Neural Control Variates with Automatic Integration

Zilu Li* Guandao Yang" Qingqing Zhao

Cornell University Stanford University Stanford University

USA, Tthaca USA, Palo Alto USA, Palo Alto
z1327@cornell.edu guandao@stanford.edu cyanzhao@stanford.edu

Xi Deng Leonidas Guibas Bharath Hariharan
Cornell University Stanford University Cornell University

USA, Ithaca USA, Palo Alto USA, Ithaca
xd93@cornell.edu guibas@cs.stanford.edu bharathh@cs.cornell.edu

Gordon Wetzstein
Stanford University
USA, Palo Alto
gordonwz@stanford.edu

£ 3N FCxi)/P(xi)

A

Go(x) ~ f(x)

Derivative a—‘zc Gp(x)

f(x) = 2Go(x)

Integral fa b %Ge (x)dx

2 Gy(x)

2 Gy(x)

a b

J? fxdx

a4
Y

Goal:

i Low Variance
i MC estimates }

N I (fG) = ZGo(xi)/P(xi) +

b
fl %Gg(x)dx fla a—‘iGg(x)dx
b " a

Gg(b) - Gg(a)

Figure 1: We propose a novel method to use arbitrary neural network architectures as control variates (CV). Instead of using
the network to approximate the integrand, we deploy it to approximate the antiderivative of the integrand. This allows us to
construct pairs of networks where one is the analytical integral of the other, tackling a main challenge of neural CV methods.

ABSTRACT

This paper presents a method to leverage arbitrary neural network
architecture for control variates. Control variates are crucial in
reducing the variance of Monte Carlo integration, but they hinge
on finding a function that both correlates with the integrand and
has a known analytical integral. Traditional approaches rely on
heuristics to choose this function, which might not be expressive
enough to correlate well with the integrand. Recent research al-
leviates this issue by modeling the integrands with a learnable
parametric model, such as a neural network. However, the chal-
lenge remains in creating an expressive parametric model with a
known analytical integral. This paper proposes a novel approach

“Equal Contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0525-0/24/07...$15.00
https://doi.org/10.1145/3641519.3657395

to construct learnable parametric control variates functions from
arbitrary neural network architectures. Instead of using a network
to approximate the integrand directly, we employ the network to
approximate the anti-derivative of the integrand. This allows us to
use automatic differentiation to create a function whose integration
can be constructed by the antiderivative network. We apply our
method to solve partial differential equations using the Walk-on-
sphere algorithm [Sawhney and Crane 2020]. Our results indicate
that this approach is unbiased using various network architectures
and achieves lower variance than other control variate methods.

CCS CONCEPTS

« Computing methodologies —» Computer graphics; Modeling
and simulation; Neural networks.

KEYWORDS
Control Variates, Monte Carlo Methods, PDE Solvers

ACM Reference Format:

Zilu Li, Guandao Yang, Qingqing Zhao, Xi Deng, Leonidas Guibas, Bharath
Hariharan, and Gordon Wetzstein. 2024. Neural Control Variates with Au-
tomatic Integration. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Papers "24 (SIGGRAPH Confer-
ence Papers "24), July 27-August 1, 2024, Denver, CO, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3641519.3657395

https://doi.org/10.1145/3641519.3657395
https://doi.org/10.1145/3641519.3657395

SIGGRAPH Conference Papers 24, July 27-August 1, 2024, Denver, CO, USA

1 INTRODUCTION

Monte Carlo (MC) integration uses random samples to estimate the
value of an integral. It is an essential tool in many computer graphics
applications, including solving partial differential equations without
discretization [Sawhney and Crane 2020] and rendering physically
realistic images via ray tracing [Veach 1998]. While MC integration
provides unbiased estimation for complicated integrals, it suffers
from high variance. As a result, MC integration usually requires a
significant amount of samples to produce an accurate estimate.

One common technique to reduce variance is control variates(CV).

The key idea of control variates is to construct an alternative inte-
gral that have lower variance. For example, if we want to integrate
a one-dimensional real value function f : R — R, control variates
leverage the following identity to construct different integral:

/ F)dx =G+ / () - g(x)dx, W
1 1

where [, u defines the integration domain in and G is the integral of
real-value functiong : R — R (i.e. G = fQ g(x)dx). If the integrand
f — g has less variance compared to the integrated f, then the right-
hand side of this identity can result in an estimator that requires
fewer samples to reach the same accuracy.

The key challenge of control variate is finding the appropriate g
with known integral while minimizing the variance of f — g under
a certain sampling strategy. Traditional methods try to define the
control variates g heuristically. For example, one way to choose
g is by picking a part of f with a known integral, such as cos(x).
These heuristically defined control variates may not correlate with
the integrand f, limiting their performance. Recent research has
proposed to parameterize the control variate using a learnable func-
tion gg and learn the parameter 6 from samples of the integrands
f [Miller et al. 2020; Salaiin et al. 2022]. The hope is to find 6 such
that gy can closely match the shape of f, making f—gg low variance.
Constructing an expressive parametric function gg with a known
integral for all 6, however, remains challenging. As a result, existing
works are limited in their choice of network architecture, such as
sum of simple basic functions with known integral [Salaiin et al.
2022] or special neural network architectures such as normalizing
flows [Miller et al. 2020].

In this work, we propose a novel method to construct learnable
control variate function g from almost arbitrary neural network
architectures. Inspired by neural integration methods [Lindell et al.
2021], instead of using the network to model the control variate
g directly, our method defines a network Gy : R — R to model
the anti-derivative of g such that a—ang (x) = g(x). By the first
fundamental theorem of calculus, we have:

Gol) = Go(h) = [-Go(dr. @

This allows us to construct a learnable control variate using auto-
matic differentiation frameworks in the following way:

/ F(x) = Gou) — Go(D) + / f0 - Zoptdx. @
1 1 X

Since a—ang (x) is just another neural network, we can use gradi-
ent based optimizer to find 6 that minimizes the variance of the
integrand f(x) — a—ang (x). This method allows us to use an arbi-
trary network architecture in place of Gg, which enables a larger

Li et al. 2024

class of parametric functions to be useful for control variates. We
hypothesize that this rich design space contains pairs of Gy and
a—(chg (x) that are expressive and numerically stable enough to
match f closely for various problems.

This paper takes the first steps to apply the abovementioned idea
to reduce the variance of Monte Carlo integrations in computer
graphics applications. To achieve this, we first extend the neural
integration method from Lindell et al. [2021] from line integral to
spatial integral with different domains, such as 2D disk and 3D
sphere. Directly optimizing these networks to match the integrand
can be numerically unstable. To alleviate this issue, we propose a
numerically stable neural control variates estimator and provide
corresponding training objectives to allow stable training. Finally,
many graphics applications require solving recursive integration
equations where different space locations have different integrand
functions. We modulate the neural networks with spatially varying
feature vectors to address this issue. We apply our method to create
control variates for Walk-on-Sphere (WoS) algorithms [Sawhney
and Crane 2020], which solve PDEs using Monte Carlo integration.
Preliminary results show that our method can provide unbiased
estimation from various network architectures. Our method can
produce estimators with the lower variance than all baselines. To
summarize, our paper has the following contributions:

e We propose a novel method to use neural networks with arbi-
trary architecture as a control variate function.

e We propose a numerically stable way to construct control vari-
ate estimators for different integration domains.

e We demonstrate the effectiveness of our method in solving
Laplace and Poisson equations using WoS. Our method can
outperform baselines in all settings.

2 RELATED WORK

We will focus on reviewing the most relevant papers in control
variates and nueral integration techniques.

Control Variates. Control variates is an important variance reduc-
tion technique for Monte Carlo integration [Glynn and Szechtman
2002; Loh 1995; Pajot et al. 2014]. Prior works have applied control
variates in many applications, including option pricing [Ech-Chafiq
et al. 2021], variational inference [Geffner and Domke 2018; Wan
et al. 2020], and Poisson image reconstruction [Rousselle et al. 2016].
To establish a control variate, we need to find a function with a
known analytical integration while correlating the integrand func-
tion well. Most prior works usually construct the control variate
heuristically [Clarberg and Akenine-Moller 2008; Kutz et al. 2017;
Lafortune and Willems 1994]. Such an approach can be difficult
to generalize to complex integrands. One way to circumvent such
an issue is to make the control variates learnable and optimize the
control variates function using samples from the integrand. For
example, Salaiin et al. [2022] proposed to use a polynomial-based
estimator as control variate as the integration of the polynomial
basis is easy to obtain. Recently, Miller et al. [2020] proposed to
use normalizing flow as the control variate function since nor-
malizing flows are guaranteed to integrate into one. Our method
extends these works by expanding the choice of estimator family to
a broader class of neural network architecture. Most existing works
apply CV on physics-based rendering. We focus on applying CV to

Neural Control Variates with Automatic Integration

(a) Transformation ' (b) Multi-variables Autolnt on [—1, 1]¢

e
®3p

Derivative gy _/L Integral Iy

Sroglol™ < ZutGo(wD
[¢

e +

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

(c) Training objective: minimizing variance

(90 — H(xy)

go(x.y)

Optimizing 0

Figure 2: Overview of our method. (a) We first create a diffeomorphic transformation ¢ that maps integration domain to a
hyper-cube [-1,1]%. (b) We generalize AutoInt [Lindell et al. 2021] to hyper-cube [-1,1]? (Sec 4.1). (c) During training, we
directly minimize the variance of the estimator using Monte Carlo estimation (Sec 4.3).

solving PDEs using Walk-on-sphere methods [Sawhney and Crane
2020; Sawhney et al. 2023, 2022], which allows us to showcase the
advantage of having a broader class of control variate function.
Existing works have attempted various techniques to reduce vari-
ances of the Walk-on-sphere algorithms, including caching [Bak-
bouk and Peers 2023; Li et al. 2023; Miller et al. 2023], heuristic-
based control variates [Rioux-Lavoie et al. 2022; Sawhney and Crane
2020], and bidirectional formulations [Qi et al. 2022]. These methods
are orthogonal to our paper, which applies neural control variates
method to reduce variance for Walk-on-Sphere algorithms. In our
experiment, we demonstrate that our method can be combined with
existing variance reduction methods to reach better performance.

Neural Network Integration Methods. Deep learning has emerged
as a dominant optimization tool for many applications, including
numerical integration estimation. A prevalent strategy involves
crafting specialized neural network architectures with analytical in-
tegration capabilities, similar in spirit to the Risch or Risch-Norman
algorithm [Norman and Moore 1977; Risch 1969]. For example, nor-
malizing flows [Chen et al. 2018; Dinh et al. 2014, 2016; Tabak and
Turner 2013] is a family of network architectures that models an
invertible mapping, which allows them to model probability distri-
bution by integrating into one. Other examples include [Petrosyan
et al. 2020] and [Subr 2021], which designed network architectures
that can be integrated analytically. These approaches usually result
in a limited choice of network architectures, which might limit
the expressivity of the approximator. An alternative approach is to
create computational graphs that can be integrated into a known
network by taking derivatives. For example, [Nsampi et al. 2023]
leverages repeated differentiation to compute convolutions of a
signal represented by a network. In this work, we follow the para-
digm proposed by AutoInt [Lindell et al. 2021], where we construct
the integrand by taking network derivatives approximating the
integration result. This approach can allow a more flexible choice
of network architectures, and it has been successfully applied to
other applications such as learning continuous time point pro-
cesses [Zhou and Yu 2023]. Unlike the Monte Carlo integration,
a potential drawback to the AutoInt method is that it can create
biased estimations. In this work, we propose to combine the AutoInt
method with neural control variate to create an unbiased estimator.

3 BACKGROUND

In this section, we will establish necessary notations and mathe-
matical background to facilitate the discussion of our method. In

particular, we will cover backgrounds in Monte Carlo integration,
Control variates, and neural integration methods in line integration.

Monte Carlo Integration. The main idea of Monte Carlo integra-
tion is to rewrite the integration into an expectation, which can
be estimated via sampling. Assume we want to estimate the inte-
gration of a real-value function f : R? — R over domain Q using
Monte Carlo method. We first write it into an expectation over the
domain Q:

) N)
o’ (’“)dx‘/xegpg(VPG ™ = BePe | po)

where Pg is a distribution over domain Q from which we can

both sample and evaluate likelihood. This allows us to define the
N f(x)

i=1 Po(x;) ’
sampled from Py and N denotes the number of samples. Monte
Carlo estimation is unbiased given that Pg(x) = 0 only if f(x) = 0.
However, it usually suffers from high variance, requiring a lot of

samples and function evaluations to obtain an accurate result.

)

following estimator: (Fy) = ﬁ > where x;’s are points

Control Variates. Control variates is a technique to reduce vari-
ance for Monte Carlo estimators. The key idea is to construct a new
integrand with lower variance and apply Monte Carlo estimation for
the low-variance integrand only. Suppose we know G = fQ g(x)dx
for some G and g, then we have:

/ f(x)dx =G+ / f(x) —g(x)dx. (5)
Q Q

With this identity, we can derive a single-sample numerical estima-
tor (F.p) that is unbiased:

P (xi)
As long as G is the analytical integration result of g, the new esti-
mator created after applying control variate is unbiased. Note that
the control variate estimator is running Monte Carlo integration
on the new integrand f — g, instead of the original integrand f.
The key to a successful control variate is finding corresponding
functions G and g that make f — g to have less variance compared
to the original integrand under the distribution Pg. Choosing an
appropriate g is challenging since it requires correlation with f
while having an analytical integral G. Existing works either pick
g heuristically (e.g. g = cosx if cos x is a component of f), or use
a limited family of parametric functions to approximate f from
data. Our method circumvents this issue by learning a parametric

(Fov) =G + , where x; ~ Pq. (6)

SIGGRAPH Conference Papers 24, July 27-August 1, 2024, Denver, CO, USA

model for the antiderivative of g, allowing us to use arbitrary neural
network architecture for control variate.

Neural Integration. Autolnt [Lindell et al. 2021] proposes a way
to estimate an integral using neural networks. Suppose we want

to estimate a line integral of the form /LU f(x)dx, where f is a
real-value function and L < U € R denotes the lower and upper
bound for integration. AutoInt trains a neural network Gg : R = R
to approximate the antiderivative of the integrand f with learnable
parameter 6. By the first fundamental theorem of calculus, we know
that if for all x in [L, U], a_ang (x) = f(x), then:
U U 9
[fwix= [2-Gotix=Gow) - Gow). ()
L L ox
To find the parameter 0 that satisfies the constraint a—‘zCGg (x) =

f(x)Vx € [L,U], AutoInt uses gradient-based optimizer to solve
the following optimization problem:

P 2
[ro-Go) | @

0" = argénin ExeuLu)

where U[L, U] is uniformly distributed over interval [L, U] and the
derivative a—ang (x) is obtained via the automatic differentiation
framework. Once the network is trained, we can use optimized

parameters 6 to approximate the integration results of /LU f(x)dx.
This idea can be extended to multi-variables integration [Maitre
and Santos-Mateos 2023] by taking multiple derivatives, which we
will leverage in the following section to construct integrations for
different spatial domains, such as disk and sphere.

Neural integration methods have several advantages. First, one
can use arbitrary neural network architecture with this method.
This allows users to leverage the latest and greatest network ar-
chitectures, such as SIREN [Sitzmann et al. 2020] and instant-
NGP [Miiller et al. 2022], potentially leading to better performance.
Second, neural integration can approximate a family of integrals.
The abovementioned example can approximate integration of the
form flu f(x)dx for all pairs of] < usuchthatL <[<u <U.
Autolnt [Lindell et al. 2021] also show that one can modulate the net-
work Gy to approximate a family of different integrand. However,
it’s difficult to guarantee that the network (%Gg can approximate
the integrand exactly as the loss is difficult to be optimized to ex-
actly zero. In this paper, we can circumvent such an issue as we use
Autolnt inside control variates. Our method can both enjoy the ad-
vantages brought by neural integration methods while maintaining
the guarantee provided by monte carlo integration methods.

4 METHOD

In this section, we will demonstrate how to use neural integration
method to create control variates functions from arbitrary neural
network architectures. We will first demonstrate how to construct
networks with known analytical spatial integrals (Sec 4.1). We
then show how to create a numerically stable unbiased estimator
using these networks as control variates (Section 4.2) as well as
a numerically stable training objective aiming to minimize the
variance of the estimator (Sec 4.3). Finally, we will discuss how to
extend this formulation to multiple domains (Sec 4.4).

Li et al. 2024

Table 1: Transformation and Jacobian for variable spatial
domains. Note that we assume input domain U = [-1, 1]4.

Domain Q P:U—-Q |Jo|
2D Circle 6 — (cos(70),sin(r6)) 1
2D Disk (r,0) — rT“ - (cos(70), sin(70)) rT“

sin(7 (¢ +1)/2) cos(m(0+1))
3D Sphere [s | sin(z(¢+1)/2) sin(z(0+1)) %sin(”“ﬁ“))
¢ cos(m(¢p+1)/2)

4.1 Neural Spatial Integration

Computer graphics applications, such as rendering and solving
PDEs, usually require integrating over spatial domains such as
sphere and circles. To make neural integration methods applicable
to these applications, we need to adapt them to integrate over
various spatial domains by applying change of variables.

Let’s assume the integration domain Q C R% s parameterized by
an invertible function ® mapping from a hypercube U = [-1,1]¢
to Q, i.e. ®(U) = Q. For any neural network Gy : U — R, we
can apply the first fundamental theorem of calculus to obtain the
following identity [Maitre and Santos-Mateos 2023]:

d
/UZ—ucg(u)du: PR

d
Go [|u O
i=1

ure{-11} uge{-11}
Defined as Iy
d
where u = [uy,...,uy] and %Gg(u) denotes partial derivative

d

with respect to all dimension of vector u: ﬁGg (u). Note that
. . . Bng

we can obtain both the computation graph for the integrand -

and the right-hand-side Iy using existing deep learning frameworks
with automatic differentiation. To extend this idea to integrating
over Q, we need to apply the change of variable:

d d
m=L%%wm=L%@mw@Wﬁ,(m

where x are coordinate in domain Q, u = ! (x), and Jp € R¥*4
is the Jacobian matrix of function ®. Since the integrand from the
right-hand-side can be obtained through automatic differentiation,
we now obtain a optimizable neural network with known integral
in domain Q. This identity is true regardless of the neural network
architecture. This opens up a rich class of learnable parametric
functions useful for control variates. Table 1 shows ® and | Jp| in
three integration domains: 2D circle, 2D disk, and 3D sphere.

4.2 Control Variates Estimator

Equation 10 now allows us to construct neural networks with ana-
lytical integral for various spatial domains such as 2D circles, 2D
disks, 3D spheres, and more. These neural networks can be used for
neural control variates, substituting Equation 10 into Equation 5:

/f()d —I+/f()—£G()IJ()I‘1d (11)
o x)dx = Ig o X augu plu X,

Neural Control Variates with Automatic Integration

where u = ®~1(x). Now we can create a single-sample control
variates estimator (Fpcy(6)) to approximate the spatial integration:

fox) Go(u)
Po(xi) |Jo(ui)| Po(xi)’
where x; ~ Pq are independent samples from a distribution on the
domain Q, Pg (x;) is the probability density of x; ,and u; = @1 (x;).
While (Fycv(0)) is unbiased, it is numerically unstable when |Jg|
takes a very small value. For example, when integrating a 2D disk,
estimator (Fycy(60)) is unstable when % is near 0. To tackle this
issue, we first change the transformation function ® to map U to a
numerically stable domain Q.. For the case of 2D disk, we replace
® with ®¢ = Do T, where T (r,0) = (r(2—€)/2+¢, 0), with a small
number € € R. The intuition behind T¢ is to map the domain U to a
place where ! is not near zero. We can use such a transformation
O to create an unbiased estimator as following:

(Faev(0)) = Ip + (12)

fa) %Go(ui)
Pq (xi) Vo, (ui)] Pa(x:)’

where x; ~ Pg, u; = ®c(x), and 1y (u;) is an indicator function
that equals to 1 if u; € U and returns 0 otherwise.

If 6 is not chosen intelligently, (Fncv(6)) can have higher vari-
ance than directly estimating the original integrand f. We will show
in the upcoming section how to minimize the variance of such an
estimator using deep learning tools.

<Fncv(9)> = IB +

1y (w;) (13)

4.3 Training Objectives: Minimizing Variance

Our networks can be trained with different loss functions, and one
should choose the loss function that works the best depending on
the specific application. In this section, we will use the estimator’s
variance as an example to demonstrate how to adapt a control
variate loss function to train our model. Following Miiller et al.
[2020], the variance of the estimator V [(Fpcy(6))] in Eq. 13 is:

2
o0 - 1o ZEER @))
A Pa) =10 [so0en]

where u = ®~!(x). Directly using this variance as a loss function
is infeasible since we do not have analytical solutions for the term
/Q f(x)dx. Since the gradient-based optimizer only requires gradi-
ent estimate to be unbiased, one way to circumvent this issue is to
create a pseudo loss whose gradient is an unbiased estimator for
the gradient of V [(Fncy(6))]. First, we define the following losses:

Lint(6,Q) = Exoqz) [(f(01Q] - 1p)*], (14)
d 2
(£ 60 = 10 (@) 2% iy ()
Po(x)?

Ly (0, Q) = Ex-p,

. (15)

where U(Q) denotes uniform sampling of domain Q. One can
verify that VgV [(Fev(0)] = Vo Laiir(6, Q) — Vg Lint (6,) (See
supplementary). Note that £ g can numerically unstable when
|Jo(u)| is very small. Since we are using @, in Equation 13, we can
see that Vg Lgg = 0 in the region when |Jp (u)| is very small. As a
result, we discard those samples during training. Note that similar
techniques can be applied to other types of control variates losses.

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

2D Circle 2D Disk 3D Sphere
107 10° 10
N
Y
10 10’ Y
\\
10
0 o N
10 10 N
\\
®n 107 N 10
= \\\ \\\ 10 \\\
~
10 s 10 ~
CatSIREN CatSIREN CatSIREN \\
10 MRG-SIREN « 10 MRG-SIREN MRG-SIREN \\
MOD-SIREN ~ ~~ MODSIREN '~ 10 MOD-SIREN
o4 == UN So gt == N ~. - IN
10! 101 10 10 10! 10° 10 104 10° 10 10
#Walks #Walks #Walks

Figure 3: Convergence curve of our CV estimator using var-
ious randomly initialized networks. This suggests that our
method can produce unbiased control variates estimators
from arbitrary network architectures.

4.4 Modeling a Family of Integrals

So far we’ve focused on applying our method to a single integration
/Q f(x)dx over a single domain Q. In many computer graphics
applications, we need to perform multiple spatial integrals, each
of which will be using a slightly different domain and integrand.
Adapting to such applications, we need to apply CV to solve a family
of integrations in the form of /Q(c) f(x,¢)dx, where ¢ € R" is a

latent vector parameterizing the integral domain, Q(c) C R? are a
set of domains changing depending on ¢, and f is the integrand.

One way to circumvent this challenge is to learn coefficients for
one CV that minimize the variance of all estimators as proposed
by Hua et al. [2023]. In our paper, we choose an alternative way,
training a conditional neural network that can predict CV functions
for the whole family of integrals.

To achieve this, we first assume there exists a family of parameter-
ization functions for this family of domains ® : RIXRP — Q, where
each function ®(+, ¢) is differentiable and invertible conditional on c,
and (U, ¢) = Q(c). Now we can extend our network Gy to take not
only the integration variable x but also the conditioning latent vec-
tor c¢. We will also extend the loss function to optimize through dif-
ferent latent ¢: L1 (6) = § 21ty Lair (6, (ci)) = Lint (6, 2(ci)).
The same principles described in previous sections will still apply.

5 RESULTS

In this section, we will provide a proof of concept showing that
our method can be applied to reduce the variance of Walk-on-
Spheres algorithms (WoS) [Sawhney and Crane 2020]. We will
first demonstrate that our method creates unbiased estimators in
different integration domains while using different neural network
architectures (Sec 5.1). We then evaluate our method’s effectiveness
in solving 2D Poisson and 3D Laplace equations (Sec 5.2, Sec 5.3).

5.1 Unbiased Estimator with Arbitrary Network

In this section, we want to show that our method indeed creates an
unbiased estimator regardless of neural network architectures or
the integration domain. We will test our method on three types of
integration domains mentioned in Table 1: 2D circle, 2D disk, and
3D spheres. We will test the following neural network architectures:

CatSIREN. Sitzmann et al. [2020] proposed SIREN, which uses
periodic activation to create an expressive neural network capable
of approximating high-frequency functions. We make this network
architecture capable of taking conditioning, we simply concatenate

SIGGRAPH Conference Papers 24, July 27-August 1, 2024, Denver, CO, USA

the condition vector ¢ with the integration variable u:
$i(z) = sin(W;z +b;), Gg(x,¢) = Wn(dn-10---0¢o)([uc]) +bn,
where 6 = {W},b;}; are the trainable parameters.

MOodSIREN. Mehta et al. [2021] proposed a way to condition
SIREN network more expressively using a parallel ReLU-based
network to produce the frequency of SIREN’s periodic activate:

hi+1 = maX(W;H [C, hz] + b;+1, 0)
Gy(x,¢) = Wn(@n-10---0¢o)(x) +bp,

where 6 = {W}, W: b;, b;}i are trainable parameters.

hy = maX(Wéc +b,0),
¢i(z) = sin(W;z © h; +b;),

MGC-SIREN. If the conditioning latent code is low dimensional,
such as R? or R? in our applications, we could borrow the idea from
instant-NGP [Miller et al. 2022], in which we can modulate the
network using a spatially varying feature grid. Basically, we use ¢
to extract a latent feature z from a multi-resolution grid. We then
use the extracted feature z as the conditional feature in CatSIREN
architecture. The trainable parameters include both the feature grid
and the network parameters.

In this experiment, we initialize a ground truth field u : RY >R
in a cube [0, 1]¢ and deploy these network to produce estimator
for following family of integrals: F(x) = /Q) u(x + y)dy, where

x € [0,1]? is a coordinate in the domain of interest and Q(x)
denotes the integration domain centered at x. For 2D circle and
2D sphere, we set Q(x) = {y | [[x — y|| = d(x)}, where d(x) is the
distance to the nearest point of the boundary [0, 1]?. For 2D ball,
we set Q(x) = {y | [lx —yll < d(x)}.

We randomly initialize the abovementioned three network archi-
tectures and present the MSE between the reference solution and
their corresponding CV estimators (Eq 13) to ground truth. Figure 3
shows how mean square errors decay with the number of samples.
Our method produces unbiased estimators for even randomly ini-
tialized neural networks with different architectures. We will stick
with MGC-SIREN architecture for the rest of the section.

5.2 Equal Sample Comparisons

In this section, we will focus on providing equal sample analysis
comparing our methods with prior arts on the task of reducing the
variance of WoS algorithms in solving 2D Poisson and 3D Laplace
equations. Equal sample comparisons are useful because they are
less confounded with implementation and hardware details. For
example, engineering techniques such as customized CUDA kernels
can drastically affect the compute time on our estimator, but they
won’t affect the result of equal sample analysis as much.

Baselines. We compare our methods with WoS without control
variates! and two other learning-based control variates baselines.
The first baseline is Miiller et al. [2020] (NF), which uses normaliz-
ing flows to parameterize the control variates function. The second
baseline is Salaiin et al. [2022] (POLY), which parameterizes the
control variate function using a weighted sum of polynomial basis.
We follow the original papers on hyperparameters, such as the

IThe original control variates method mentioned at [Sawhney and Crane 2020] can be
viewed as a special case for the Salaiin et al. [2022] with degree 1. As a result, we do
not include it as one of the baselines.

Li et al. 2024

NF. 2020 Ours WosS. 2020

Poly. 2022

an ref ref | ref
o e e (e -eference

0 051 m 151 20 051 nm 151 2m0 05 n 15n 20

Figure 4: Top: Equal sample comparison of solving 2D Pois-
son equations using control variates integrating over a 2D
circle. Bottom: Plotting of Network prediction and integra-
tion reference. Our network can fit the integrand tightly. This
leads to an estimator that produces the lowest variance.
degrees of the polynomial-basis and positional encoding. Specif-
ically, we use a polynomial order of 2 following the suggestions
of Fig 6 at Salaiin et al. [2022]. For fair comparison, we use the
same loss functions and optimizer to train the neural CV baselines.
We apply multi-resolution grids mentioned in Section 5.1 to allow
POLY baseline to perform CV at arbitrary locations within the PDE
domain. Specifically, the multi-resolution grid takes as input the
position of the walk (i.e.center of the ball/sphere), and the interpo-
lation of the grid will provide a vector that’s later decoded to the
polynomial coefficients of the integrand at the grid location. We
use a single linear layer to map the interpolated latent code to the
set of coefficients.

Training. We create a data cache of size 16384 and use samples
from about 10 percent of total inference walks for training. All net-
work is trained for 25000 optimization steps using Adam[Kingma
and Ba 2014] optimizer with a learning rate of 10™* and batch
size 1024. For every training iteration, we update 1024 data cache
locations. For each updated point, we will create a label that accu-
mulates 32 walks to store in the data cache. All experiments are
conducted with a single RTX 2080 Ti GPU.

5.2.1 Solving 2D Poisson Equation. We now apply our techniques
to reduce variance on a Poisson equation over the domain S C RZ:

Au=fonsS, (16)

where g : R? — R is the boundary function, and f : R? — R is
the forcing function. This equation can be solved by the following
integral equation [Sawhney and Crane 2020]:

u(y)
= _ G(x,y)dy,
W)AwmmMWMH“LMmﬂ”“”y
17

where d(x) = minyesq [|x — y|| denotes the distance to the bound-
ary and Br(c) = {y||ly—c| < r}is the ball centered at ¢ with radius r.
[Sawhney and Crane 2020] further derives a Monte Carlo estimator
(x) for the Poisson equation:

am;%m

u=gonds,

ifd(x) < e

s
otherwise

" (18)
a(x") = [By(x) (%) f(y)G(x.y)

where x” ~ U(9Bg(x,) (xk)), y ~ U(Bg(x) () are samples from
the boundary and the interior of the 2D disk, and G denotes the 2D

Neural Control Variates with Automatic Integration

Poly. 2022 NF. 2020 Ours WosS. 2020
e AW AW AW
oy WW L LA 4 .y
5 WA . A . A A
S e - w .
N rr: 1.83x b rr: 0.88x rr: 1.00x
P Err: 0.68x __mReference
4! ¢| A8 AR B R
s By LA .y e
2 #a hs . A ‘TT
; AL 2 2 24

s AR

Figure 5: Equal Sample Comparison of applying control vari-
ates (CV) when solving Poisson equations within a coin do-
main. Top: apply CV on forcing integral; Bottom: apply CV
on both forcing and recursive integral. In both settings, our
method achieves the lowest error.

disk’s green’s function. These are two integrals that our method
can be applied to: one that integrates over the circle (i.e. 9B) and
one that integrates inside the disk (i.e. B).

Apply Control Variates to 2D Circle 9B(x). We first discuss how to

u(y)
28] dy. We

first instantiate a neural network Gy (t, x) that takes a sample’s polar
angle ¢ (normalized to [—1, 1]) and the 2D coordinate of the center

apply our method to reduce variance of the integral fa 5 ToB|

of the disk dB. Gy outputs the anti-derivative of |¢§g\) Applying
our methods, we can arrive at the following estimator:
. (x) +D(x,x’ ifd(xg) <€
firec(x) = gA ,) , k . (19)
Urec(x") + S(x,y) + D(x,x") otherwise

where ¢ is the polar angle of vector x” — x, S(x,y) is the single
sample estimator of the forcing contribution |B(x)|f(y)G(x,y), and
D(x,x") = Ig(x) — Zn%Ge(t, x) captures the contribution of our
control variates estimator. We follow the training setup described
in 5.2 with L loss that uses noise labels produced by #(x) to
show our network can match the integrated closely. The results are
presented in Figure 4.

The POLY baseline fails to produce accurate results because the
high-frequency integration pattern is hard to train for polynomials
with low orders. Similarly, this error also manifests in the NF base-
line, even after we conducted a hyperparameter search to identify
the best setting. The second row of Figure 4 shows that both NF
and POLY baseline tend to produce overly smoothed control vari-
ate functions, which makes the difference between the actual and
predicted integrands still a high-variance function.

On the contrary, our method can better approximate the line
integral on the circle 9B, resulting in a smaller variance.

Apply Control Variates to 2D Disk B(x). Our techniques can also
be applied to reducing the variance of the family of integral over
2D disks: /Bd(x) x) f(y)G(x, y)dy. Specifically, our antiderivative
network Gé to take a normalized polar coordinate p € [-1,1]?

and the center of the circle x € R?. Applying our method, we can
construct the following single sample numerically stable control

o0z

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

variates estimator for the forcing contribution:
21(r) 9°
r+1 dp

—=Gpy(p.y), (20)

Sev(x,y) = Iy(x) + [B(x)|f ()G (x, y) -
where r = ||y — x||, 1 is an indicator guarding the numerical sta-
bility, and p is the polar coordinate of vector y — x. Putting this
estimator inside the WoS estimator gives us an unbiased estimator:

e (x) = {g(") i) <e)
U () + Sev(x,y) otherwise

These two control variates techniques can be combined to account
for both the variance from sampling sourcing contribution as well
as the variance from recursive integration:

g(x) + D(x, x")
Gipoth (x”) + Sev (. y) + D(x, x")

Similarly, we use the same setup as in 5.2 and optimize the network
using variance-reduction loss. We present the results of these two
estimators in Figure 5. Our method consistently outperforms base-
lines, reaching the lowest error with the same number of samples.

ifd(xy) <e

. (22)
otherwise

Gipoth (%) = {

5.2.2 Solving 3D Laplace Equation. In this section, we will demon-
strate that our proposed method can also be applied to spherical
integration. Specifically, we will apply our method to solve 3D
Laplace Equation using WoS methods:

Au=0onS, u=gonds, (23)

where S is the domain where we would like to solve the Equation
equation and g is the boundary condition. Similar to the Poisson
equation, the Laplace equations can be solved by the estimator
in Eq 18, after replacing B and 9B with their 3D counterpart and
setting the forcing function to be zero.

Applying our framework, 10
we will train a neural net- o>
work Gy(s,x), where s € R2 107
is a spherical coordinate nor- £
malized to [-1,1]% and x €
R3 is the conditioning which
modulates the integration do-
main 9By, (x). Applying our
method, we can construct the
following neural control vari-
ates estimator:

10 102 10° 104
#Walks

Figure 7: Our method is unbi-
ased and achieves the lowest
mean square errors.

ifd(x) <e

s
otherwise

R _ J9(x) + D(x,x")
fiey(x) = {ﬁcv(xl) +D(x,) (29)

-1
D(x,x") =Ig(x) - 3—?G9(s, x) (sin (%)) , (25)

where x’ is a sample on the 3D sphere 9B(x), s is the spherical
coordinate of x” — x, and ¢ is the polar angle of the vector Hii—:ill
Similar to the previous section, we obtain 6 by optimizing the
training objective mentioned in Section 4.4 using Adam optimizer.
The training data is obtained using WoS estimator (Eq 18 with f =
0), which returns a noisy estimate of the integrand of interest. We
present the convergence curve of our method in comparison with
the baselines in Figure 7. We can see that under the same number
of samples, our method achieves much lower MSE compared to

SIGGRAPH Conference Papers 24, July 27-August 1, 2024, Denver, CO, USA

Geometry NF POLY
'Y e 4« e
Err 3.29% Err 0.97x

L[N

»

Err 4.36X

L

Eb

Err 0.98%

€ €

W ELi)

Li et al. 2024

WoS Ours Reference

PRl PERPEE SRR B
L] L
=)

D.

Err 1.00X

Err 0.04%

L[S

D‘

Err 0.36%

€ € €

] I I

Figure 6: Equal Sample Comparison. We visualize a 2D slice of the solution to solving Laplace Equations within the Blub(top)
and Spot(bottom) domains. Our method produces less noisy results and achieves lower error compared with baseline methods.

200 BN Training
Inference
i
g 150
=
E 100
%)
E
F 50]
0 NF POLY WoS Ours Ours+Cache

Figure 8: We report the time needed for each method to create
a solution in 1024x1024 resolution with <3e-5 MSE for the
Spot shape. Note that within the plotted time range, NF and
POLY baselines failed to reach such MSE.

the baseline. We present the qualitative result in Figure 6 with
Spot[Crane et al. 2013] and Blub[Kné&ppel et al. 2015]shapes and
visualize a 2D slice of the solution. All results are obtained under
the same number of evaluation steps. We can see that our estimator
leads to a less noisy field compared to baselines.

5.3 Wall-Time Result

Despite the proposed method’s advantages in equal sample compar-
isons, it is still a question whether such advantage can be translated
to wall-time benefits since our method induces significant train-
ing and inference overheads. For example, even though generating
the data required for training takes about 12 minutes, our train-
ing procedure takes much longer because it requires computing a
higher-order gradient of a neural network for every iteration. Com-
puting higher-order gradients makes each training iteration slow.
Higher-order gradients also make training less stable, preventing
the use of a higher learning rate; as a result, our network takes a
large number of iterations to converge. Our method requires evalu-
ating both the integral and the derivative network during inference.
This means each inference step takes longer than WoS.

Table 2: MSE achieved when producing a solution of 3D
Laplace equation of the Spot shape in 1024 X 1024 resolu-
tion within 1 hour of inference wall-time.

Methods NF POLY WoS
MSE 24x1073 2.29%x1074

Ours

5.45% 1077 2.76 X 107>

Nonetheless, we want to demonstrate that our method can pro-
duce wall-time benefits over the baselines in applications that need
to produce many very accurate queries. Specifically, we study where
our method has wall-time benefits using the Blub shape in the 3D
Laplace experiments (Sec 5.2.2). First, we run all methods to produce
a PDE solution of 1024 X 1024 resolution to achieve an MSE lower
than 3x 107> using a RTX 2080 Ti GPU. For each method, we record
the detailed compute time breakdown of training and inference
time in Figure 8. Including training overhead, our method requires
the least amount of time to reach the target accuracy, while other
neural CV baselines fail to reach such accuracy within 200 minutes.
While our method spent about half the amount of time in training,
our method can reach the same accuracy with a significantly shorter
inference time. This suggests that our method requires fewer walks
to reach the same accuracy. As a result, our method can outperform
baselines when it requires a lot of inference samples to reach the
target accuracy. We also provide results on combining our method
with the caching technique [Li et al. 2023] to demonstrate how
such an orthogonal technique can be applied to further improve
our method’s wall-time efficiency (See Ours+Cache in Figure 8).

Finally, we provide an equal inference time comparison in Table 2,
where we report the MSE that each method achieves given 1 hour
of compute time when creating a 1024 X 1024 solution image. With
Figure 8, it demonstrates that our method is faster than baselines
in circumstances where a lot of inference samples are needed.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a novel method to enable using arbitrary
neural network architectures for control variates. Different from

Neural Control Variates with Automatic Integration

existing methods which mostly deploy a learnable model to approx-
imate the integrand, we ask the neural network to approximate the
antiderivative of the integrand instead. The key insight is that one
can use automatic differentiation to derive a network with known
integral from the network that approximates the antiderivative. We
apply this idea to reduce the variance of Walk-on-sphere [Sawhney
and Crane 2020] Monte Carlo PDE solvers. Results suggest that our
method is able to create unbiased control variates estimators from
various neural network architectures and some of these networks
can perform better than all baselines.

Limitations and future works. Control variates estimator usually
requires more computation for each sampling step because we also
need to evaluate in additional G and g for every step. This suggests
that the equal-sample performance improvement might not trans-
late to performance improvement in terms of FLOPs, wall time, or
energy. In more challenging settings where the integrand f or sam-
pling probability P is difficult to evaluate, our proposed approach
might provide advantages in wall time. Computing the integration
requires evaluating the antiderivative network 2¢ times, where d is
the integral dimension. This prevents our method from applying to
higher dimensional space. One potential future direction to leverage
importance sampling to improve training and inference sampling
efficiency as demonstrated in Miiller et al. [2020]. An other interest-
ing direction is using these neural techniques as carriers to solve
inverse problems similar to Nicolet et al. [2023].

ACKNOWLEDGMENTS

This research was supported in part by the National Science Founda-
tion under grant 2144117, and by the ARL grant W911NF-21-2-0104.
We want to thank Steve Marschner, Yitong Deng, Wengqi Xian, Ro-
han Sawhney, and George Nakayama for their feedback.

REFERENCES

Ghada Bakbouk and Pieter Peers. 2023. Mean Value Caching for Walk on Spheres.
Eurographics (2023).

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.
Neural ordinary differential equations. Advances in neural information processing
systems 31 (2018), 1-9.

Petrik Clarberg and Tomas Akenine-Méller. 2008. Exploiting visibility correlation in
direct illumination. In Computer Graphics Forum, Vol. 27. Wiley Online Library,
1125-1136.

Keenan Crane, Ulrich Pinkall, and Peter Schroder. 2013. Robust fairing via conformal
curvature flow. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1-10.

Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. Nice: Non-linear independent
components estimation, In International Conference on Learning Representations.
International Conference on Learning Representations.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation using
Real NVP. In International Conference on Learning Representations.

Zineb El Filali Ech-Chafiq, Jérome Lelong, and Adil Reghai. 2021. Automatic control
variates for option pricing using neural networks. Monte Carlo Methods and Appli-
cations 27 (2021), 91 - 104. https://api.semanticscholar.org/CorpusID:234204906

Tomas Geffner and Justin Domke. 2018. Using large ensembles of control variates for
variational inference. Advances in Neural Information Processing Systems 31 (2018).

Peter W Glynn and Roberto Szechtman. 2002. Some new perspectives on the method of
control variates. In Monte Carlo and Quasi-Monte Carlo Methods 2000: Proceedings of
a Conference held at Hong Kong Baptist University, Hong Kong SAR, China, November
27-December 1, 2000. Springer, 27-49.

Qingqin Hua, Pascal Grittmann, and Philipp Slusallek. 2023. Revisiting controlled
mixture sampling for rendering applications. ACM Transactions on Graphics (TOG)
42, 4 (2023), 1-13.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations abs/1412.6980 (2014). https:
//api.semanticscholar.org/CorpusID:6628106

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

Felix Knoppel, Keenan Crane, Ulrich Pinkall, and Peter Schroder. 2015. Stripe Patterns
on Surfaces. ACM Trans. Graph. 34 (2015). Issue 4.

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novak. 2017. Spectral and decomposition
tracking for rendering heterogeneous volumes. ACM Transactions on Graphics
(TOG) 36, 4 (2017), 1-16.

Eric P Lafortune and Yves D Willems. 1994. Using the modified phong reflectance
model for physically based rendering. Katholieke Universiteit Leuven. Departement
Computerwetenschappen.

Zilu Li, Guandao Yang, Xi Deng, Christopher De Sa, Bharath Hariharan, and Steve
Marschner. 2023. Neural Caches for Monte Carlo Partial Differential Equa-
tion Solvers. In SIGGRAPH Asia 2023 Conference Papers (SA '23). Association
for Computing Machinery, New York, NY, USA, Article 34, 10 pages. https:
//doi.org/10.1145/3610548.3618141

David B Lindell, Julien NP Martel, and Gordon Wetzstein. 2021. Autoint: Automatic
integration for fast neural volume rendering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 14556—14565.

Wing Wah Loh. 1995. On the method of control variates. Stanford University.

Daniel Maitre and Roi Santos-Mateos. 2023. Multi-variable integration with a neural
network. Journal of High Energy Physics 2023, 3 (2023), 1-16.

Ishit Mehta, Michaél Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi,
and Manmohan Chandraker. 2021. Modulated periodic activations for generaliz-
able local functional representations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 14214-14223.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary
Value Caching for Walk on Spheres. ACM Trans. Graph. 42, 4, Article 82 (jul 2023),
11 pages. https://doi.org/10.1145/3592400

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

Thomas Miiller, Fabrice Rousselle, Alexander Keller, and Jan Novéak. 2020. Neural
control variates. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1-19.

Baptiste Nicolet, Fabrice Rousselle, Jan Novak, Alexander Keller, Wenzel Jakob, and
Thomas Miiller. 2023. Recursive control variates for inverse rendering. ACM
Transactions on Graphics (TOG) 42, 4 (2023), 1-13.

Arthur C Norman and PMA Moore. 1977. Implementing the new Risch integration
algorithm. In Proceedings of the 4th International Colloquium on Advanced Computing
Methods in Theoretical Physics. 99-110.

Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and
Thomas Leimkiihler. 2023. Neural Field Convolutions by Repeated Differentiation.
ACM Transactions on Graphics (TOG) 42, 6 (2023), 1-11.

Anthony Pajot, Loic Barthe, and Mathias Paulin. 2014. Globally Adaptive Control
Variate for Robust Numerical Integration. SIAM Journal on Scientific Computing 36,
4(2014), A1708-A1730.

Armenak Petrosyan, Anton Dereventsov, and Clayton G Webster. 2020. Neural network
integral representations with the ReLU activation function. In Mathematical and
Scientific Machine Learning. PMLR, 128-143.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional
formulation for Walk on Spheres. In Computer Graphics Forum, Vol. 41. Wiley
Online Library, 51-62.

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tiimay Ozdemir, Naoharu H Shimada,
Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte
Carlo Method for Fluid Simulation. ACM Trans. Graph. 41, 6 (Nov. 2022), 1-16.

Robert H. Risch. 1969. The problem of integration in finite terms. Trans. Amer. Math.
Soc. 139 (1969), 167-189. https://api.semanticscholar.org/CorpusID:122648356

Fabrice Rousselle, Wojciech Jarosz, and Jan Novék. 2016. Image-space control variates
for rendering. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1-12.

Corentin Salatin, Adrien Gruson, Binh-Son Hua, Toshiya Hachisuka, and Gurprit Singh.
2022. Regression-based Monte Carlo integration. ACM Transactions on Graphics
(TOG) 41, 4 (2022), 1-14.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing. ACM
Trans. Graph. 39, 4 (Aug. 2020).

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk
on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary
Conditions. ACM Trans. Graph. 42, 4, Article 80 (jul 2023), 20 pages. https:
//doi.org/10.1145/3592398

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-free
Monte Carlo for PDEs with spatially varying coefficients. ACM Trans. Graph. 41, 4,
Article 53 (jul 2022), 17 pages. https://doi.org/10.1145/3528223.3530134

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. 2020. Implicit neural representations with periodic activation functions.
Advances in neural information processing systems 33 (2020), 7462-7473.

Kartic Subr. 2021. Q-NET: A Network for Low-dimensional Integrals of Neural Proxies.
In Computer Graphics Forum, Vol. 40. Wiley Online Library, 61-71.

Esteban G Tabak and Cristina V Turner. 2013. A family of nonparametric density
estimation algorithms. Communications on Pure and Applied Mathematics 66, 2
(2013), 145-164.

https://api.semanticscholar.org/CorpusID:234204906
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1145/3610548.3618141
https://doi.org/10.1145/3610548.3618141
https://doi.org/10.1145/3592400
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://api.semanticscholar.org/CorpusID:122648356
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3528223.3530134

SIGGRAPH Conference Papers 24, July 27-August 1, 2024, Denver, CO, USA

Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford
University.

Ruosi Wan, Mingjun Zhong, Haoyi Xiong, and Zhanxing Zhu. 2020. Neural control
variates for Monte Carlo variance reduction. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2019, Wiirzburg, Germany,
September 16-20, 2019, Proceedings, Part I Springer, 533-547.

Zihao Zhou and Rose Yu. 2023. Automatic Integration for Fast and Interpretable Neural
Point Processes. In Learning for Dynamics and Control Conference. PMLR, University
of Pennsylvania, 573-585.

Li et al. 2024

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Method
	4.1 Neural Spatial Integration
	4.2 Control Variates Estimator
	4.3 Training Objectives: Minimizing Variance
	4.4 Modeling a Family of Integrals

	5 Results
	5.1 Unbiased Estimator with Arbitrary Network
	5.2 Equal Sample Comparisons
	5.3 Wall-Time Result

	6 Conclusion and Discussion
	Acknowledgments
	References

