
Building a Partial Communication Synchrony Abstraction on Asynchronous
Datacenters: Fundamental Limits, Mechanisms, and Applications

Saksham Agarwal
Cornell University

Qizhe Cai
Cornell University

Rachit Agarwal
Cornell University

David Shmoys
Cornell University

Amin Vahdat
Google

Abstract
Existing datacenter networks are asynchronous—it is hard,
or even impossible, to bound the time taken by a message
to be transmitted from the sender to the receiver. Such net-
work asynchrony reduces the set of assumptions that system
designers can rely upon from the underlying network, thus
introducing inefficiency and complexity in end-host systems.

We present cosy, a datacenter network-layer abstraction
that, without requiring clock synchronization at network and
host hardware, enables partial communication synchrony—a
message submitted to the sender-side cosy interface is de-
livered to the receiver-side cosy interface within a bounded
amount of time.

Enabling a partial communication synchrony abstraction
over asynchronous hardware has some overheads. We present
an analytical characterization of the fundamental limits (in
terms of message delays and network utilization), a distributed
protocol that theoretically achieves performance close to
the fundamental limit, and an implementation that closely
matches theoretical performance bounds over a distributed
testbed. We also demonstrate benefits of the cosy abstraction
using three applications: a storage stack that simultaneously
support µs-scale latency and high CPU utilization, a CPU-
efficient host network stack, and a µs-scale failure detector.

1 Introduction

Datacenter networks today offer only asynchronous
communication—it is hard, or even impossible, to bound the
time taken by a message to be transmitted from the sender
to the receiver. For instance, recent deployment studies
report that even state-of-the-art networks can introduce
unpredictable message delays that can vary by three orders
of magnitude [60]. Such unpredictability and variability
in message delays reduces the set of assumptions that
system designers can rely upon from the underlying network.
Thus, to operate correctly on top of such asynchronous
networks, distributed systems must embrace inefficiency and

complexity. For instance, unpredictable and variable message
delays enforce systems to choose between interrupts (high tail
latencies) or continuously spin-polling the network interface
(high CPU wastage) [19, 45, 48, 51, 65, 68]. As another
concrete example, unpredictable and variable message delays
result in poor spatial and temporal cache locality in network
stacks, significantly impacting CPU efficiency for high-speed
networks [20, 31, 32, 38, 79]. A now-long line of work in
practice and theory of distributed computing has established
the many additional limitations of networks supporting only
asynchronous communication [24, 27, 28, 56, 71].

This paper presents cosy, a datacenter network abstraction
that enables partial communication synchrony—we provide a
complete definition in §2, but at a high level, this abstraction
enables a message submitted to the sender-side cosy interface
at time t to be delivered to the receiver-side cosy interface
within time t + δ, where the delay bound δ is known at the
time of the message submission. Pragmatically, we want a
small δ, which includes three components: (i) message wait-
ing time at the sender; (ii) host-side network layer processing
and DMA time at both the sender and the receiver; and, (iii)
message queueing, transmission and propagation times at net-
work switches and links. Similar to many other systems, the
fundamental limits on δ depend on the load (informally de-
fined as the amount of traffic entering the network per unit
time): beyond a certain maximum sustainable load Θ, one of
the above three components must grow unboundedly making
δ bound unachievable. This leads to our core technical goal:
designing mechanisms that enable the cosy abstraction while
minimizing the delay bound δ (that includes all of the three
components above) and maximizing the sustainable load Θ.

As a first step towards realizing the above goal, this paper
makes three core contributions. First, we analytically charac-
terize best possible bounds on δ and Θ for any mechanism
that enables the cosy abstraction. We also show that several
possible datacenter network architectures—those employing
circuit-switched technologies [14, 16, 30, 59, 62, 70], those
assuming clock synchronization [67], and/or those employ-
ing centralized schedulers that orchestrate transfer of individ-

1

ual messages [15, 67, 80]—can enable the cosy abstraction
with minimal modifications while achieving optimal δ and Θ.
While interesting, the rest of the paper focuses on existing dat-
acenter network architectures: these are distributed, employ
packet-switched technologies, and do not assume fine-grained
clock synchronization at host and network hardware.

Our second contribution is to enable the cosy abstraction
that achieves near-optimal δ and Θ over distributed, packet-
switched, datacenter networks without requiring clock syn-
chronization at network and host hardware. To give a high-
level overview of the cosy design, consider the three factors
discussed above that contribute to δ. To minimize message
queueing at network switches, cosy design carefully orches-
trates network resources among competing messages by plac-
ing its intellectual roots in the classical Resource ReSerVation
protocol (RSVP) [83, 84]: we show that by using RSVP on
datacenter networks, it is possible to enable the cosy abstrac-
tion with optimal δ at low loads. However, even at moderate
loads, this basic design can lead to high message waiting
time at the sender. To minimize the message waiting time at
the sender at high loads, cosy combines the idea of virtual
channels in multicomputer networks [25, 26, 73] with RSVP
to maintain the invariant that each switch observes bounded,
albeit non-zero, queueing (thus slightly increasing δ com-
pared to the low load case). We demonstrate—analytically
and empirically—that allowing a small amount of queueing
at the switches significantly increases maximum sustainable
load Θ, and reduces the message waiting at the sender to a bare
minimum as long as the load is less than the maximum sus-
tainable load. Finally, to minimize host processing delays, we
observe that cosy design maintains the invariant of bounded
queueing at switches thus requiring no congestion control
at the hosts; as a result, cosy can be easily integrated with
kernel-bypass techniques [58, 85], end-host accelerator based
network stacks [2,3,33,72] and/or µs-scale schedulers [34,65]
to achieve small bounded host processing delays.

Our third contribution is an end-to-end implementation of
the cosy abstraction using readily available programmable
switches and DPDK-based hosts. The current cosy abstrac-
tion offers bounded message delays between sender-side cosy
interface and receiver-side cosy interface; while this can po-
tentially be extended to bounded application-layer delays (e.g.,
by integrating the cosy abstraction with µs-scale schedulers
like Shenango [65] and Caladan [34]), we demonstrate that
the current cosy abstraction already provides benefits for sev-
eral applications: (i) a SPDK-based storage stack that exploits
the predictable message delays enabled by the cosy abstrac-
tion to simultaneously achieve µs-scale latency and high CPU
utilization; (ii) a host network stack for high-speed networks
that exploits the predictable message delays enabled by the
cosy abstraction to achieve high spatial and temporal cache
locality (and thus, high CPU efficiency); and (iii) a µs-scale
host failure detector.

Our work demonstrates that datacenter networks offering

the cosy abstraction can have powerful implications for fu-
ture systems and networking infrastructure. There are two
important caveats, however. First, our point is not that every
application will benefit from the cosy abstraction—instead,
we believe that datacenter networks should simultaneously
support both the cosy abstraction and the classical best-effort
delivery abstraction; applications running atop can choose
which of the two interfaces they want to use depending on de-
sirable performance goals (similar to today’s network stacks
that allow applications to choose between reliable and unreli-
able interfaces). Second, while we demonstrate the potential
benefits of the cosy abstraction using several applications,
we have only scratched the surface—as eloquently argued
in [74, 81], there are many additional benefits of (partial)
communication synchrony in datacenter networks; however,
additional work will be needed at each layer of systems stack
to reap end-to-end benefits of the cosy abstraction. While it
may take longer than the lifetime of a single project to realize
systems that efficiently exploit all the benefits of partial com-
munication synchrony, we believe the potential benefits make
it a worthwhile exploration.

2 The cosy abstraction
We begin this section by providing an overview of the cosy
abstraction: the interface it offers to applications, a formal
definition of the partial communication synchrony property
it enables, and the core technical problem statement it solves
(§2.1). We then explore the design space for enabling the cosy
abstraction (§2.2). Recall that we target distributed, packet-
switched, datacenter networks with fixed (shared) buffer size
at each switch [8, 40, 77]. We make no assumptions on clock
synchronization at host and network hardware.

2.1 Interface, definition & problem statement

The cosy application-network interface. Applications that
want partial communication synchrony interact with cosy
using a special cosy-RPC interface, implemented using stan-
dard submission/completion queues [49, 53, 58, 78]. Similar
to most existing RPC interfaces, applications submit their
messages using a submission queue at the sender-side cosy
interface and the completion queue notifies the application of
the message delivery status (using a complete or failure
flag). The only difference in our interface is that the comple-
tion queue has one additional flag: reject, which indicates
that cosy is unable to provide partial communication syn-
chrony for the message at the time of message submission.
If the flag is either reject or failure, the application can
either resubmit the message using the cosy interface, or send
it using existing best-delivery interface.

Underneath, the host-side cosy implementation uses stan-
dard kernel-bypass techniques (thus avoiding unpredictable
kernel latencies); the current implementation runs on DPDK,
and can be easily extended to user-space stacks [49, 58, 65],

2

or to hardware implementations [11]. We provide details on
end-to-end cosy implementation in §5.

Partial communication synchrony. The cosy abstraction
enables partial communication synchrony, a network-layer
property defined as follows. Let m be a message of a fixed
size, and let am and rm denote the time (according to the
local clock of the sender) at which m was submitted to the
submission queue, and the time at which the flag for m was
updated at the completion queue. The partial communication
synchrony property enables by the cosy abstraction ensures
that rm − am ≤ δ, where δ is an absolute constant that de-
pends only on network hardware (thus, is known at the time
of the message submission). Note that δ includes all of the
three delay components discussed in §1: (i) message waiting
time at the sender; (ii) host-side network layer processing and
DMA time at both the sender and the receiver; and, (iii) mes-
sage queueing, transmission and propagation times at network
switches and links.

Problem Statement. Pragmatically, we want to design the
cosy abstraction that achieves a small δ. As mentioned ear-
lier, the achievable values of δ depend on the network load
defined as the ratio of the total amount of traffic generated
by applications at the senders in any time window of length
T , and the total access link bandwidth across all senders. We
define the maximum sustainable load Θ as the maximum net-
work load for which cosy provides partial communication
synchrony for each message (that is, no message is rejected).
As we will demonstrate, there is a tight relationship between
δ and Θ: intuitively, as the desired maximum sustainable load
increases (no messages must be rejected despite higher net-
work loads), it becomes necessary to have higher values of
δ. This leads to our problem statement: we want to design
the cosy abstraction that minimizes the delay bound δ and
simultaneously maximizes the maximum sustainable load Θ.

2.2 Design Space

We now discuss existing mechanisms that can be used to
enable partial communication synchrony, and outline how
cosy builds upon these mechanisms.

Pre-datacenter packet-switched network designs (RSVP,
virtual circuit switching, ATM networks, etc.). There have
been several attempts to designing Internet architectures with
predictable performance, e.g., using Resource ReSerVation
protocol (RSVP) [83,84], virtual circuit switching [12,52,69],
and hop-by-hop flow control in ATM networks [18, 66], to
name a few. Realizing these architectures on the Internet
faced several challenges: large round trip times (RTT), the
lack of a single administrative entity precluding support from
end hosts and network routers, and potential deadlocks due to
policy-driven routing [18,66]. In addition, designs from ATM
networks are not compatible with IP/Ethernet, the typical de-
ployment scenario in datacenter networks. These challenges

proved to be insurmountable in the Internet context; however,
the equation is quite different for modern datacenter networks:
network hardware can support single-digit microsecond RTTs,
these networks operate within a single administrative do-
main allowing us to leverage both end host and switch sup-
port and most datacenter providers are already exploring pro-
grammable switches and custom-designed network interface
cards (NICs) [8, 57, 60, 77, 85] with more powerful interfaces
than commodity hardware. Our work builds upon decades of
work on predictable Internet architectures, but advances them
significantly: incorporating techniques to optimize maximum
sustainable throughput in datacenter networks, presenting the
first analytical bounds in the datacenter context, and demon-
strating the usefulness of the cosy abstraction using multiple
datacenter applications (§1, §3).

Circuit-switched network designs. There has been decades
of work on designing circuit-switched networks, including
recent work that focuses on datacenter networks [14,16,30,39,
54, 59, 62, 70, 76] and this list barely scratches the surface of
work from pre-datacenter era. These networks, by establish-
ing an end-to-end dedicated path prior to data transmission,
enable communication synchrony. Our goals are aligned with
those in circuit-switched networks; unsurprisingly, some of
our ideas resemble the techniques used in circuit-switched
networks, e.g., wavelength-switching [14, 16, 62] and packet-
based optical switching [29, 42]. However, there are two—
fundamental—differences. First, unlike circuit-switched net-
works that assume host and network hardware clocks to be
synchronized, we demonstrate that partial communication
synchrony can be achieved even without clock synchroniza-
tion (that is known to be hard at the datacenter scale [80]).
Second, unlike circuit-switched network designs that necessi-
tate zero buffering at each network switch, our work explores
the benefits of bounded (but not necessarily zero) queueing at
switches. As we will discuss, allowing even a small amount
of queueing at network switches not only leads to substan-
tially different designs but also higher sustainable loads when
compared to idealized distributed circuit-switched networks.

Existing datacenter network designs. Most of the exist-
ing datacenter network designs focus on best-effort deliv-
ery [9, 10, 13, 22, 36, 41, 43, 44, 57, 61]. There are two ex-
ceptions. The first exception is the recent work on lossless
network designs [1, 57, 85]; while these techniques ensure
that packets are never dropped due to buffer overflow, by de-
sign, they can suffer from packet stalls where packets can
be queued in switch buffers for an unpredictable amount of
time due to PFC pause frames [1]; as a result, they do not
enable partial communication synchrony as defined in pre-
vious subsection. Designing lossless network protocols that
does not use PFC is indeed an open problem [57]. Another
line of work [15, 50, 67, 80] is the most related to ours: they
focus on predictable network-level performance using cen-
tralized schedulers. However, they suffer from the classical

3

problems of centralized designs, namely scalability and avail-
ability (while they were able to operate on 10Gbps links, scal-
ing them up for modern 100Gbps and higher link bandwidths
is non-trivial due to centralized server becoming a bottle-
neck); moreover, many of these require clock synchronization
that, as mentioned above, is hard to achieve at the datacenter
scale [80]. Our work explores the problem of achieving partial
communication synchrony over distributed packet-switched
networks without clock synchronization.

3 Realizing the cosy abstraction
This section explores design of mechanisms for distributed
packet-switched datacenter networks that enable the cosy
abstraction. We first establish fundamental limits on the delay
bound δ and maximum sustainable load Θ for any design that
enables the cosy abstraction (§3.1). We then demonstrate
that how to achieve optimal δ at low loads (§3.2). Finally,
we present cosy design that enables a smooth tradeoff space
between the delay bound and the maximum sustainable load
(§3.3); we characterize this tradeoff space in §3.4.

3.1 Fundamental Limits
The following theorem outlines the fundamental limits on
the delay bound (δ⋆) and maximum sustainable load (Θ⋆)
possible for any network that enables the cosy properties.

Theorem 3.1 Let hRTT denote the unloaded RTT of the net-
work1, let B be the bandwidth for each link, and let s be the
size of each message. Then, for any design that enables partial
communication synchrony, the following bounds hold:

δsynchrony ≥ δ
⋆ = 2 ·hRTT+

s
B

Θsynchrony ≤ Θ
⋆ =

1
2(1+α)

,

where α is the ratio of hRTT and s/B. These bounds are tight.

We present the formal proof in Appendix A. Intuitively, our
proof for the delay bound demonstrates a traffic matrix for
which achieving partial communication synchrony is impos-
sible without waiting at least one hRTT before transmitting
each message; the remainder of the expression is simply the
transmission time of the message at the end-host, the time it
takes for the last packet in the message to traverse the network,
and the time for the receiver to acknowledge completion of
the message. Our proof for the bound on sustainable loads
uses a folklore result on bipartite matchings to get a factor
of 1/2 (along with an equivalence between the matching
size and network utilization for large-enough message sizes);
the (1+α) factor captures the fact that, for small messages,
there is some loss of sustainable load due to the overheads of

1Defined as the round trip time for a single MTU-sized packet in the
absence of any other packet in the network. This is a property of network
hardware.

the first hRTT. We demonstrate the tightness of the bounds
by showing that it is possible to use existing centralized de-
signs [15, 67, 80], with minimal modifications, along with
clock synchronization at all host and network hardware to
enable partial communication synchrony while achieving the
bounds in Theorem 3.1.

We make two observations. First, simple calculations for
state-of-the-art network hardware shows that, even for tiny
messages, δ⋆ is within 1.5× of the best possible delay for
asynchronous networks (δ⋆ gets closer to best possible delay
as message sizes increase); thus, if we can design mecha-
nisms that achieve delay close to this lower bound, it would
be possible to achieve partial communication synchrony with
delay comparable to state-of-the-art best-effort transport pro-
tocols [43, 44, 53, 57, 61]. The second observation relates to
the sustainable load bound—for small value of α (or, alterna-
tively, large message sizes as in classical analytical results on
network throughput [9, 47, 57]), the bound converges to the
best possible folklore bound on sustainable loads for asyn-
chronous networks. The rest of the paper focuses on exploring
the design space for distributed packet-switched network de-
signs that enable partial communication synchrony.

3.2 Achieving optimal δ for low loads
This subsection presents one design point for the cosy ab-
straction: one that achieves optimal δ (from Theorem 3.1), but
only at low loads, by using the classical Resource ReSerVa-
tion protocol (RSVP). We show that, when put together with
shortest multipath routing in a specific manner, this design
enables partial communication synchrony with the optimal
delay bound but with suboptimal maximum sustainable loads.
The design works as follows:

• Each sender, upon a message arrival at its submission queue,
sends a request control packet to the receiver. Upon re-
ceiving a request, if the receiver is not busy, it marks itself
busy, and sends a rsvp to the corresponding sender. If the
receiver is busy, it sends a reject to the sender indicating
that partial communication synchrony cannot be guaranteed
for the message due to high load.

• Each switch maintains, for each of its ports/links, whether
the link is reserved or unreserved. Upon receiving a rsvp,
a switch uniform randomly chooses one of the unreserved
outgoing links along one of the shortest paths to the sender,
embeds its identifier into the rsvp header2, marks the
link as reserved, and forwards the rsvp on to that link.
If no unreserved link is available, the switch transforms the
rsvp into a reject packet, and sends it towards both the
sender and the receiver (using information in rsvp headers).

2The original RSVP protocol assumed an underlying routing algorithm,
but MPLS-based realizations of RSVP as in commercially available routers
are more general; we describe the protocol using routers embedding their
identifiers in the header to make the discussion more concise.

4

1

1
2
4
5

2 3 4 5 6
: 1-> 4 : 2-> 5

: 3-> 6

Left Core

Left Core

Time

Right Core

Right Core

(a) RSVP, Blocking in the network

1 2 3 4 5 6
: 1-> 4 : 1-> 6

: 3-> 6

1
3
4
6

Left Core

Time

Right Core

Left Core Right Core

(b) Blocking at the end host

2 3 4 5 61
: 1-> 4 : 1-> 6: 2-> 5

: 3-> 6

1
2
3
4
5
6

Left Core

Time

Right Core

Left Core Right Core

(c) Reduced blocking with virtual links
Figure 1: An illustration of the design in §3.2 (left), and its two problems: blocking in the network (left) and at the hosts (center). The
example also demonstrates how the cosy design in §3.3 alleviates these problems using the idea of virtual links and end-host slots, for
K = 2 (right). At the bottom of each figure is the timing diagram, demonstrating the sequence of events at each node (requests are
shown in squiggly lines, rsvps and reserved links are shown in solid lines, and straight dotted lines represent rsvp that were never
initiated). Discussion on this example in respective subsections.

reject traverses the same set of switches that forwarded
rsvp so that corresponding links can be unreserved. Im-
portantly, only shortest paths are used to ensure deadlock
freedom [18, 66].

• Each sender, upon receiving a rsvp either sends a reject
(if busy sending a message to some other receiver) or, if idle,
transfers the message at full rate using the switch identifiers
in the rsvp header; once the message is finished, the sender
sends a complete and marks itself free;

• Each switch, upon receiving the reject or complete,
marks the corresponding link unreserved and forwards it
toward the receiver;

• Each receiver, upon receiving reject or complete,
marks itself idle; for complete, the receiver also sends a
complete to the sender indicating completion of message
transmission.

• Each sender, upon receiving a reject or complete, marks
such in the completion queue for the message; if the sender
does not receive a reject or complete before time δ= δ⋆,
it marks its completion queue with a reject flag for the
message (this handles packet drops due to failures).

Figure 1(left) illustrates the above design for an example. In-
tuitively, at low loads, this design provides partial communi-
cation synchrony because it satisfies two sufficient conditions:
since each message is transmitted along a reserved path, the
arrival rate for each message perfectly matches the outgoing
bandwidth available for that message; as a result, there is no
transient and/or persistent queueing at any switch, resulting in
zero queueing delays and zero congestion-related drops. The
following theorem summarizes the achievable performance
for the above design:

Theorem 3.2 For the above design, we have that δ = δ⋆, and
that expected maximum sustainable load, randomized over
choice of rsvp forwarding decisions, is given by E[ΘRSVP] =
(1−1/e)Θ⋆, where e ≈ 2.72 is base of the natural logarithm.

At a high-level, our proof for Theorem 3.2 uses a novel con-
nection between the classical balls-and-bins problem and
the problem of computing expected maximum sustainable
load for partial communication synchrony. The theorem, sim-
ilar to previous analytical results [67], assumes two-tier full-
bisection bandwidth leaf-spine network topology. It is an
intriguing open question to generalize our bounds to FatTree,
expander-based and oversubscribed network topologies.

Understanding the root causes for low sustainable load.
The above design resembles several prior designs, e.g. virtual
circuit switching [12, 52, 69] and distributed circuit-switched
networks [14, 16, 29, 59, 76], in that, each link is used by
a single sender-receiver pair at any point of time. The low
sustainable load problem is also same as faced in prior tech-
niques: “blocking” effect, both inside the network and at the
hosts. We discuss these below (Figure 1 shows an example).

Blocking in the network. In the above design, switches make
decisions on forwarding rsvp based on “local” information,
without any view of the state of links at neighboring switches.
This could lead to requests being rejected even if there is
a path available in the network. For instance, consider the
example shown in Figure 1a: here, green message is using a
reserved path 1 → 4; when receiver 5 sends a rsvp toward
2, its leaf switch uniform randomly chooses the left spine
switch and forwards the rsvp. Since there is no unreserved
outgoing link from the left spine switch to 2, the rsvp is
dropped. Had the leaf chosen the right spine switch, it would
have successfully reached sender 2, improving sustainable

5

load. This problem, caused by switches making uncoordinated
decisions, is referred to as blocking in the network.

Blocking at the end host. The second blocking effect happens
due to receivers making immediate decisions upon receiving
requests, again based on “local” information. This leads to
suboptimality in two scenarios: for the last rsvp sent by the
receiver, it may receive a reject very soon if (1) there is
no available path to the sender; or (2) sender is busy sending
message to some other receiver. Since the receiver does not
have information about the network and/or sender state, imme-
diately rejecting a request may lead to suboptimal sustainable
loads. An example is shown in Figure 1b: here, 6 first receives
request for 1 (red) and sends an rsvp to 1, it will receive a
reject since there is no unreserved path between 1 and 6. In
the meantime another request from 3 (purple) arrives, but
gets immediately rejected. If the request for 3 however was
allowed to wait for a small amount of time before rejection, it
could have been admitted since a path exists between 3 and 6.
We call this blocking problem at the end host.

As we will soon show, such blocking at the network and
end-hosts is the core reason for the significant gap of ∼37%
between ΘRSVP in Theorem 3.2 and Θ⋆ in Theorem 3.1.

3.3 cosy: achieving near-optimal δ and Θ

We now present cosy, a design that achieves a smooth trade-
off between the delay bound and maximum sustainable load.
The key insight in cosy design is that at the core of the two
blocking problems in the previous subsection is the invari-
ant maintained by the RSVP-based design—enforcing zero
queueing at each network switch. Specifically, by transmit-
ting each message on a dedicated pre-reserved path, the above
design ensures that, at each switch, the arrival rate for each
message perfectly matches the outgoing bandwidth available
for that message. Thus, it enforces zero transient queueing
and zero persistent queueing. However, to achieve partial
communication synchrony, we only need the latter; that is, it
is sufficient to achieve bounded (but not necessarily zero) tran-
sient queueing and zero persistent queueing at each switch.
This section demonstrates that allowing even a small amount
of transient queueing at network switches not only leads to
substantially different network designs but also results in im-
proved sustainable loads.
cosy ensures bounded transient queueing and zero persis-

tent queueing at each switch by integrating the above RSVP-
based design with another classical idea: virtual channels in
multicomputer networks [25, 26, 73]. We first outline cosy
design, followed by an intuitive description of how it achieves
partial communication synchrony while enabling a tradeoff
space between the delay bound and maximum sustainable
load. We formally prove the bounds in the next subsection.

cosy core design. cosy extends RSVP-based design from

the previous subsection along two directions3:

• Virtual links: Each physical link is logically decomposed
into K virtual links; each virtual link now enables a sender
to transmit a message using bandwidth B/K. Each virtual
link can be reserved by at most one message (although a
message may be allocated more than one virtual link).

• End-host slots: Each sender and receiver maintains K slots.
Each receiver can send one rsvp per slot and receive one
message per slot. Similarly, each sender can send one mes-
sage per slot, albeit each message can be transmitted using
bandwidth B/K. Each slot can be reserved by at most one
message, although a message may be allocated more than
one slots. Any sender-receiver pair may use as many slots
to exchange messages, as long as they never send two mes-
sages using the same slot.

Figure 1c shows an example—when compared to Figure 1a
and 1b, virtual links and end-host slots ensure that message
2 → 5 no longer experiences network blocking and message
1 → 6 no longer experiences end-host blocking since multiple
messages can co-exist at individual physical links and end
hosts. The above design, by naïvely using RSVP protocol
over individual virtual links and slots, reserves a dedicated
virtual path of bandwidth B/K for each message (we describe
some optimizations in next section). Intuitively, the above
design maintains two invariants. First, at any point of time,
at most K messages use any link in the network; and second,
for each link, the sum of transmission rates of all messages
using the link is no more than the link bandwidth. The second
invariant ensures zero persistent queueing since the rate at
which packets arrive is at most the link bandwidth. However,
while each message uses a different virtual link, multiple
messages may now share a physical link; thus, data from
multiple messages may arrive at the switch (via different
virtual links) at the same time resulting in transient queueing.
The first invariant ensures that transient queueing is bounded
since only a small fixed number of packets can arrive at the
same time at any switch (in next subsection, we will bound the
number in terms of B, K and maximum number of switches
along any network path). Put together, these two invariants
are sufficient for cosy to achieve communication synchrony.

The two techniques discussed above are not merely
heuristics—they are necessary for cosy to achieve near-
optimal delay bound and maximum sustainable load: the first
technique alleviates the blocking problem in the network by
enabling fine-grained sharing of network resources: since an
rsvp message can be forwarded along any of the “virtual
links”, and there are a factor K more virtual links than phys-
ical links, it is not too hard to show that the probability of
rsvp being forwarded on a path that leads to blocking in the
network reduces significantly. The second technique, on the

3For brevity, we describe the design when all links have the same band-
width; see Appendix A for extensions for non-uniform bandwidths.

6

other hand, help alleviate the blocking problem at the end
hosts: receivers can now send multiple rsvp messages again
increasing the probability of their choosing the sender that
does not lead to blocking at the hosts. Put together, these
techniques enable cosy to achieve near-optimality in terms
of both the delay bound and maximum sustainable load.

We discuss, in §4, several additional design details for cosy,
and several optimizations that cosy uses by exploiting its own
bounded delay guarantees. We also discuss in §4 how cosy
design can be integrated with existing datacenter transport
designs to simultaneously support communication synchrony
and best-effort delivery semantics. In what follows, we pro-
vide bounds on cosy performance in the next subsection.

3.4 cosy Tradeoff Space
In this section, we provide analytical results on the tradeoff
space between latency bound and maximum sustainable load
enabled by cosy. We start with a basic result:

Lemma 3.3 Let #H be the number of switches along the
longest path (across all sender-receiver pairs), K be the num-
ber of virtual links per physical link, B be the bandwidth of
the physical link, and p be the maximum packet size. Then,
the maximum transient queueing at any switch is bounded by

q̂ ≤ #H · (K −1) · p

Moreover, the total queueing delay (across all switches) in-
curred by any packet in cosy is bounded by:

δ̂ ≤ #H · (#H+1) · (K−1)
2

· p
B

Let Ŝ be the minimum buffer size across all switches, and let
K⋆ = Ŝ/(#H · p). Then, the first part of the lemma shows that
for K ≤ K⋆, cosy will ensure that transient queueing never
grows beyond the switch buffer capacity. Thus, no packets
will ever be dropped. For instance, for a million server data-
center organized around a FatTree topology using switches
with 100Gbps link, 32MB buffer size [5] and with 1.5KB
packet sizes, we get that: K⋆ ≈ 4200. The lemma not only
guarantees that no packets will be dropped for K ≤ K⋆, but
also bounds the queueing delay seen by any packet: for the
above parameters and for K = 4, we get that δ̂ = 5.4µs. Thus,
for K ≤ K⋆, cosy design ensures communication synchrony.
Next, the following theorem establishes the maximum sus-
tainable load for cosy:

Theorem 3.4 The expected maximum sustainable load for
cosy is:

E[Θcosy] = f (K,C) ·Θ⋆ (1)

where,

f (K,C) =
∑

KC
i=0 min(i,K)

(KC
i

)(1
C

)i (
1− 1

C

)(KC−i)

K

and C is the number of core switches in the topology.

1 2 4 8 16 32 64 128
K

0.5

0.6

0.7

0.8

0.9

1.0

[Θcosy]
Θ *

Figure 2: E[Θcosy] normalized by Θ⋆ from Eq. 1, for C = 32. Larger
K enables larger sustainable load in expectation.

Figure 2 shows E[Θcosy] values. Our results confirm the intu-
ition discussed earlier: virtual links and end-host slots allow
cosy to improve the maximum sustainable load, converging
to Θ⋆ (best possible maximum sustainable load) with larger
K. Finally, we present the latency bound for cosy:

Theorem 3.5 For loads less than the maximum sustainable
load, cosy guarantees partial communication synchrony for

δcosy = 2 ·hRTT+
s ·K

B
+ δ̂

The proofs for the theorems are in Appendix A. As a final
note, cosy enables a smooth tradeoff between latency and
sustainable load using (its only) design parameter—K. As
K increases, the latency bound increases but cosy can also
sustain much higher loads. As is usual, we will show that
performance observed in empirical results (§5) is much bet-
ter than the above bounds. Bridging the gap between cosy
performance and the fundamental limits in Theorem 3.1, us-
ing distributed mechanisms, remains to be one of the most
exciting problems in this direction.

4 cosy Design Details
We now provide some low-level details on cosy design, with
a focus on how cosy exploits synchrony to enable fast failure
reaction, achieve high utilization in practice, and efficiently
handle best-effort delivery traffic.

Exploiting synchrony for fast failure reaction (including
grey failures). cosy eliminates congestion-related drops.
However, (inevitable) hardware failures and grey failures can
still lead to dropping of inflight data packets. cosy enables
fast failure reaction using the insight that all data packets in
cosy traversing a bounded-queue path means that receivers
know exactly when to expect data packets (or a reject mes-
sage) corresponding to a rsvp message. Specifically, since
cosy receivers know exactly when to expect the data packets
(or a reject message) corresponding to a rsvp message, the
absence of one of these two events allows the receiver to infer
that a hardware failure has occurred. Thus, the receiver sends
a failure control packet to the sender4, and the sender could

4failure control packet is sent with the highest priority. Since there
are few simultaneous hardware failures, it would not affect the bounds in
practice.

7

react extremely quickly—within time hRTT+δ̂ (≈ 11µs for
modern hardware).

Exploiting synchrony for consistent switch state under
failures. In addition to the routing state already maintained at
switches, cosy switches maintain a small constant amount of
state: for each virtual link, the switches store whether or not
the virtual link is reserved, and if reserved, which outgoing
virtual link is it “mapped to” (that is, the outgoing virtual link
on which the corresponding rsvp message was forwarded
to). For a switch with p physical links and K virtual links
per physical link, this requires p ·K+ p ·K log2(pK) bits. For
a large 128 port switch with K = 4, for instance, this would
require merely 640 bytes worth of state; most switches have
memory in megabytes [4, 5].

Inevitable hardware failures can also lead to dropping of
control packets, resulting in “blocked connections” problem
as in circuit switching—some of the reserved virtual links may
not be unreserved due to dropping of control packets. cosy
switches also exploit communication synchrony to resolve the
blocked connection problem. To allow quick failure detection,
each cosy receiver embeds a random sequence number (sim-
ilar to initial sequence number in classical congestion control
protocols) into each rsvp message. Each switch stores per-
port state that maps the message and the random sequence
number in the rsvp message to the virtual link that is re-
served for that message. Again, due to bounded queueing, the
switch knows that in the absence of hardware failures, this
virtual link must be unreserved at time δcosy. If such an event
does not happen, switches can detect failures and clean up
the state for the virtual link. Since programmable switches
today do not provide a dataplane counter, our implementation
approximates it using the control plane.

5 cosy Implementation and Evaluation

We have done an end-to-end implementation of cosy proto-
type on commodity end-hosts (in Linux hosts with DPDK)
and commodity programmable switches with P4 programma-
bility. This section provides some of the most interesting
implementation details (§5.1); we use this implementation
for our evaluation in a small-scale testbed (§5.2). We also
evaluate cosy performance over large-scale topologies using
a packet-level simulator (§5.3).

5.1 cosy Implementation

cosy end-host implementation. Much of our end-host imple-
mentation uses existing modules from prior network designs—
generating and responding to rsvp messages is similar to the
grant mechanism in Homa [61] and NDP [43]; and, packet
header logic for routing and forwarding based on switch iden-
tifiers is similar to NDP and source routing [64]. cosy design
requires senders to transmit messages at a rate that is depen-
dent on the number of slots allocated to that message. Such

“rate limit” functionality at the sender is already implemented
in almost all network stacks [36, 43, 61]; cosy can use any of
the existing implementations to enforce rate limits for indi-
vidual messages. Finally, if end-host hardware offload were
desirable, all of the above protocols (and respective functional-
ities) are implemented in [11], that can be used for hardware
offload of cosy end-host functionality. The only real new
aspect for the end-host implementation is allocation and deal-
location of slots, and at the receiver, selection of messages to
send rsvp packet to using power-of-two choices. These are
fairly straightforward. Overall, our prototype implementation
at the end-host uses ∼3107 lines of code and two dedicated
cores—one for pacing data and control packets, and the other
for implementing the remainder of the logic.

cosy switch implementation. cosy switch implementation
uses commercially available programmable switches [6]. The
data plane of these switches employs Portable Switch Ar-
chitecture [6], and is composed of a parser, an ingress and
an egress pipeline and a traffic manager (Figure 3). Upon
a packet arrival on an ingress ports, cosy parser implemen-
tation extracts the header, identifies the packet type (rsvp,
reject, complete, or data packet), and forwards the packet
to the ingress pipeline for further processing. The ingress
pipeline decides the egress port to which the packet will be
forwarded, and then passes the packet to the traffic manager
(which then forwards the packet to the desired egress port).
cosy’s implementation of the ingress pipeline uses two data
structures: A FIFO UplinkQ, and a counter DlinkCounter.
UplinkQ maintains the available virtual links which can be
reserved by rsvp packets while traversing uplink (toward
the spine, or the core switch). DlinkCounter maintains the
number of reserved virtual links at the downlink path (away
from the core switches). Using these data structures, cosy
can be realized using the pipeline shown in Figure 3.

5.2 cosy Testbed Evaluation
We evaluate an end-to-end implementation of cosy on a small-
scale testbed. This section focuses on cosy’s network-layer
performance; the next section demonstrates applications that
benefit from cosy’s semantics.

Evaluation Setup. We use a testbed with 8 servers organized
along a two-tier topology with 10Gbps links. Since our imple-
mentation requires programmable switches, we could not use
CloudLab or other large-scale topologies for evaluation our
implementation. We use remote procedure calls (RPC) traffic
using Poisson arrival process and an all-to-all traffic pattern;
each RPC is a fixed size message to be sent from its sender
to a randomly chosen receiver. We evaluate for varying RPC
sizes from 8KB to 512KB; and unless specified otherwise the
baseline size used is 128KB.

We measure message latency using the standard slowdown
metric [44, 57, 61], defined the ratio of the message comple-
tion time using the workload, and the message completion

8

Ingress Ports Parser Ingress Pipeline Traffic Manager

DlinkCounter[]

UplinkQ[]

Egress Pipeline Egress Ports

Stage I Stage II

Classify Packets
Into

request/
rsvp/ reject/

complete/ data

Find Direction:

Find whether to
forward rsvp on an

uplink or a
downlink

Find Egress Port:

 Pop an entry from
UplinkQ

Or
Decrement

DlinkCounter[]

Stage III

Append Switch
ID

Append switch ID
if the switch is

Agg/Core

Convert to reject

1. Exchange src and
dst addresses

2. Set Egress port to
Ingress Port

3. Set pkt type to
reject

Stage IV

Found a free
egress port?

Yes

No

Figure 3: Implementation of cosy switch on programmable switches supporting PSA architecture. More description on §5.

1 2 4 8 16 32 64 128
Slowdown (δ/Ideal FCT)

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in

ab
le

 L
oa

d

(a) Max Sustainable Loads

0.4 0.5 0.6
Input Load

5

10

15

Sl
ow

do
wn

 S
pr

ea
d Implementation Simulation

(b) Slowdown Spreads

8KB 32KB 128KB 512KB
RPC Sizes

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

ds

Max Slowdown = 10
Max Slowdown = 20
Max Slowdown = 30
Max Slowdown = 40

(c) Varying RPC Sizes
Figure 4: cosy evaluation on a 8-server testbed (a) cosy offers a tradeoff space between latency bound δ and maximum sustainable load—with
larger latency bounds, cosy sustains higher loads (b), testbed results satisfy desired latency bounds and also near-perfectly match our simulation
results (c), cosy sustains larger loads for increasing RPC sizes for fixed latency bounds

time in the absence of any other message in the network.
For each evaluated workload, we present slowdown spread—
{min, mean, 99%-ile, 99.9%-ile, and max} slowdowns using
the boxes and whiskers—lower and upper whiskers represent
min and max slowdown respectively; lower and upper box
edges represent mean and 99.9%-ile and the mid-line in the
boxes represents 99%-ile.

We now discuss the evaluation results shown in Figure 4.

cosy enables communication synchrony while offering
a unique tradeoff space between latency bound and sus-
tainable load. The design parameter in cosy—number of
virtual links (K)—allows it to offer a unique tradeoff space be-
tween latency bound and maximum sustainable load (shown
as the shaded region in Figure 4(middle)). To characterize
this space, we vary K from 1 to 16, and plot the pareto curve
on the resulting latency bounds and sustainable loads. The
tradeoff space enabled by cosy is intuitive and follows our
analytical results—as the desired bound on communication
synchrony latency is increased (via increasing K), cosy can
sustain increasingly higher loads.

cosy empirical performance almost perfectly matches the
analytical bounds. Over the evaluated workloads, we observe
that cosy can sustain much higher loads than what the analyt-
ical bounds suggest. This is not surprising since, as discussed
in §3.3, the analytical bound on maximum sustainable load
assumes a worst-case traffic matrix. Our testbed results show
that cosy is able to sustain loads as high as 0.9 for the base-
line case of 128KB RPC size. Figure 4 shows that cosy also
provides high values of maximum sustainable loads across

wide range of RPC sizes. Although the worst-case theoretical
bounds for message sizes smaller than hRTT could be quite
low (Theorem 3.4), we observe in practice, even 8KB RPCs
can sustain load of ∼ 0.65 with maximum slowdown of 40.

While our testbed results demonstrate the feasibility of
cosy, more work is needed to evaluate cosy over large-scale
deployments (we do not have large-scale testbeds with pro-
grammable switches). Nevertheless, we also implemented
cosy on a packet-level simulator to evaluate its performance
for large-scale datacenter topologies (discussed in next sub-
section). To verify the simulator robustness, we incorporate
the measured testbed parameters (link propagation, switch-
ing and average PCIe delays) into our simulator and show
the corresponding results alongside the testbed results in Fig-
ure 4. The testbed latency results near-perfectly match our
simulator (which, in turn, matches the analytical bounds in
Theorem 3.4). The slight difference in testbed and simulation
results is due to two reasons: (1) our simulator uses a fixed
PCIe latency, while the testbed exhibits some variance (usu-
ally a small value independent of message sizes [63]); and,
(2) the timers used for rate limiting at the end host in our cur-
rent implementation lack precision. Real-world deployments
implement very fine-grained rate limiters [75].

5.3 cosy Large-Scale Simulation
We now evaluate cosy using simulations on a datacenter-
scale to complement the implementation results on our small-
scale testbed. We use the standard 144-node leaf-spine topol-
ogy [10,43,61]: it has 9 top-of-rack (ToR) switches, each con-
nected to 16 end-hosts with access link bandwidth is 100Gbps.

9

1 2 4 8 16 32 64 128
Slowdown (δ/Ideal FCT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ax
 S
us
ta
in
ab
le
 L
oa
d

(a) Max Sustainable Loads

0.4 0.5 0.6
Input Load

5

10

15

Sl
ow

do
wn

 S
pr

ea
d

(b) Slowdown Spreads

8KB 32KB 128KB 512KB
RPC Sizes

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

 S
us

ta
in
ab

le
 L
oa

ds

Max Slowdown = 10
Max Slowdown = 20
Max Slowdown = 30
Max Slowdown = 40

(c) Varying RPC Sizes

FB 2:1 4:1
Oversubscription Ratio

5

10

15

Sl
ow

do
wn

 S
pr

ea
d

(d) Varying Oversubscription Ratio

Figure 5: Large scale simulation results: (a-c) sustainable loads and observed latency bounds showcase expectedly similar trends as seen on our
testbed evaluations, (d) cosy sustains its performance even across oversubscribed topologies.

The propagation and switching delay are 200ns and 450ns,
respectively. We use switch buffer capacity of 32MB (based
on the commercially available switches [3–5]). The hRTT and
bandwidth-delay product values for this topology are 5.5µs
and 67KB, respectively. Figure 5 shows the simulation results.
We observe that even on a datacenter-scale topology, the sus-
tainable load and latency bound trends look almost identical
to the ones obtained on our testbed.

6 Application Layer Benefits
We now present application layer benefits of communication
synchrony using multiple applications.

6.1 CPU-Efficient Storage Stacks
Disaggregated storage has become common in today’s dat-
acenters. As a result, modern storage stacks have been in-
tegrated with network transports (e.g., NVMe-over-Fabrics)
in order to facilitate access to remote storage devices. We
find that cosy’s predictable latency guarantees enables a fun-
damentally new point in the design space of CPU-efficient
storage stacks. Today’s storage stacks rely on one of the
two designs: polling-based or interrupt-based mechanisms.
Polling-based designs provide extremely good latency when
applications are run in isolation, but suffer when applications
share CPU resources. Interrupt-based designs work better
in the shared scenario, however still have suboptimal cpu-
efficiency due to frequent context-switches. Exploiting cosy
communication synchrony guarantees enables a new design
point which achieves a new operating point — improved CPU
efficiency without sacrificing much tail latency.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized Throughput

102

103

104

Ta
il

La
te

nc
y

(u
s)

Caladan
SPDK Priority
SPDK Fair-Share
Pred. Wakeups (cosy)

Figure 6: cosy enables a new operating point in the design of
CPU-efficient storage stacks. Y-axis shows 99.9p latency of latency
sensitive app, and X-axis shows throughput of throughput-bound
app (Discussion in §6.1). Towards right and down is better.

Methodology and setup. We begin by analyzing the op-
erating points achieved by today’s storage stacks. We use
SPDK [82], state-of-the art widely deployed storage stack,
as representative of a polling-based system. We use Cal-
adan [34], a recent kernel-bypass stack as representative of
an interrupt-based system 5. Our experimental setup consists
of two servers (A, B) directly connected to a switch with
100Gbps links. We use two applications on server A (1) an
I/O bound latency-sensitive app (LS) app which performs
random reads to a remote storage device on server B (2)
a CPU-intensive throughput-bound app (TB) which simply
burns CPU cycles spinning in a while loop. We use a RAM
disk as the remote storage device in order to emulate low-
latency storage. For LS, we use an I/O size of 4KB, and an
I/O depth of 8. We co-locate both LS and TB on a single CPU
core in order to understand performance when applications
share CPU resources. We give Caladan an additional CPU
core for it’s IOKernel. We measure 99.9th percentile tail la-
tency of LS and the throughput achieved by TB (number of
spins per second).

Polling-based designs. With SPDK, when LS is run in iso-
lation, it achieves a very low tail latency of 29.8µs. When
LS and TB are co-located (SPDK-fairshare in Figure 6) we
observe a sigificant inflation in tail latency of LS, and a degra-
dation in the throughput of TB (relative to when it is run in
isolation). This is behavior is explained in prior work [46].
A different operating point can be achieved, by assigning LS
higher CPU scheduling priority. This is shown with the SPDK
(priority) data point in Fig. 6. LS achieves good tail latency,
but at the cost of almost entirely starving TB.

Interrupt-based designs. When we run the experiment with
Caladan in it’s default configuration, it achieves good tail
latency but poor throughput due to frequent context-switches
— TB is repeatedly preempted when interrupts are delivered
to LS. Caladan exhibits a tunable trade-off between latency
and throughput in this scenario by enabling interrupts to be
delayed and coalesced in order to minimize context-switch
overheads. It exposes a parameter, THRESH_QD for this. We
re-run the experiment with varying THRESH_QD Fig. 6. As
THRESH_QD is graudually increased the throughput increases
at the cost of higher tail latency. We begin to see diminishing

5While Caladan’s IOKernel is polling-based, the applications themselves
are interrupt-driven

10

returns for larger THRESH_QD values.

Predictable-wakeups. The asynchronous nature of existing
networks fundamenatally constrains the design space of stor-
age stacks. cosy enables a new design point via it’s property
of communication synchrony — Predictable Wakeups. A stor-
age stack using cosy as transport can predict precisely the
time bound within which response packets will arrive (based
on cosy’s latency bound) This enables it to put the applica-
tion to sleep and wake it up at the right point in time so as
to minimize tail latency and maximize CPU-efficiency. We
integrated cosy as a new transport in SPDK, and modified
the storage stack logic to support predictable wakeups.

Evaluation. We evaluate our prototype of predictable wake-
ups using the same experimental setup as before. We con-
figure cosy with K = 8. The resulting operating point is
shown in Figure 6. Compared to polling-based systems, cosy
+ predictable wakeups is able to achieve significantly better
throughput with only minimal degradation in tail latency. TB
achieves higher throughput because LS goes to sleep right
after issuing requests, enabling TB to use CPU cycles until
LS is woken up again. LS tail latency increase slightly be-
cause of (1) rsvp/complete exchange in cosy6 (2) waiting
for responses to all X requests to arrive before waking up.

Compared to interrupt-based systems, cosy + preditable
wakeups is able to achieve higher throughput without com-
promising significantly on tail latency. Let us focus on two
points on the Caladan frontier in Fig. 6: (1) The point at which
Caladan achieves the same tail latency as cosy + predictable
wakeups. Here Caladan’s throughput is 37% lower. (2) The
point where Caladan achieves the same throughput as cosy +
predictable wakeups. Here it’s tail latency is nearly 4× higher.
The reason for this is the timeout-based nature of interrupt co-
alescing (via Caladan’s THRESH_QD parameter). Since packet
arrival times are not predictable in asynchronous networks,
using a fixed timeout value leads to either (1) poor throughput
if the timeout happens to be too low or (2) high tail latency
if the timeout happens to be too high. Hence, we see that
compared to both polling-based and interrupt-based systems
on asynchronous networks, cosy enables achieveing a new
and better operating point that was previously not possible.

6.2 Efficient Packet Processing Pipeline

Multiple recent works [21, 37] have suggested that running
multiple applications/connections on a single CPU core can
result in significant degradation in application throughput or
CPU efficiency. This is due to larger number or cache misses
caused by multiple contending apps. A recently introduced
design – Reframer [37], tries to reduce these misses by delib-
erately buffering packets, waiting for a batch worth of packets
to arrive per application, before letting them processed by

6Note, that we treat each I/O request as a separate cosy message

the CPU. Hence, a key requirement for such a design to pro-
vide benefits is for requisite number of packets to arrive in
as many batches as possible. However as discussed in this
paper before, for existing asynchronous networks arriving
packets can be arbitrarily delayed. In the presence of large
packet inter-arrival delays, one could potentially use a large
buffering timeouts to allow for desired batch sizes. However,
that would result in increased latencies for arriving packets as
they would require being buffered for larger amount of time.

Such an application presents a perfect case for the need
of communication synchrony guarantees provided by cosy.
cosy provides very predictable inter-packet arrival times for
its traffic, and users can easily set a desired buffering timeout
to reap the maximum benefits of a scheme like Reframer.

We evaluate the benefit of using cosy with Reframer using
the suggested two server in-chain setup as employed in the
Reframer paper [37]. We use two servers directly connected
to each other with a 100Gbps link. The network functions
and Reframer implementations are based on FastClick – a
DPDK-based framework for network I/O [17]. Reframer im-
plementation takes as input packet capture dump files, and
replays the trace using the time of arrival and 5-tuple infor-
mation for each packet. We use the traces provided in the
Reframer repository as the baseline [7]. This trace was cap-
tured with TCP as underlying transport, and hence packets
can experience large variation in inter-packet arrival times
like in any asynchronous network. In order to fully capture
the network asynchrony that can be experienced on a large
scale topology in the presence of background traffic, we also
add randomized delays to inter-packet arrival delays, while
keeping the average throughput of each flow in the traces
the same. We run the same traces on cosy and capture the
corresponding traffic, to replay on Reframer implementation
in order to evaluate Reframer performance in presence of
cosy. Note that since the background traffic is sent using
the asynchronous interface of cosy, it will have no effect on
the synchronous traffic performance due to priority-based
isolation as discussed previously in §4.

Figure 7a shows the increase in average throughput per
core using Reframer by increasing the buffering timeout val-
ues from 16µs to 192µs. We see that Reframer improves the
throughput per core from 3.4 Gbps to 4.2 Gbps for the base-
line trace. With the introduction of background traffic induced
delays, the throughput per core is reduced for each correspond-
ing timeout value. Using cosy Reframer is able to achieve 6.9
Gbps throughput per core even with the 16µs of bufferring.

Figures 7b-7d explain how cosy allows Reframer to
achieve these benefits. Figure 7b shows inter-packet delay
profiles of the evaluated traces. We plot the distribution of
packet inter-arrival times across all flows in the traces. We
see that cosy indeed provides very consistent and low inter-
packet arrival times, with almost all inter-arrival times ≤ 10µs.
cosy provides average batch size of 4.4 for 16µs buffering
timeout, and is able to achieve close to best possible average

11

50 100 150 200
Reframer Buffering Delay (us)

3

4

5

6

7

8

Th
ro

ug
hp

ut
 /

co
re

 (G
bp

s)

Reframer Trace
Reframer Trace
 + BG Traffic
Reframer Trace
 + BG Traffic
 with cosy

(a) Avg Throughput Per Core

10−1 101 103 105 107

Packet Inter-Arrival Times (us)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Delay profile of the trace

50 100 150 200
Reframer Buffering Delay (us)

2

4

6

Av
g
Ba

tc
h
Si
ze
 (#

pk
ts
)

(c) Reframer Avg Batch Size

50 100 150 200
Reframer Buffering Delay (us)

60

80

100

120

L1
 M

iss
es

 P
er

 P
ac

ke
t

(d) L1 Misses Per Second

Figure 7: Using cosy to improve the effectiveness of Reframer: (Discussion in § 6.2)

200 400 600 800 1000 1200 1400
Host time (us)

Host messages

200 400 600 800 1000 1200 1400
Detector time (us)

Detector messages

200 400 600 800 1000 1200 1400
Detector time (us)

0
0.25

0.5
0.75

1.0
False Positive Probability

(a) Detector using TP = 100µs

200 400 600 800 1000 1200 1400
Host time (us)

Host messages

200 400 600 800 1000 1200 1400
Detector time (us)

Detector messages

200 400 600 800 1000 1200 1400
Detector time (us)

0.0
0.25

0.5
0.75

1.0
False Positive Probability

(b) Detector using TP = 50µs

Figure 8: Using cosy to design efficient endhost failure detector
(See §6.3). Top plots show requests arriving at the endhosts from
the detector and the times when the endhost is crashed; middle plots
show requests being sent from the detector and the corresponding
rsvps arriving from the endhost when not crashed; bottom plots
show the false positive probability reducing with more consequtive
unresponded requests.

batch size for the evaluated traces within timeout of ∼128µs.
Without cosy however, Reframer is only able to achieve aver-
age batch size of 2.5 (and 1.5 in the presence of background
traffic) even with buffering timeout of 192µs. As discussed
previously, larger batching provides better CPU efficiency
due to improved cache miss rates. Figure 7d shows reduction
in L1 cache miss rates per packet with increasing buffering
timeouts, and this reduction is proportional to the increase
throughput per core.

6.3 Efficient Failure Detectors
Detecting host failures effectively is a fundamental problem
in distributed systems. Designing a failure detector which is
reliable (i.e. provides small false positive probability) and fast
(provides failure notification within a small delay) is a hard
problem, especially in the presence of today’s unpredictable
networks [55]. However, one can achieve both these goals
efficiently utilizing cosy synchrony guaratees.

To demonstrate this, we implemented our own endhost

failure detector application on top of cosy: a detector endhost
periodically sends a request to the desired endhost every
fixed interval of probing time TP. If the detector hears back
a rsvp from the endhost, it assumes the endhost is alive,
otherwise if there is no response for δcosy worth of time, the
detector concludes the endhost is crashed. In the presence of
no other network failure between the path of the detector and
endhost, cosy would ensure that the detector receives rsvp
within δcosy time if the endhost remains non-faulty. However,
there is a chance of the detector raising false positives in the
presence of link failures since request could be dropped
on the failed links and never reach the endhost. Due to the
large path diversity available in typical datacenter topologies
the probability of false positives is already low since the
request and rsvp would usually have large number of non-
faulty network paths available.

Figure 8 shows the evaluation results for this failure detec-
tor implemented on our testbed setup shown in Figure 4, with
one endhost used as a detector and one which can crash. Fig-
ure 8a shows the detector sending a request to the endhost
every 100us (shown in orange). The endhost is made to crash
at 500us and recovered back at 1000us (shown in red). When
alive, the endhost responds back to the detector using rsvp
(shown in green). As guaranteed by cosy, all rsvp eventually
arriving at the detector arrive within δcosy period of sending
a request. Upon crash, the detector can detect it within a
maximum duration of TP+δE , which is only arround ∼ 135µs
for the setup. Figure 8b shows the corresponding result with
TP = 50µs. Expectedly the maximum failure response time
reduces to 85µs. Hence, increasing the probing frequency al-
lows quicker detection of failures with by trading off more
network bandwidth employed by the detector.

7 Conclusion

Applications today use best-effort delivery semantics. Such
weak semantics reduces the set of assumptions that system
designers can rely upon from the underlying network, thus
introducing complexity and inefficiency in end-host systems.
Motivated by recent hardware and application trends, this
paper explores design and performance tradeoffs for networks
offering partial communication synchrony semantics.

12

References

[1] 802.1Qbb – Priority-based Flow Control . https://1.
ieee802.org/dcb/802-1qbb/.

[2] Annapurna labs. http://www.annapurnalabs.com.

[3] Barefoot Networks. https://www.barefootnetworks.
com/.

[4] Broadcom bcm56850. https://www.broadcom.com/
collateral/pb/56850-PB03-R.pdf.

[5] Cisco Switches. https://www.cisco.com/c/en/us/
products/switches/.

[6] Portable Switch Architecture (PSA) . https://p4.org/
p4-spec/docs/PSA.html.

[7] Reframer implementation. https://github.com/

hamidgh09/Reframer.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In ACM
SIGCOMM, 2008.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In ACM SIGCOMM, 2011.

[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal near-
optimal datacenter transport. In ACM SIGCOMM, 2013.

[11] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford,
D. Walker, and D. Wentzlaff. Enabling programmable
transport protocols in high-speed NICs. In USENIX
NSDI, 2020.

[12] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts.
On-line routing of virtual circuits with applications to
load balancing and machine scheduling. In JACM, 1997.

[13] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun.
Pias: Practical information-agnostic flow scheduling for
data center networks. In Proceedings of the 13th ACM
workshop on hot topics in networks, pages 1–7, 2014.

[14] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Steven-
son. Jumpstart: A just-in-time signaling architecture for
wdm burst-switched networks. In IEEE communications
magazine, 2002.

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards predictable datacenter networks. In ACM SIG-
COMM, 2011.

[16] D. Banerjee and B. Mukherjee. Wavelength-routed op-
tical networks: Linear formulation, resource budgeting
tradeoffs, and a reconfiguration study. In IEEE/ACM
Transactions on networking, 2000.

[17] T. Barbette, C. Soldani, and L. Mathy. Fast userspace
packet processing. In 2015 ACM/IEEE Symposium on
Architectures for Networking and Communications Sys-
tems (ANCS), pages 5–16. IEEE, 2015.

[18] C. Basso, J. Calvignac, D. Orsatti, and F. Verplanken.
Hop-by-hop flow control in an ATM network, 1998. US
Patent 5,787,071.

[19] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected dat-
aplane operating system for high throughput and low
latency. In USENIX OSDI, 2014.

[20] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and
R. Agarwal. Understanding host network stack over-
heads. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 65–77, 2021.

[21] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and
R. Agarwal. Understanding host network stack over-
heads. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 65–77, 2021.

[22] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-
bounded congestion control for datacenters. In ACM
SIGCOMM, 2017.

[23] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite
multigraphs in o (e log d) time. Combinatorica, 21(1):5–
12, 2001.

[24] F. Cristian and C. Fetzer. The timed asynchronous dis-
tributed system model. In IEEE Transactions on Parallel
and Distributed systems, 1999.

[25] W. J. Dally, P. P. Carvey, L. R. Dennison, and P. A. King.
Router with virtual channel allocation, May 13 2003.
US Patent 6,563,831.

[26] W. J. Dally and C. L. Seitz. Torus routing chip, June 12
1990. US Patent 4,933,933.

[27] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronism needed for distributed consensus. In JACM,
1987.

[28] P. Dutta, R. Guerraoui, and L. Lamport. How fast can
eventual synchrony lead to consensus? In DSN, 2005.

[29] T. S. El-Bawab and J.-D. Shin. Optical packet switching
in core networks: between vision and reality. In IEEE
Communications Magazine, 2002.

[30] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Baz-
zaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vah-
dat. Helios: a hybrid electrical/optical switch archi-
tecture for modular data centers. In ACM SIGCOMM,
2010.

13

https://1.ieee802.org/dcb/802-1qbb/.
https://1.ieee802.org/dcb/802-1qbb/.
http://www.annapurnalabs.com
https://www.barefootnetworks.com/
https://www.barefootnetworks.com/
https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf
https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf
https://www.cisco.com/c/en/us/products/switches/
https://www.cisco.com/c/en/us/products/switches/
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html
https://github.com/hamidgh09/Reframer
https://github.com/hamidgh09/Reframer

[31] A. Farshin, T. Barbette, A. Roozbeh, G. Q. Maguire Jr,
and D. Kostić. Packetmill: toward per-core 100-gbps net-
working. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1–17, 2021.

[32] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić.
Reexamining direct cache access to optimize i/o inten-
sive applications for multi-hundred-gigabit networks.
In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 673–689, 2020.

[33] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, et al. Azure accelerated net-
working: SmartNICs in the public cloud. In USENIX
NSDI, 2018.

[34] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan:
Mitigating Interference at Microsecond Timescales. In
USENIX OSDI, 2020.

[35] B. Gamlath, M. Kapralov, A. Maggiori, O. Svensson,
and D. Wajc. Online matching with general arrivals. In
2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 26–37. IEEE, 2019.

[36] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Rat-
nasamy, and S. Shenker. pHost: Distributed near-optimal
datacenter transport over commodity network fabric. In
ACM CoNEXT, 2015.

[37] H. Ghasemirahni. Packet Order Matters!: Improving Ap-
plication Performance by Deliberately Delaying Packets.
PhD thesis, KTH Royal Institute of Technology, 2021.

[38] H. Ghasemirahni, T. Barbette, G. Katsikas, A. Farshin,
A. Girondi, Massimoand Roozbeh, M. Chiesa,
G. Maguire, and D. Kostic. Packet order matters!
improving application performance by deliberately
delaying packets. In Networked Systems Design and
Implementation (NSDI), 2022.

[39] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur,
J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar,
M. Glick, and D. Kilper. ProjecToR: Agile reconfig-
urable data center interconnect. In ACM SIGCOMM,
2016.

[40] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A scalable
and flexible data center network. In ACM SIGCOMM,
2009.

[41] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues don’t
matter when you can jump them! In USENIX NSDI,
2015.

[42] C. Guillemot, M. Renaud, P. Gambini, C. Janz, I. An-
donovic, R. Bauknecht, B. Bostica, M. Burzio, F. Calle-
gati, M. Casoni, et al. Transparent optical packet switch-
ing: The european ACTS KEOPS project approach. In
Journal of lightwave technology, 1998.

[43] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
datacenter networks and stacks for low latency and high
performance. In ACM SIGCOMM, 2017.

[44] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen,
K. Tan, and Y. Wang. Aeolus: a building block for
proactive transport in datacenters. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 422–434, 2020.

[45] J. Hwang, Q. Cai, A. Tang, and R. Agarwal.
TCP≈RDMA: Cpu-efficient remote storage access with
i10. In NSDI, 2020.

[46] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal.
Rearchitecting linux storage stack for µs latency and
high throughput, 2021.

[47] V. Jacobson. Congestion avoidance and control. In
SIGCOMM, 1988.

[48] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: a highly scalable user-
level TCP stack for multicore systems. In USENIX
NSDI, 2014.

[49] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter
rpcs can be general and fast. In USENIX NSDI, 2019.

[50] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable low latency for data
center applications. In Proceedings of the Third ACM
Symposium on Cloud Computing, pages 1–14, 2012.

[51] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Kr-
ishnamurthy, and T. Anderson. TAS: TCP acceleration
as an OS service. In EuroSys, 2019.

[52] S. Keshav and S. Kesahv. An engineering approach to
computer networking: ATM networks, the Internet, and
the telephone network, volume 116. Addison-Wesley
Reading, 1997.

[53] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld,
M. Ryan, et al. Swift: Delay is simple and effective
for congestion control in the datacenter. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,

14

technologies, architectures, and protocols for computer
communication, pages 514–528, 2020.

[54] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron,
H. Williams, and X. Zhao. XFabric: a reconfigurable
in-rack network for rack-scale computers. In USENIX
NSDI, 2016.

[55] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems
with the falcon spy network. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 279–294, 2011.

[56] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.
Ports. Just say NO to paxos overhead: Replacing con-
sensus with network ordering. In USENIX OSDI, 2016.

[57] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, et al. HPCC:
High precision congestion control. In ACM SIGCOMM.
2019.

[58] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, et al. Snap: a microkernel approach to host
networking. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, pages 399–413,
2019.

[59] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich,
G. Papen, A. C. Snoeren, and G. Porter. Rotornet: A
scalable, low-complexity, optical datacenter network. In
ACM SIGCOMM, 2017.

[60] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,
D. Zats, et al. TIMELY: RTT-based congestion control
for the datacenter. In ACM SIGCOMM, 2015.

[61] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A receiver-driven low-latency transport protocol
using network priorities. In ACM SIGCOMM, 2018.

[62] C. S. R. Murthy and M. Gurusamy. WDM optical net-
works: concepts, design, and algorithms. Prentice Hall,
2002.

[63] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich,
S. López-Buedo, and A. W. Moore. Understanding pcie
performance for end host networking. In Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, pages 327–341, 2018.

[64] G. T. Nguyen, R. Agarwal, J. Liu, M. Caesar, P. B. God-
frey, and S. Shenker. Slick packets. ACM SIGMETRICS
Performance Evaluation Review, 39(1):205–216, 2011.

[65] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan. Shenango: Achieving high {CPU} efficiency
for latency-sensitive datacenter workloads. In Usenix
NSDI, 2019.

[66] C. Özveren, R. Simcoe, and G. Varghese. Reliable and
efficient hop-by-hop flow control. In ACM SIGCOMM,
1994.

[67] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized “Zero-Queue” Data-
center Network. In ACM SIGCOMM, 2014.

[68] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Kr-
ishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The
operating system is the control plane. ACM Transactions
on Computer Systems (TOCS), 33(4):1–30, 2015.

[69] S. Plotkin. Competitive routing of virtual circuits in atm
networks. IEEE Journal on Selected Areas in Commu-
nications, 13(6):1128–1136, 1995.

[70] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating microsecond circuit switching
into the data center. ACM SIGCOMM Computer Com-
munication Review, 43(4):447–458, 2013.

[71] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krish-
namurthy. Designing distributed systems using approx-
imate synchrony in data center networks. In Usenix
NSDI, 2015.

[72] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-
ers, G. P. Gopal, J. Gray, et al. A reconfigurable fabric
for accelerating large-scale datacenter services. In ISCA,
2014.

[73] J. Rexford. Tailoring router architectures to performance
requirements in cut-through networks. 1999.

[74] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum,
and J. K. Ousterhout. Its Time for Low Latency. In
ACM HotOS, 2011.

[75] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam,
C. Contavalli, and A. Vahdat. Carousel: Scalable traffic
shaping at end hosts. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 404–417, 2017.

[76] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S.
Lee, H. Wang, R. Agarwal, and H. Weatherspoon. Shoal:
A network architecture for disaggregated racks. In
USENIX NSDI, 2019.

15

[77] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, and et al. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter
network. In SIGCOMM Comput. Commun. Rev., 2015.

[78] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle. Darpc:
Data center rpc. In Proceedings of the ACM Symposium
on Cloud Computing, pages 1–13, 2014.

[79] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argy-
raki, S. Ratnasamy, and S. Shenker. Resq: Enabling slos
in network function virtualization. In 15th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 18), pages 283–297, 2018.

[80] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Sno-
eren. Practical tdma for datacenter ethernet. In EuroSys,
2012.

[81] T. Yang, R. Gifford, A. Haeberlen, and L. T. X. Phan.
The synchronous data center. In Proceedings of the
Workshop on Hot Topics in Operating Systems, pages
142–148, 2019.

[82] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu,
C. Chang, G. Cao, J. Stern, V. Verma, and L. E. Paul.
Spdk: A development kit to build high performance
storage applications. In 2017 IEEE International Con-
ference on Cloud Computing Technology and Science
(CloudCom), pages 154–161. IEEE, 2017.

[83] L. Zhang, S. Berson, S. Herzog, S. Jamin, and R. Braden.
RFC2205: Resource ReSerVation Protocol (RSVP) –
version 1 functional specification, 1997.

[84] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. Rsvp: A new resource reservation protocol. IEEE
network, 7(5):8–18, 1993.

[85] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion control for large-scale RDMA
deployments. In ACM SIGCOMM, 2015.

A Proofs for theorems

Proof for Theorem 3.1. Assuming a 2-tier leaf-spine and
a full-bisection topology, we can represent the topology as
shown in Figure 9 (in an unfolded view, with senders on the
left side and receivers on the right) . To ensure communi-
cation synchrony guarantee, the network must provide two
necessary conditions – (1) ∃ an F > 0 such that each message
admitted by the network must transmit all its packets at an
average transmission rate ≥ B/F , where B is the access link
bandwidth for each endhost in the network; and (2) all the

switch ports must receive data at average rates smaller than
the bandwidth capacity for the respective switch port. If (1)
is not satisfied, the transmission delay for the message can
be arbitrarily high leading to unbounded latency. If (2) is not
satisfied, this could lead to unbounded queueing at the switch
buffer, leading to packet drop7.

To provide optimal latency, the network must transfer the
message using rate B (i.e., F = 1). We now see how one
can realize condition (2) for such a network. We represent
the topology using a bipartite graph G formed using senders
and receivers as the left and right set of vertices respectively
(bottom-left, Figure 9). We represent the input traffic as edges
on this graph, with edges formed between the message sender
and receiver vertices. Consider a graph M formed by perform-
ing bipartite matching on G (bottom-center, Figure 9). We then
convert M to a bipartite multigraph L by using leaf-switches
(or the ToR switches) instead of endhosts as the vertices (top-
center, Figure 9). Next, we perform edge-coloring on L to
obtain an edge-colored multigraph Z (top-right, Figure 9).
Note that for bipartite multigraphs with degree d, it is known
that we can always optimally edge-color the graph using d
colors [23]. In this case, each unique color can be mapped to a
unique spine switch (or the core switch). It can be easily seen
that if the network only admits set of messages admitted by
the matching in M and forwards the messages at full rate via
the spine switches corresponding to the color assigned to each
message edge in Z, we obtain a synchronous network – the
network satisfies the condition (2) above, since each message
takes an edge-disjoint path in the network, and each switch
port in a full-bisection bandwidth topology has capacity equal
to the access link bandwidth.

The sources of latency for any message are (a) waiting
delay for admission (b) transmission delay at the sender (c)
speed-of-light propagation delay for all links and crossbar
fabric switching delay for all switches across the network
and (d) queueing delay at each switch. The required edge-
coloring algorithm could be performed either in a distributed
or a centralized manner; either scenario would require at least
one round of communication between a pair of nodes in the
network. Hence, the arriving message waits for minimum one
hRTT (recall that one hRTT is equal to the round trip delay
for packet across the network and includes link propagation
delays and crossbar switching deelays) before it can be admit-
ted. Upon admission, the sender transmits the packets using
rate B, therefore the transmission time for a message with size
s equals s/B. Since for the current scenario with F = 1, each
message is assigned an edge-disjoing path in the network,
there is zero queueing at each switch, hence there is no queue-
ing delay observed by any packet in the network. Assuming
the scenario of optimal latency, i.e., message arrived at time
t = 0 at the sender, and got admitted at t = 1hRTT and started

7One can also easily construct scenarios where using hop-by-hop control
techniques like PFC [1] in order to avoid packet drops in presence of (2)
could lead to violation of (1) in the worst-case

16

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

1

2

3

4

5

6

7

8

5

6

7

8

1

2

3

4

1

2

3

4

5

6

7

8

5

6

7

8

Network Topology

Input Traffic

Matching

Output Permutation

Leaf - Leaf Graph Edge-Colored Graph

Zero-Queue Paths

Edge
Coloring

Figure 9: Constructing a network providing communication synchrony with the help of graph matchings and edge-coloring

sending its data, then the receiver receives all the required
data packets from the sender by time t = s/B + 3

2 hRTT. The
extra 0.5hRTT arises due to the propagation and switching
delay for the last packet traversing from the sender to the
receiver. It takes another 0.5hRTT to notify the sender about
message arrivals or possible hardware failure (in case the
message does not arrive within intended time at the receiver).
Hence by the time δ⋆ = 2hRTT + s/B, the sender completion
queue receives the information about the message being com-
pleted or rejected. Hence latency experienced by any network
providing communication synchrony ≥ δ⋆.

For the current scenario of F = 1, an admitted edge is
added to the matching irrevocably. The utilization of the net-
work is the total data transmitted by the network per unit
time. The utilization of the network is directly proportional
to the number of edges admitted; the maximum utilization
occurs when the network admits the edges corresponding to
the offline maximum matching. The network however per-
forms a maximal matching under the model of edge-arrivals
without preemption, and the problem is known to be strictly
1
2−competitive [35]; hence there exists a input traffic pattern
such that the utilization = 1

2(1+α) . The factor of 1
(1+α) arises

due to fact that no data is transmitted by the sender during the
first hRTT when the sender waits to be informed whether the
message is admitted by the network. For generic scenario of
F > 1, the utilization is proportional to a fractional matching,
where the weight associated with each admitted edge is pro-
portional is equal to R/B ≥ 1/F , where R is the rate at which
network transmits the data for the message corresponding

to the admitted edge (recall that B ≥ R ≥ B/F). [35] shows
any algorithm for performing maximal fractional matching
under the edge-arrival model is also 1

2−competitive. Hence
the utilization bounds remains the same. Therefore, for any
network providing communication synchrony there exists a
traffic matrix such that the utilization Θ ≤ Θ⋆ = 1

2(1+α) . Θ

is also the maximum sustainable load by the network, since
by definition maximum sustainable load will be equal to the
network utilization for a scenario where optimal utilization
= 1, and the bound on Θ is independent of optimal utilization.

Proof for Theorem 3.2 and 3.4. We now provide bound for
utilization in expectation across randomized request forward-
ing decisions. If the input workload is matching to begin with,
an edge is not admitted by cosy iff there is an edge-coloring
conflict – i.e., cosy chooses a spine for forwarding the arrived
message (corresponding to the edge) which already has K vir-
tual links reserved for the sender-side leaf – spine link. To
find the expected the number of edges admitted using cosy,
we employ the commonly used balls-and-bins argument in
our context.

Consider any sender-side leaf switch. Each leaf – spine
link is considered a bin. Each arriving message is considered
a ball. Whenever cosy forwards the message request via a
randomly chosen spine, we get a new ball assigned to the bin
corresponding to the spine. Hence, whenever a new message
arrives, we correspondingly get a new ball assigned to a bin.
For any bin, we consider a maximum of K balls to be “admit-
ted” (since at most K virtual links are allowed per physical
link). However, since cosy assigns balls to a bin uniformly

17

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Input edges:
(2 -> 7), (3 -> 6), (3 ->7),
(4 -> 1), (5 -> 8), (6 -> 2),

(6 -> 3), (7 -> 2)

Input Workload 3-approx Scenario Optimal Scenario

Admitted edges:
(2 -> 7), (3 -> 6), (4 -> 1),
(5 -> 8), (6 -> 3), (7 -> 2)

Matching conflicts:
(3 -> 7), (6 -> 2)

Edge-coloring conflicts:
None

Admitted edges:
(3 ->7), (6 -> 2)

Matching conflicts:
(2 -> 7), (3 ->6), (6 -> 3), (7 -> 2)

Edge-coloring conflicts:
(4 -> 1), (5 -> 8)

Figure 10: An example of RSVP admitting edges 1/3× the optimal. The example uses the unfolded view a two-tier leaf-spine topology with
8 nodes (as used in the proof for Theorem 3.1). If RSVP admits edges (3 → 7) and (6 → 2) and chooses the colors as for these edges as
shown, then no other edge can be admitted, either due to a matching constraint or due to an edge-coloring constraint (discussed in proof for
Theorem 3.1). However, optimally it is possible to admit 6 edges as shown on right hand side.

randomly, a bin can be assigned any number of balls (with
varying probabilities). We now find the probability pt that
t balls are assigned to any bin and then use this to find the
expected number of balls admitted by any bin.

Assume that there are a total of N input balls and C bins,
with each ball arriving one after the other without loss of
generality. The probability that any bin will have exactly t
balls is

pt,N =

(
N
t

)(
1
C

)t (
1− 1

C

)(N−t)

(2)

The expected number of balls admitted by any bin is

bN =
N

∑
i=0

min(i,K)pi,N (3)

The fraction of expected number of edges admitted f is
given by bC/N. It can be easily seen that f strictly decreases
with increasing value of N, since after each edge admission
the probability that the newly arrived edge would be rejected
strictly increases. Since for any leaf the maximum value of N
is bounded by KC (since we assume input as matching, and
the topology is full-bisection), f is also bounded by f (K,C)

f ≥ f (K,C) = bKC ×C/KC (4)

We now use the above result to prove that cosy provides
f (K,C)
2(1+α) -competitive performance in expectation for arbitrary
input traffic patterns similar to the previous proofs. Assume

the offline optimal matching size is M⋆, and the number of
edges finally admitted by cosy is < M⋆ f (K,C)

2 . Result above
shows that for any input matching, cosy admits ≥ M⋆ f (K,C)
edges in exptection. Hence, if there wasn’t any coloring con-
straint for admitting the edges by cosy, the input matching
size would’ve been < M⋆

2 . Note that without the coloring
constraint, the scheme would simply construct a maximal
matching, which is always ≥ M⋆

2 . Hence, a contradiction and
our assumption that the expected number of edges finally
admitted by cosy is < M⋆ f (K,C)

2 is false. Using result from
Theorem 3.1, we get the required result.

Proof for Lemma 3.3. Consider any arbitrary switch in the
topology. cosy ensures that data packets corresponding to at
most K messages, each possibly from a different input port
(if the number of input ports in the switches ≥ K), arriving at
the same output port concurrently. Since cosy senders ensure
that packets from each slot are sent at the rate 1/(K), there
will be no persistant queueing.

However, there can be queue-build up happening because
of temporary contention arising at the output port – it is pos-
sible that packets from multiple input ports (belonging to
different slots) intending to be forwarded via same output
port, arrive at their respective input ports at the same time.
Hence, some packets would have to be enqueued before they
can be forwarded. It can be shown that at the first network hop
the maximum queue-size can be (K −1) packets, happeneing
when the all K packets arrive at their input ports at the same
time. Due to this queueing at the first network hop, the pacing

18

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b
a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b
a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

Network Topology
+

Input Traffic

Leaf-Leaf Graph

Matching

Edge-Colored Graph

Bounded-Queue PathsOutput Permutation

Figure 11: Extending the graph construction to show matching and edge-coloring for the case of K = 2. For constructing the matching, each
endhost slot – ffor eg. here Na and Nb in this figure are used as the vertices for any endhost N, and we construct edges {Na – Ma, Nb – Mb,
Na – Mb, Nb – Ma} for each message arriving between (N,M). After performing matching upon this graph, we get a leaf-leaf multigraph
with degree K× the degree of the corresponding multigraph obtained in Figure 9, hence we use K× the colors for coloring this multigraph.
The messages now assigned first K colors are routed via first spine, second K colors via second spine, and so on. For this figure, we use light
red and red colors routed via red spine, and light blue and blue colors routed via blue spine. Note that we use the same input workload as in
Figure 9 for this example.

of packets arriving at the next-hop gets altered – although
the packets belonging to a given virtual path still arrive at an
average rate of (1/K)× the link bandwidth, the instantaneous
rate can possibly increase for a brief instant of time. It can
be seen that with the addition every hop, in the worst-case
we can see additional queueing of (K −1) packets per port
– leading to the maximum possible queueing of H × (K −1)
per port per switch , where H is the number of hops in the
topology. Figure 13 shows an example workload which can
create a queueing of 3*(K −1) at a switch port at third hop.

Proof for Theorem 3.5. For networks having large enough
switch capacities, there would be no packet drops due to buffer
overflow and therefore, bounded delays for each traversed
message.

The packets in cosy experience larger delays than the basic
design due to two reasons – lower transmission rates due
to slot allocation and larger queueing delays. If a message
has been only allocated a single slot, the transmission time
for message of size m would be mK/B. Regarding queueing
delay, as discussed previously, in cosy ith hop switch would
experience maximum per-port queueing of i×(K−1) packets,
and the queues will be drained at bandwidth B, resulting in a

total maximum possible delay of #H×(#H+1)×(K−1)×p
(2×B) , which

is equal to δ̂. Therefore the total delay between the source and
receiver buffers seen by any message in cosy is ≤ mK/B+

hRTT/2+ δ̂. Additionally, cosy allows request to wait for
δE at the receivers, hence it can take hRTT + δE delay for
a message to get admitted into the network, and 1/2 hRTT
for the receiver to notify the sender about message arrival or
possible failure.

Handling non-homegeneous topologies. cosy also pro-
vides communication synchrony in the presence of a non-
homegeneous topology, with link bandwidth not necesarily
the same across the topology. Consider any arbitrary switch in-
side the network. Assume the output port bandwidth is larger
than input port – let’s say F× the input port bandwidths. The
design ensures that data packets from at most K ×F different
input ports be forwarded to the same output port, with the
packets arriving from each input port at rate 1/(K ×F) times
the output port bandwidth. This ensures that there would be
no persistent queue-build up since the net packet arrival rate
is same as the net packet departure rate. However, as shown
in proof for Lemma 3.3, the maximum queue build-up at the
ith hop can be i× (KF − 1) packets, and the delay due to

19

Input edges:
(2a -> 7a), (2b -> 7b), (2a -> 7b), (2b -> 7a),
(3a -> 6a), (3b -> 6b), (3a -> 6b), (3b -> 6a),
(3a ->7a), (3b ->7b), (3a ->7b), (3b ->7a),

(4a -> 1a), (4b -> 1b), (4a -> 1b), (4b -> 1a),
(5a -> 8a), (5b -> 8b), (5a -> 8b), (5a -> 8b),
(6a -> 2a), (6b -> 2b), (6a -> 2b), (6b -> 2a),
(6a -> 3a), (6b -> 3b), (6a -> 3b), (6b -> 3a),
(7a -> 2a), (7b -> 2b), (7a -> 2b), (7b -> 2a)

Input Workload 3-approx Scenario Optimal Scenario

Admitted edges:
(3a ->7a), (6a -> 2a)
(3b->7b), (6b -> 2b)
Matching conflicts:

(2a -> 7b), (2b -> 7b), (2a -> 7a), (2b -> 7a)
(3a -> 6b), (3b -> 6b), (3a -> 6a), (3b -> 6a),
(6a -> 3b), (6b -> 3b), (6a -> 3a), (6b -> 3a),
(7a -> 2b), (7b -> 2b), (7a -> 2a), (7b -> 2a)

Edge-coloring conflicts:
(4a -> 1b), (4b -> 1b), (4a -> 1a), (4b -> 1a),
(5a -> 8b), (5b -> 8b), (5a -> 8a), (5b -> 8a)

Admitted edges:
(2a ->7a), (3a -> 6a), (4a -> 1a)
(2b->7b), (3b -> 6b), (4b -> 1b)
(5a ->8a), (6a -> 3a), (7a -> 2a)
(5b->8b), (6b -> 3b), (7b -> 2b)

Matching conflicts:
(3a -> 7b), (3b -> 7b), (3a -> 7a), (3b -> 7a)
(6a -> 2b), (6b -> 2b), (6a -> 2a), (6b -> 2a)

Edge-coloring conflicts:
None

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b
a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

a
b

Figure 12: For K > 1, we can also achieve 1/3−competitive performance as shown previously for the case of K = 1 (or RSVP). The current
figure shows the extension of the example in Figure 10 with K = 1 to the case of K = 2. We can easily extend the same example for larger
values of K as well in a similar fashion.

queueing at this hop is i× (KF − 1)× p/(FB). Hence, the
total delay by queueing is still bounded by (#H)×(#H+1)×
(KF −1)× p/(2FB).

20

A

A

B C D

A B C D

A
Hop 1

Hop 2

Hop 3

B C D

B
C
D

A
B
C
D

A
B
C
D

Figure 13: An example showing that that maximum queueing at hop i can be i× (K−1) packets. In this example we see a subset of switches in
a topology and K = 4, and different colors depicts the virtual paths taken by different message streams, each sending data packets at average
rate of B/4. The right side of figure shows the packets for different message streams arriving at respective input ports at the switches. As shown,
hop 1 receives perfectly paced packets, but leads to maximum queueing of 3 packets when all red, blue, pink and orange packets arrive at the
input ports at the same time. Due to queueing at hop 1, the packing for packets can get disturbed, as shown for red packets at hop 2 input port,
it is possible to have 2 red packets next to each other (if at hop 1, the red packet was the last to be dequeued amongst the 3 enqueued packets).
Now at the other input input ports of hop 1, suppose single packets corresponding to other messages arrive exactly at the same time, the red
packet can again be enqueued for 3 packet transmission times, leading to three packets in a row arriving at input port A or hop 3. Suppose
exactly the same situation happened for other red packet streams arriving at input ports B,C and D at hop 3. This would cause queueing of
i∗ (K −1) = 9 packets at hop 3.

21

	Introduction
	The cosy abstraction
	Interface, definition & problem statement
	Design Space

	Realizing the cosy abstraction
	Fundamental Limits
	Achieving optimal for low loads
	cosy: achieving near-optimal and
	cosy Tradeoff Space

	cosy Design Details
	cosy Implementation and Evaluation
	cosy Implementation
	cosy Testbed Evaluation
	cosy Large-Scale Simulation

	Application Layer Benefits
	CPU-Efficient Storage Stacks
	Efficient Packet Processing Pipeline
	Efficient Failure Detectors

	Conclusion
	Proofs for theorems

