
CoCoNUT: Structural Code Understanding does not
fall out of a tree

Claas Beger
Department of Computer Science

Cornell University
Ithaca, New York
cbb89@cornell.edu

Saikat Dutta
Department of Computer Science

Cornell University
Ithaca, New York

saikatd@cornell.edu

Abstract—Large Language Models (LLMs) have shown im-
pressive performance across a wide array of tasks involving both
structured and unstructured textual data. More recently, LLMs
have demonstrated remarkable abilities to generate code across
different programming languages. Recent results on various
benchmarks for code generation, repair, or completion suggest
that certain models have programming abilities comparable to or
even surpass humans. In this work, we demonstrate that the high
performance on such benchmarks does not correlate to humans’
innate ability to understand the structural control flow of code.

For this purpose, we extract code solutions from the Hu-
manEval benchmark, which the relevant models perform very
strongly on, and trace their execution path using function calls
sampled from the respective test set. Using this dataset, we
investigate the ability of 7 state-of-the-art LLMs to match the
execution trace and find that, despite the model’s abilities to
generate semantically identical code, they possess only limited
ability to trace the execution path, especially for longer traces and
specific control structures. We find that even the top-performing
model, Gemini 1.5 Pro can only fully correctly generate the trace
of 47% of HumanEval tasks.

In addition, we introduce a subset for three key structures not,
or only contained to a limited extent in HumanEval: Recursion,
Parallel Processing, and Object Oriented Programming princi-
ples, including concepts like Inheritance and Polymorphism. Be-
sides OOP, we show that none of the investigated models achieve
an average accuracy of over 5% on the relevant traces. Aggre-
gating these specialized parts with the ubiquitous HumanEval
tasks, we present the Benchmark CoCoNUT: Code Control Flow
for Navigation Understanding and Testing, which measures a
models ability to trace the execution of code upon relevant calls,
including advanced structural components. We conclude that the
current generation LLMs still need to significantly improve to
enhance their code reasoning abilities. We hope our dataset can
help researchers bridge this gap in the near future.

Index Terms—Code Understanding, Large Language Models,
Code Execution, Benchmarks

I. INTRODUCTION

Large Language Models (LLMs), such as GPT-4 and Llama,
have demonstrated remarkable progress across diverse tasks
and are now widely used in applications like code generation
(e.g., GitHub Copilot [1]), healthcare [2], and finance [3].

In programming, LLMs show great promise by automating
tasks such as generating code, authoring tests, detecting bugs,
and repairing programs. However, achieving true success in
these tasks requires LLMs to not only generate code but also

reason about its behavior. To develop such capabilities, robust
benchmarks that evaluate code reasoning are essential.

Current benchmarks like HumanEval [4] and MBPP [5]
primarily assess code generation for simple tasks and are
already saturating, with GPT4 achieving over 90% accuracy
[6]. While newer benchmarks include execution reasoning
tasks (e.g. CruxEval [7], LiveCodeBench [8]), they do not test
the understanding of control flows. Thus, a more structurally
focused code reasoning benchmark is needed.
Our Work. To address this, we introduce CoCoNUT– a novel
benchmark for evaluating LLMs’ ability to trace complex
control flows. Each task in CoCoNUT includes a program
and test input, requiring the model to generate a trace of line
numbers executed by the program. This challenging task ne-
cessitates handling long-term dependencies, control structures,
and nested expressions, as shown in Figure 1. We argue that
tracing execution is a natural test of a model’s understanding
of code.

Currently, CoCoNUT includes 161 tasks and 1083 traces
derived from HumanEval (HumanEval-Trace), and 124 tasks
with 620 traces focusing on advanced programming struc-
tures such as recursion, parallel processing, and object-
oriented principles (Advanced-Trace) – totaling 285 tasks and
1703 traces.
Results. We evaluate 7 state-of-the-art LLMs, including
proprietary models (GPT-4o, Gemini 1.5 Pro, and Claude
3.5 Sonnet) and open-source models (e.g., LLama3.1,
Qwen2.5Coder, Mistral Codestral 22B, and CodeLLama
7B). While LLMs excel at tracing simple programs, their
performance on advanced control flows lags far behind their
code generation abilities. For instance, the top-performing
model, Gemini 1.5 Pro, traces only 47% of HumanEval tasks,
and accuracy sharply declines for traces longer than 25 lines.
Surprisingly, advanced prompts like Chain-of-Thought offer
limited benefits and sometimes degrade the performance on
complex tasks. We provide a detailed discussion of results in
§ IV. Our code and dataset are available here.

II. COCONUT FRAMEWORK

A. Tasks
We utilize the HumanEval dataset proposed by [9],

which consists of 164 Python programming tasks and

https://github.com/ClaasBeger/StructuralCodeUnderstanding


Ignore Docstring and comments, 
even if they contain code

Correctly trace nested method calls

Evaluate expressions included in 
control flow conditions

Track variables indirectly related to 
evaluation of relevant conditionals

Fig. 1. Tracing the execution flow requires a diverse understanding of code structures, even for shorter sequences like HumanEval Tasks. We list a couple
of examples for Task ID 10.

serves as a suitable benchmark for structural understanding.
These tasks are frequently used to evaluate LLMs, ensur-
ing a correlation between control flow understanding and
task-solving performance.

To adapt the dataset, we merge the function signature (in-
cluding docstring examples) with the canonical solution. Using
an abstract syntax tree, we parse the testing code to identify
all calls to the candidate function and extract their arguments.
HumanEval tasks are concise, with function bodies ranging
from 1 to 28 lines and an average of 7.7 tests per function,
resulting in approximately 1250 potential execution traces.
We employ the Python tracer provided by the sys library to
analyze execution for each argument set provided by a test
call, filtering out sets requiring more than 1024 consecutive
tokens, yielding 1083 argument sets across 161 tasks.

Additionally, Liu et al. introduced EvalPlus [10], which
expands the number of tests for HumanEval tasks, revealing
that model performance was previously overestimated. While
we generate an additional dataset based on EvalPlus (over
120,000 traces without trace length filtering), we limit our
scope to a preliminary evaluation on the base HumanEval tests.

B. Evaluation Metrics

We employ two main evaluation metrics: Exact Match and
Similarity. Exact Match provides a straightforward measure
of whether a model can fully trace the relevant execution.
To avoid bias from tasks with varying numbers of tests,

we compute task-level accuracy first, then aggregate it as
an overall Accuracy Mean. Note that this metric does not
apply when evaluating traces of different lengths, as trace
lengths can vary significantly and are not always tied to code
line numbers.

While accuracy is intuitive, it does not capture the diversity
of errors. A trace that deviates by only one line is better
than a completely incorrect prediction. To address this, we
use a Similarity metric based on the Gestalt-pattern matching
algorithm [11]. This metric focuses on matching contiguous
subsequences, emphasizing longer matches over distributed
ones. The similarity between two sequences A and B is
computed as:

S(A,B) =
2 ·M

|A|+ |B|
(1)

where M is the total number of matching characters in
contiguous blocks, and |A| and |B| are the lengths of the
sequences. The metric ranges from 0 to 1 and complements
the accuracy by quantifying partial matches. For incorrectly
generated traces, we also report False Similarity. Further, we
distinguish the hard accuracy (Acc Hard), as the fraction of
tasks that the models solve completely, meaning they are able
to reproduce the trace of all given tests.

For concurrency, traditional metrics are insufficient due
to variations in execution order across threads. We isolate
concurrent segments, compare overlapping indices, and sort
the data before applying the similarity metric. While lenient,



this approach requires models to correctly identify the start
and end of concurrent execution as a prerequisite, which we
consider a valid trade-off.

III. METHODOLOGY

A. Research Questions

In our work, we are particularly interested in the following
research questions:

• RQ1: How does the understanding of execution seman-
tics relate to code generation abilities?

• RQ2: What is the impact of different prompting tech-
niques on the overall performance?

• RQ3: How well can current state-of-the-art language
models understand the execution semantics of programs?
How does this ability change with the increasing com-
plexity of programs, as measured by length or by intro-
ducing more advanced programming concepts?

B. Dataset Curation

As described earlier, we collect programs from multiple
sources, including HumanEval. For the advanced topics,
we extract LeetCode programs based on tags from multiple
open-source repositories ( [12], [13]). Further, we complement
this data by collecting programs from the multi-language
programming platform RosettaCode [14], which also provides
relevant topic tags. We extract the actual programs from
a related open-source repository [15]. Unfortunately, these
programs often do not have corresponding tests or relevant
execution logic. We employ GPT4o to generate simple base
test cases which we expand manually. Generally, we create
five tests for every sample and try to employ increasing
difficulty (regarding number of calls, trace length, complex
control flows and similar aspects), which is necessary to
invoke the topical functionality. Since the advanced programs
generally feature multiple components (methods, classes,
etc.), we create a main code block for the models to trace,
rather than a single method call. For the topic of concurrency,
as briefly mentioned in the previous section, we need to
make further adjustments to enable valid tracing. In our
prompt, we describe how the model may use parentheses
to mark concurrent execution, We further demonstrate it
in the given prompt and tolerate smaller deviations like
multiple parentheses.

We find that models initially struggle to find the correct
format, so we employ one-shot prompting, giving the model a
very simple code call with the corresponding execution trace to
demonstrate the correct format. We explicitly ask the model
to refrain from producing other output in order to produce
a meaningful comparison with Chain-of-Thought prompting.
We observe that especially the smaller LLama model, but
also some of the larger models deviate from this instruction
sometimes, which we score as a zero in both metrics. In the
given prompt, we merge the function signature and docstring
with the canonical solution and annotate the lines with an

index number to alleviate potential ambiguity through new-
lines or comments. Separate from the given code, we name the
called function and the argument list. If necessary, we provide
superficial cleaning of the predictions (removing whitespaces,
markdown, or Python annotations). If not specified otherwise,
we use greedy decoding and a maximum token length of 1024
for direct prompting, as well as 4096 for CoT. We elect to
increase the token count in this manner to avoid cutting off
the generation before the final trace is reached.

IV. RESULTS

Fig. 2. Model Accuracy by Buckets of Trace Length using Direct Prompting.

A. Performance of SOTA LLMs on CoCoNUT

We query three popular large-scale language models that
perform at the top of the HumanEval and EvalPlus benchmarks
respectively. Namely, we use Claude 3.5 - Sonnet, Gemini Pro
1.5 002, and GPT4o. Since there is relevant work describ-
ing that Chain-of-Thought improves execution tracing [16],
[17] (although different from our definition of trace), we
specifically look at the performance of direct and Chain-of-
Thought prompting. We present the aggregated results of our
experiments on HumanEval in Table I. Across all tables, we
refer to Similarity as Sim and Accuracy as Acc.

The results show that none of the models are able to match
their performance on HumanEval. Further, we observe two
interesting points in that the performance comparison between
the models does not reflect the ranking on HumanEval, on
which GPT4o significantly outranks the other two large mod-
els. Upon closer investigation, GPT4o strongly struggles with
hallucinations, where function signatures are called directly
(which is specified to be incorrect in the prompt), and code
lines in the docstrings or unrelated code indices are listed.
Further, there is a large difference between the average accu-
racy over all traces and the number of execution cases that the
models are able to fully solve.

B. Correlation on Generative vs Execution Tracing Tasks

We conduct a small experiment to assess the correlation
between the performance in solving the described HumanEval
coding problem, as measured by the given test suite, and
the generation of execution traces for the provided sample
solution. For this experiment, we utilize LLama 3.1 70B,
which demonstrated strong performance on HumanEval tasks.



TABLE I
PERFORMANCE OVERVIEW ON THE HUMANEVAL-TRACE

Task ID CoT Direct

Acc Hard (%) Acc Mean (%) Sim False Sim Acc Hard (%) Acc Mean (%) Sim False Sim

Gemini1.5-Pro 002 47.2 66.2 0.88 0.37 47.0 65.7 0.89 0.37
Claude3.5-Sonnet 41.0 61.6 0.87 0.43 41.0 58.7 0.88 0.44
GPT4o 16.8 39.4 0.75 0.50 21.2 38.8 0.75 0.50
LLama3.1 70B 16.2 38.1 0.76 0.52 25.5 36.0 0.71 0.42
CodeLLama 34B 1.2 7.6 0.46 0.43 2.5 10.0 0.57 0.52
Qwen2.5-Coder 32B 26.1 44.3 0.81 0.50 32.7 42.4 0.78 0.44
Codestral 22B 9.3 25.0 0.71 0.57 3.1 17.8 0.66 0.59
LLama3.1 8B 1.9 12.6 0.56 0.51 0.6 10.4 0.53 0.48
Qwen2.5-Coder 7B 1.9 11.0 0.61 0.56 0.0 4.1 0.56 0.55
CodeLLama 7B 0.0 0.1 0.28 0.28 0.0 0.0 0.41 0.41

We intentionally refrain from using a code-specific model, as
its training, potentially influenced by HumanEval, might lead
to an overestimation of performance on the code generation
task. Applying this model on HumanEval results in a pass rate
of 80.4% using base tests and 74.8% using evalplus. While we
include evalplus tests for completeness, we emphasize that the
comparison using base tests is more significant, as these are
the tests with which we reproduce the code execution.

To generate a meaningful difficulty ranking, we order the
generative results by the number of tests failed by each
solution. Similarly, we rank the execution tracing results based
on the average solution similarity per task. We compute Spear-
man’s rank correlation for these orderings, yielding values
of -0.05/-0.09 (base and evalplus) for the Chain-of-Thought
approach and 0.06/0.01 for the direct approach. Both pairs of
figures suggest no significant correlation between the difficulty
of code generation and execution tracing. Additionally, we
compute the relative overlap of failed tasks between the two
approaches. Approximately 20% of the tasks that failed in
execution tracing also failed during code generation for Chain-
of-Thought prompting, and 17% for direct prompting. These
findings support our previous assumption that the difficulty
in execution tracing primarily arises from the trace length,
but also from the inclusion of specific code constructs that
are challenging for the model to execute correctly. The latter
aspect will be further discussed in subsection V-A. However,
it does not appear that there is a significant overlap with the
difficulty sources of Code Generation.

Answer to RQ1: Thus, we conclude that there is only
a very weak intermediate connection between the model
performance on Code Generation and Execution Trac-
ing, which does not apply to task-specific difficulty.

C. Direct vs CoT Prompting over Trace Lengths

Besides the performance metrics, we set out to compare
direct and CoT prompting. Our findings suggest that the
benefits of CoT may not be as significant for larger models.
While Codestral and and the smaller versions of LLama and
QwenCoder experience a 3x increase in hard accuracy, Gemini
and Claude stay consistent and GPT4o, as well as larger

Fig. 3. Model Accuracy by Buckets of Trace Length using Chain-of-Thought
Prompting.

versions of the two previously named models even decreases.
Besides the general performance, we were interested in find-
ing how the complexity of the execution, as measured by
the length of the code or trace, impacts the performance.
Although we find that the length of the execution trace and
the code length have a similar effect on the task performance,
we generally focus on trace length for evaluation purposes.
We distribute the trace lengths in 6 buckets and aggregate
performance within them. Our results are shown in Figure 2
and Figure 3.

The stronger models generally start to see a large perfor-
mance drop from a trace length of 25 onwards. Similarly,
medium sized models (70-22B) have a cutoff of around 10
and the smaller models already struggle with lengths beyond
5. This supports the hypothesis that the ability to trace long
code executions emerges at scale. Further, after a trace length
of 40, models are generally unable to generate a meaningful
trace in the vast majority of cases. For larger traces, some of
the models also lost the correct execution path and went into
endless loops, which were truncated according to the token
limit. We would further like to address the performance of
the different code-specific models we included. While some
models, like the larger version of QwenCoder seem to have
improved capabilities even with smaller parameter counts,
others like CodeLLama or CodeStral just perform in line with
their parameter count. We hypothesize that this is due to the
fact that different models had varying degree of access to



relevant execution data during their training period, despite
the focus on code. In addition, we observed some errors with
instruction-following in some of them.
We also consider the performance using CoT prompting and
again observe the most significant impact for smaller models,
even though larger models also improve slightly. Notably,
Chain-Of-Thought mostly improves the existing capabilities,
and models generally tend to lose functionality at the same
threshold as direct prompting. This is somewhat surprising
since existing works on investigating traces with a focus on
variable states tend to claim that CoT naturally combats long-
dependence issues through verbose self-documentation [18],
similar to alternative approaches like Tree-of-Thought [19]
or employment of other means for the model to document
intermediate steps [20].

Answer to RQ2: Using our current results, we cannot
clearly identify a significantly positive effect of CoT on
execution tracing. With regard to our second research
question, we conclude that there is some importance to
the chosen prompting technique, but the effect varies
according to model size and the type of program that
is supposed to be traced.

D. Advanced Structural Topics

Besides HumanEval, CoCoNUT employs evaluation on
different advanced aspects. We show an overview of the corre-
sponding performance in Table II. Apart from a few models on
the task of Object-Oriented Programming Principles, none of
the models can provide performance beyond 5% task accuracy.
Further, it is apparent that Chain-Of-Thought only improves
performance slightly on Recursion, but not on the other topics.
We note that the corresponding programs are generally longer
in code, as well as execution traces. However, this is still a very
controlled setting since all relevant methods are in a single file
and none of the code samples are longer than 200 lines of code.

We believe that this effectively shows how even SOTA
models struggle with fully reproducing the execution calls
involving the application of advanced code concepts. More
explicitly, we observe that models cannot handle resolving
recursion after a certain depth and regularly produce infinite
loops. For Concurrency, the models struggle with correctly
identifying the start and end of parallel execution, as well as
the nested worker calls. For OOP, models generally struggle
with navigating the longer code segments needed to set up the
necessary class structure and correct call resolution.

Answer to RQ3: We find that state-of-the-art LLMs,
despite strong performance on generative tasks, struggle
with structural tracing, especially on code featuring
diverse sources of complexity. In general, larger models
appear to feature a basic understanding of simple control
flow structures but traces beyond the length of 40, as
well as advanced structural code concepts, remain a
significant challenge for all models to reason about.

TABLE II
PERFORMANCE ON A SUBSET OF DIFFERENT ADVANCED PROGRAMMING

CONCEPTS SOURCED FROM OPEN SOURCE PROJECTS AND COMPETITIONS.
EVERY PROGRAM WAS TRACED WITH 5 SAMPLE BLOCKS OF INCREASING

DIFFICULTY.

Task ID CoT Direct

Acc Mean (%) Sim Acc Mean (%) Sim

Object-Oriented (40 Programs 200 Traces)

Gemini1.5-Pro 002 14.0 0.79 20.0 0.81
Claude3.5-Sonnet 0.0 0.77 1.0 0.69
GPT4o 4.5 0.82 4.0 0.73
LLama3.1 70B 15.0 0.74 10.0 0.75
CodeLLama 34B 0.0 0.37 0.0 0.37
Qwen2.5-Coder 32B 14.5 0.78 4.0 0.73
Codestral 22B 1.5 0.62 1.5 0.6
LLama3.1 8B 0.5 0.58 1.0 0.48
Qwen2.5-Coder 7B 0.0 0.58 0.0 0.56
CodeLLama 7B 0.0 0.30 0.0 0.40

Recursion (66 Programs 330 Traces)

Gemini1.5-Pro 002 2.7 0.47 0.9 0.41
Claude3.5-Sonnet 0.3 0.42 1.2 0.41
GPT4o 2.7 0.49 1.8 0.38
LLama3.1 70B 1.2 0.36 0.6 0.27
CodeLLama 34B 0.0 0.29 0.0 0.27
Qwen2.5-Coder 32B 3.0 0.35 1.8 0.30
Codestral 22B 1.0 0.29 0.0 0.29
LLama3.1 8B 0.3 0.21 0.0 0.35
Qwen2.5-Coder 7B 0.0 0.15 0.0 0.16
CodeLLama 7B 0.0 0.23 0.0 0.26

Concurrency (20 Programs 100 Traces)

Gemini1.5-Pro 002 1.0 0.41 1.0 0.39
Claude3.5-Sonnet 0.0 0.4 0.0 0.42
GPT4o 0.0 0.39 0.0 0.4
LLama3.1 70B 1.0 0.34 1.0 0.33
CodeLLama 34B 0.0 0.24 0.0 0.27
Qwen2.5-Coder 32B 0.0 0.36 0.0 0.37
Codestral 22B 0.0 0.29 0.0 0.38
LLama3.1 8B 0.0 0.28 0.0 0.26
Qwen2.5-Coder 7B 0.0 0.21 0.0 0.18
CodeLLama 7B 0.0 0.23 0.0 0.28

V. DISCUSSION

A. Qualitative Error Analysis

In order to better understand the types of errors produced
by models when evaluating program calls, we conducted a
qualitative study by manually reviewing a set of ten randomly
selected HumanEval traces for each of the nine models.
Among these, 23% of the traces were identified correctly.
We observed several common error patterns across all models,
which we outline in Figure 4. Generally, models struggled with
trace-specific issues, often arising from particular statements,
such as ‘else‘ statements, predefined functions, and similar
constructs that serve as block markers but are not executed
by the program. These cases accounted for 20% of the 90
analyzed traces. Notably, errors were distributed equally across
different model sizes, with the exception of the definition
call, which was explicitly described in the prompt. Simpler
mistakes, such as skipping statements or conditions, accounted
for 16% and 8% of the cases, respectively. Statement skips,



Statement Skip

The model correctly evaluates a 
predicate, but skips evaluating 
the next one.

HumanEval/56

(Trace 3) 6/9 Models

The model mistakenly executes 
an else statement, while the 
correct trace only treats it as a 
block marker.

HumanEval/95

(Trace 6) 5/9 Models

Else Call

The model traces the signature 
line of the called function or skips 
the definition of an internal 
function.

HumanEval/119

(Trace 1) 5/9 Models

Def Call/ Def Skip

Fig. 4. Examples of three of the most common error types encountered in HumanEval tracing. The subtitle denotes the number of models that exhibited this
error (as the first deviation) in a given Trace.

as demonstrated in Figure 4, were particularly frequent in
the given HumanEval problem, during which models failed
to execute the depth check before advancing to the next loop
iteration. This issue occurred predominantly when the depth
was greater than or equal to zero, possibly influencing the
model to skip the check. Condition skips, where the body
of a conditional statement was executed without evaluating
the predicate, seem to result from similar model behavior.
A related error type, which we classified as ”loop skip,”
accounted for 4% of the cases. This error occurs when a model
exits a loop prematurely.

We also identified a group of error types more common in
smaller, less proficient models. These included the “nonsense”
error (12%), which refers to accessing lines that are either
empty or contain only comments, the “empty” error (9%),
where the model failed to produce a valid list, and the
“predicate wrong” error (6%), where an incorrectly evaluated
predicate led to an incorrect control flow jump. Lastly, the
“no exit” error occurred when the model produced an unclosed
list. Some models, such as CodeLLama, struggled with format
expectations, often producing empty or non-sensical outputs.

We further evaluated five random traces for each of the
advanced topics using the best-performing model, Gemini 1.5-
Pro. Surprisingly, the most frequent errors encountered were
not specific to the corresponding topic. A majority of the traces
involved definition call and skip errors, which were more
prominent in this context compared to HumanEval, likely due
to the multiple functions present in the programs. One trace,
which focused on object-oriented principles, exhibited an
error in resolving a nested expression, where the inner object
initialization was simply skipped. Similarly, a concurrency
trace displayed an error related to the marking of concurrency.
We note that such errors likely also occur in the other

traces, but they were not the first ones, which we limited our
analysis to.

In general, the advanced nature of concept-based programs
makes it more challenging for models to accurately represent
program execution. This is due to the increased length and
complexity of the traces, as well as the nested structure
of the programs, which include multiple functions or class
definitions. When considering realistic software suites, which
contain exponentially more lines of code and significantly
more complex control flows between different files and pack-
ages, it is clear that current state-of-the-art models are still far
from being able to fully capture the functionalities of realistic
software systems.

B. Alternative Prompts and Settings

To validate our current elicitation approach, we experiment
with alternative prompt techniques and line annotations. We
apply these techniques on a small subset of one test case for
every task ID, resulting in 163 samples. The results are shown
in Table III. We show CoT as our baseline and first experiment
with static analysis. A lot of the programs contain output or
intermediate variables that do not have an influence on the
control flow. We ask the model to seek out the variables that
do have an influence and disregard the other ones. In addition,
we ask the model to try and determine the number of loop
iterations before entering and simply reproducing the steps
the extracted number of times rather than actually executing
it. We found that the model only applies limited analysis,
sometimes even ignoring the instruction. Correspondingly, we
observe a small performance decrease. We also experiment
with increasing the number of samples given in the prompt.
In particular, we add one code sample detailing a recursive
program execution, and one more that contains nested method
calls. We observe no significant performance increase, show-
ing that the model generally seems to possess knowledge of the



demonstrated execution concepts, only requiring one prompt
to learn the correct output format. Apart from the prompt,
we test alternatives to simply annotating the line numbers as
comments. Since LLMs are known to struggle with numerical
representations, we use a combination of singular letters and
symbols, as well as the word Line, prior to the index. Both
of these approaches reduced the performance, indicating that
line indices are a sufficient annotation choice.

As denoted in earlier sections, we generally employ Greedy-
decoding, as we assume it to be more applicable to a ground-
truth task such as execution tracing. However, to validate these
assumptions, we regenerate the samples of the best model,
Gemini, using an increased temperature of 1.0. Throughout the
CoT and Direct prompting, we observe a performance decrease
of about 3 percent average accuracy for Chain-of-Thought and
a 10 percent decrease for direct prompting.

TABLE III
COMPARISON OF DIFFERENT PROMPTING TECHNIQUES USING

GEMINI1.5-PRO 002 ON A HUMANEVAL SUBSET

Prompting Technique Average Acc Average Sim

CoT 0.6522 0.8914
Static Analysis 0.6149 0.8843
3-Shot 0.6522 0.8967
Symbols 0.0311 0.7787
Line 0.5776 0.8780

VI. RELATED WORK

Coding Benchmarks for LLMs. Numerous coding bench-
marks have been proposed for LLMs in recent years. We
summarize and compare a few popular ones here. Open
AI HumanEval and MBPP [5] are the most popular code
generation benchmarks. Several other benchmarks such as
CruxEval [7], LiveCodeBench [8], and Codemind [21] include
execution reasoning tasks (in addition to code generation)
such as predicting the output of a code snippet given some
input. CodeXGlue [22] is another prior dataset consisting of
10 different coding tasks. However, it does not include any
execution-related tasks.

Runtime Reasoning REval [23] is the most recent work that
proposed four execution-related tasks: coverage prediction,
program state prediction, execution path prediction (prediction
next statement), and output prediction. However, these tasks do
not require the LLMs to reason about control flow or different
programming structures like the tasks in CoCoNUT.

Ma et al. [24] evaluate LLMs on many different tasks,
including generating Abstract Syntax Trees, Control Flow,
and Call Graphs. However, they limit their investigation of
the dynamic behavior of the execution to Equivalent Mutant
Detection and Flaky Test Reasoning, which does not directly
concern structural understanding abilities.

Hooda et al. [25] show that LLMs are vulnerable to different
mutations related to control and data flow, as well as type
and identifier assignment. A strong understanding of the
full execution trace would help build resilience against such

approaches. To the best of our knowledge, there is no prior
work on evaluating the execution tracing abilities of LLMs,
which we investigate in this work.
Training LLMs for better execution reasoning. Few recent
approaches focused on improving the execution reasoning
of LLMs. For instance, Ding et al. developed a new cod-
ing dataset augmented with tests and execution traces and
trained an LLM, called SemCoder [26]. They showed that
such a training strategy elicits better code generation and
execution reasoning from the LLM. We also tested Sem-
Coder on CoCoNUT, however, the model was not able to
correctly follow the natural language instructions, resulting
in no meaningful results. Ni et al. [16] showed that fine-
tuning LLMs on Chain-of-Thought reasoning over execution
trace improved the performance of PaLM on the HumanEval
and the MBPP benchmarks [5]. However, their approach to
tracing mostly consists of variable states for straight-line code,
which they insert into the source code as comments instead
of control flow reasoning. While they demonstrate that this
approach also works without inserting the trace, they note
that the model exhibits hallucination issues while adapting
the trace into natural language reasoning steps. This naturally
motivates enhancing language models’ abilities to directly
extract execution representations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced CoCoNUT, a benchmark
for evaluating a model’s capability to trace the control flow of a
program given relevant input. Our evaluation of state-of-the-art
models reveals significant gaps in their performance compared
to generative tasks. We observe a strong correlation between
trace length and performance, with models generally strug-
gling to trace executions longer than 10 lines—a capability
that appears to emerge only at larger scales. Notably, specific
training on code does not consistently outperform increases in
parameter size. Models uniformly fail on advanced structural
programs with longer base traces, highlighting their limitations
in predicting the full execution of complex code despite their
widespread use in software engineering.

We also investigated the effects of prompting techniques.
Chain-of-Thought (CoT) prompting generally improves per-
formance, particularly for smaller models, but offers only
marginal benefits for larger ones and sometimes propagates
errors, leading models to incorrectly pursue alternative traces.
While we experimented with more sophisticated prompt engi-
neering on a subset of HumanEval, we did not find significant
improvements over CoT.

To explore the connection between Code Generation and
Execution Tracing, we used HumanEval as a proxy. Despite
strong performance in code generation, tracing HumanEval
solutions yielded significantly lower results, with performance
only slightly higher than half the corresponding pass rate on
generation. Additionally, we found no significant correlation
between task and trace difficulty for the two approaches. This
indicates that models lack the human-like ability to trace code



they generate, raising concerns about their role in software
development.
Next Steps and Future Work. An interesting next step, which
we leave to future work, would be to conduct fine-tuning on
our dataset, which could improve performance on adjacent
tasks such as error localization or code summarization. This
approach may help models differentiate between the function-
ality of code components and their natural language token
equivalents, thereby enhancing their ability to reason about
code behavior more effectively. We intentionally adapted code
snippets from sources that provide equivalent code in multiple
programming languages, as we aim to expand our benchmark
across them. We believe that structural code understanding is
the most significant if it is achieved across several different
languages since this implies nuanced understanding rather than
pure knowledge of when to use certain tools or commands in
one specific language. We also publish our relevant repository
to enable the testing of a wider array of models, as well as
potential training or fine-tuning on the execution trace data.
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APPENDIX

A. Trace Length Buckets

In the following, we display the measured accuracies by
trace-lengths per the outlined buckets.

TABLE IV
MODEL ACCURACY BY BUCKETS OF TRACE LENGTH USING DIRECT

PROMPTING.

Model 1-3 3-5 5-10 10-25 25-40 40+

Gemini1.5-Pro 002 93.8% 91.0% 84.8% 56.2% 24.0% 2.0%
Claude3.5-Sonnet 98.6% 86.6% 65.0% 26.6% 22.9% 0.7%
GPT4o 76.6% 62.7% 44.6% 12.0% 3.1% 0.0%
LLama3.1 70B 81.7% 59.7% 19.2% 1.3% 0.0% 0.0%
CodeLLama 34B 19.0% 25.4% 12.4% 0.0% 0.0% 0.0%
Qwen2.5-Coder 32B 96.2% 63.4% 24.9% 0.9% 0.0% 0.0%
Codestral 22B 33.5% 42.5% 15.8% 0.4% 0.0% 0.0%
LLama3.1 8B 20.0% 27.6% 7.3% 0.0% 0.0% 0.0%
Qwen2.5-Coder 7B 7.9% 9.0% 3.4% 0.0% 0.0% 0.0%
CodeLLama 7B 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

TABLE V
MODEL ACCURACY ACROSS TRACE LENGTH BUCKETS USING

CHAIN-OF-THOUGHT PROMPTING.

Model 1-3 3-5 5-10 10-25 25-40 40+

Gemini1.5-Pro 002 95.5% 88.8% 84.8% 54.9% 26.0% 1.3%
Claude3.5-Sonnet 97.2% 85.8% 71.8% 41.2% 30.2% 0.7%
GPT4o 63.5% 83.6% 60.5% 16.7% 9.4% 0.0%
LLama3.1 70B 72.4% 67.9% 46.9% 8.2% 4.2% 0.0%
CodeLLama 34B 15.2% 17.2% 8.5% 0.0% 0.0% 0.0%
Qwen2.5-Coder 32B 84.5% 74.6% 50.3% 9.4% 0.0% 0.0%
Codestral 22B 48.3% 56.0% 24.9% 1.3% 1.0% 0.0%
LLama3.1 8B 21.0% 38.8% 19.8% 0.0% 0.0% 0.0%
Qwen2.5-Coder 7B 24.8% 30.6% 2.3% 0.0% 0.0% 0.0%
CodeLLama 7B 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%

B. HumanEval Solution Line Length

Fig. 5. Length distribution across HumanEval solutions.

C. Prompts

We include a basic prompt for the CoT approach on the Hu-
manEval Trace task in the following (note that the contained
code usually contains appropriate newlines and indentation):

This task will evaluate your ability to appreciate
the control flow of code with a given input. In the
following, I will give you the source code of a program
written in Python. The program may feature different
functions, which may call each other. To make the task
more accessible to you, I have annotated the lines
with their index as comments (those begin with a #).
The following is very important! Please note that the
function signatures are generally not called, instead you
should start with the first line of the function. This does
not apply to the function call, of course. In addition
to the function, I will give you an initial input and the
called function. It is your task to return the called lines,
in order, as a list. I will give you an example:

def simple_loop(x): #1
for i in range(3): #2

print(i + x) #3
return i #4

Input: (5)
Correct solution: [2,3,2,3,2,3,2,4]
Now I will give you your task. Here is the source code:
[code]
Here is the called function: [function]
Here is the input to the function [input]
Please produce the python list containing the executed
line numbers in order now. Remember not to include
the function signature lines. Think about the solution
step-by-step, going through execution steps one at a
time. Finally, print the solution as a list of executed
steps.

The prompts for the advanced topics are adjusted to account
for the difference in format. The prompts for concurrency also
feature an adapted code example.
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