Keller, Ken Dahm, and Nikolaus Binder. 2016. Path Space Filtering. In
Monte Carlo and Quasi-Monte Carlo Methods, Ronald Cools and Dirk Nuyens (Eds.).
Springer International Publishing, Cham, 423–436.

Claude Knaus and Matthias Zwicker. 2011. Progressive photon mapping: A probabilistic
approach. ACM Transactions on Graphics (TOG) 30, 3 (2011), 25.

Ivo Kondapaneni, Petr Vevoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, and
Jaroslav Křivánek. 2019. Optimal Multiple Importance Sampling. ACM Trans. Graph.
38, 4, Article 37 (July 2019), 14 pages. https://doi.org/10.1145/3306346.3323009

Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. 2008.
Radiance Caching for Efficient Global Illumination Computation. InACM SIGGRAPH
2008 Classes (SIGGRAPH ’08). Association for Computing Machinery, New York, NY,
USA, Article 75, 19 pages. https://doi.org/10.1145/1401132.1401228

Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek
Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying Points, Beams, and Paths in
Volumetric Light Transport Simulation. ACM Trans. Graph. 33, 4, Article 103 (July
2014), 13 pages. https://doi.org/10.1145/2601097.2601219

Eric P Lafortune and Yves Willems. 1993. Bi-directional path tracing. In Compugraphics’
93. 145–153.

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient
Light-Transport Simulation. Computer Graphics Forum (Proceedings of EGSR) 36, 4
(June 2017), 91–100. https://doi.org/10.1111/cgf.13227

Jiawei Ou and Fabio Pellacini. 2011. LightSlice: Matrix Slice Sampling for the Many-
Lights Problem. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–8. https://doi.org/10.1145/
2070781.2024213

Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis light transport for
participating media. In Rendering Techniques 2000. Springer, 11–22.

Hao Qin, Xin Sun, Qiming Hou, Baining Guo, and Kun Zhou. 2015. Unbiased Photon
Gathering for Light Transport Simulation. ACM Trans. Graph. 34, 6, Article 208 (Oct.
2015), 14 pages. https://doi.org/10.1145/2816795.2818119

Lars Schjøth, Jon Sporring, and O Fogh Olsen. 2008. Diffusion based photon mapping.
In Computer Graphics Forum, Vol. 27. Wiley Online Library, 2114–2127.

Benjamin Segovia, Jean Claude Iehl, Richard Mitanchey, and Bernard Péroche. 2006.
Bidirectional Instant Radiosity.. In Rendering Techniques. 389–397.

Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
Dissertation. Stanford University.

Eric Veach and Leonidas Guibas. 1995a. Bidirectional Estimators for Light Transport.
In Photorealistic Rendering Techniques (Proceedings of the Fifth EUROGRAPHICS
Workshop on Rendering), Georgios Sakas, Stefan Müller, and Peter Shirley (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 145–167.

Eric Veach and Leonidas J Guibas. 1995b. Optimally combining sampling techniques for
Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. ACM, 419–428.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line Learning of Parametric Mixture Models for Light Transport Simulation.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (aug 2014).

Bruce Walter, Adam Arbree, Kavita Bala, and Donald P Greenberg. 2006. Multidimen-
sional lightcuts. In ACM SIGGRAPH 2006 Papers. 1081–1088.

Bruce Walter, Pramook Khungurn, and Kavita Bala. 2012. Bidirectional Lightcuts. ACM
Trans. Graph. 31, 4, Article 59 (July 2012), 11 pages. https://doi.org/10.1145/2185520.
2185555

Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007.
Microfacet Models for Refraction through Rough Surfaces. In Proceedings of EGSR
2007.

Beibei Wang, Jing Huang, Bert Buchholz, Xiangxu Meng, and Tamy Boubekeur. 2013.
Factorized Point-Based Global Illumination. Computer Graphics Forum (Special Issue
on EGSR 2013) 32, 4 (2013), 117–123.

Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A Ray Tracing
Solution for Diffuse Interreflection. In Proceedings of the 15th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’88). Association for
Computing Machinery, New York, NY, USA, 85–92. https://doi.org/10.1145/54852.
378490

Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. Continuous
Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 39, 4 (July 2020). https://doi.org/10.1145/3386569.3392436

Shilin Zhu, Zexiang Xu, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2020.
Deep Kernel Density Estimation for Photon Mapping. In Computer Graphics Forum,
Vol. 39. Wiley Online Library, 35–45.

Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances
in adaptive sampling and reconstruction for Monte Carlo rendering. In Computer
Graphics Forum, Vol. 34. Wiley Online Library, 667–681.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://doi.org/10.1145/2614106.2614149
https://doi.org/10.1145/3306346.3323009
https://doi.org/10.1145/1401132.1401228
https://doi.org/10.1145/2601097.2601219
https://doi.org/10.1111/cgf.13227
https://doi.org/10.1145/2070781.2024213
https://doi.org/10.1145/2070781.2024213
https://doi.org/10.1145/2816795.2818119
https://doi.org/10.1145/2185520.2185555
https://doi.org/10.1145/2185520.2185555
https://doi.org/10.1145/54852.378490
https://doi.org/10.1145/54852.378490
https://doi.org/10.1145/3386569.3392436

	Abstract
	1 Introduction
	2 Related Work
	3 Path Graph Framework
	3.1 Notation
	3.2 Path tracing summary
	3.3 Constructing path graphs
	3.4 Invalid samples and Russian roulette
	3.5 Aggregation and propagation

	4 Aggregation and Propagation
	4.1 Multi-sample Monte Carlo estimators
	4.2 Designing aggregation operators
	4.3 Bias in aggregation
	4.4 Efficient aggregation

	5 Linear system solution
	5.1 Convergence of Jacobi iterative method
	5.2 Final gather

	6 Rendering System
	7 Experiments and Results
	8 Conclusions, Limitations, and Future Work
	References

