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Abstract. We present AQUA, a new probabilistic inference algorithm that
operates on probabilistic programs with continuous posterior distributions.
AQUA approximates programs via an efficient quantization of the contin-
uous distributions. It represents the distributions of random variables using
quantized value intervals (Interval Cube) and corresponding probability
densities (Density Cube). AQUA’s analysis transforms Interval and Density
Cubes to compute the posterior distribution with bounded error. We also
present an adaptive algorithm for selecting the size and the granularity of
the Interval and Density Cubes.
We evaluate AQUA on 24 programs from the literature. AQUA solved all of
24 benchmarks in less than 43s (median 1.35s) with a high-level of accuracy.
We show that AQUA is more accurate than state-of-the-art approximate
algorithms (Stan’s NUTS and ADVI) and supports programs that are out
of reach of exact inference tools, such as PSI and SPPL.

1 Introduction

Many modern applications (e.g., in machine learning, robotics, autonomous driving,
medical diagnostics, and financial forecasting) need to make decisions under uncer-
tainty. Probabilistic programming languages (PPLs) offer an intuitive way to model
uncertainty by representing complex probabilistic models as simple programs [5].
They expose randomness and Bayesian inference as first-class abstractions by
extending standard languages with statements for sampling from probability distri-
butions and probabilistic conditioning. The underlying programming system then
automates the intricate details of the probabilistic inference.

Probabilistic inference is a computationally hard problem. Most current ap-
proaches that emerged from the statistics and machine learning communities applied
aggressive numeric approximations, such as Markov Chain Monte Carlo sampling
(MCMC) or Variational Inference (VI). However, these approaches often cannot
obtain the level of accuracy that is required in applications such as algorithmic
fairness [2], security/privacy [22], sensitivity analysis [13,1], or software testing [8].

Symbolic techniques for inference have been resurging as a more accurate al-
ternative. They use a symbolic representation of the model’s state (e.g., elementary
functions, piecewise-linear functions, or hypercubes), and compute the posterior dis-
tribution algebraically [8,16,19] or closely approximate programs using volume com-
putation [20,2,22]. However, these approaches are often limited by the classes of pro-
grams they can solve. For instance, continuous programs pose a major challenge for



these approaches due to integrals in posterior calculation. State-of-the-art symbolic
solvers cannot solve many integrals exactly (often, the integrals do not have a closed
form). Similarly, volume computation approaches have a limited support for continu-
ous distributions (e.g., do not allow for conditioning on continuous random variables)
and/or compute the probability of a single event, not the entire posterior distribution.
An intriguing research question is how to approximate multi-dimensional continuous
distributions in a principled manner that allows for more expressive programs and
can solve programs that are out of reach of existing tools for exact inference.

AQUA. We present AQUA, a novel system for symbolic inference that uses quanti-
zation of probability density function for delivering scalable and precise solutions for
a broad range of probabilistic programs. AQUA’s inference algorithm approximates
the original continuous program via an efficient quantization of the continuous distri-
butions by using multi-dimensional tensor representations that we call Interval Cube
and Density Cube. The Interval Cube stores the quantized value ranges of variables in
the probabilistic program. The Density Cube approximates the joint posterior distri-
bution by recording the probability of each hypercube contained in the interval cube.

AQUA’s analysis transforms the symbolic state to compute quantized approximate
posterior distribution.We derive the bounds for the approximation error (due to the
quantization and integration) and show that our inference converges in distribution
to the true posterior. We also present an adaptive algorithm for automatically
selecting the granularity of the Interval and Density Cubes.

1 D=40

2 Y=[3.4,0.3,...]

3 a~uniform(-10,10)

4 b~uniform(-10,10)

5 for (i in 1:D)

6 Y[i]~normal(a+b,1)

7 return a,b

Fig. 1: Example

Example. Figure 1 presents a probabilistic program
that represents the distribution of two random variables.
In the program, we have two random variables a and b,
each having uniform prior distribution (Lines 3-4). We
then condition the model on 40 data points Y, assuming
that each point is normally distributed with the mean
a+b (Lines 5-6). We finally query for the joint posterior
distribution (i.e., the distribution of latent variables a
and b after observing the data on Line 6).

(a) AQUA prior (b) AQUA observe (c) AQUA result (d) NUTS result

Fig. 2: AQUA estimated probabilistic density and NUTS histogram

Figure 2 presents AQUA’s results: (a) shows the prior of the two variables,
(b) shows the likelihood (observation) on a single data point, and (c) shows the
posterior distribution. On each plot, the X-axis and Y-axis represent a and b values,
and the Z-axis values are the probability densities computed by AQUA. AQUA
computes the result in 0.76s, whereas an MCMC based inference algorithm (NUTS)
produces a less accurate posterior within the same amount of time (Figure 2(d)).



Evaluation. We evaluate our implementation of AQUA on a set of 24 probabilistic
programs from the literature. We compare AQUA with exact inference – PSI [8]
and SPPL [19] – and approximate inference – MCMC and VI implemetations
in Stan [5]. We show that AQUA can solve programs that are out of reach for
PSI and SPPL. Our results show AQUA solved all benchmarks in less than 43s
(median 1.35s). It is significantly more accurate than VI for all programs (for
the Kolmogorov-Smirnov metric). AQUA is substantially more accurate than
MCMC for 10 programs, even when MCMC is given substantially more time to
complete. We also present a case study that shows AQUA can precisely capture
the tails of the distribution of robust models.

Contributions. This paper makes the following contributions:

– Inference Algorithm: We present AQUA, a novel inference algorithm that
works on general, real-world probabilistic programs with continuous distributions
based on quantization and symbolic computation.

– Quantization with Interval and Density Cubes: Our analysis defines
symbolic transformers on the abstract state consisting of the Interval and Density
Cubes. We also present theoretical bounds on the quality of approximation.

– Inference Algorithm Optimizations: We present algorithm extensions that
automatically refine the size/granularity of the analysis to satisfy a given precision
threshold and aggressively reduce the analysis overhead of local variables.

– Evaluation: Our experiments show that AQUA is more accurate than approx-
imate inference algorithms (Stan’s MCMC/VI) and supports programs with
conditioning on continuous distributions that are out of reach of exact inference
tools (PSI and SPPL).

2 Preliminaries

Language Syntax and Semantics. Figure 3 describes the syntax of a prob-
abilistic program using an imperative, first-order intermediate representation,
drawing from Storm-IR [6,7]. It has statements for sampling from distributions1

and conditioning on data with factor and observe.

x ∈ Vars
c ∈ Consts
op ∈ {+,−,∗,>,...}
d ∈ {Normal,Uniform,...}

E := c | x | E[E*] | E op E | d (E*).pdf(E*) | f(E*)
S := x = E | x ∼ d (E∗) | factor(E) | observe(d(E∗),x)

| if (E) S∗ else S∗ | for x ∈ 1..N; {S∗}
P := S+; return x+

Fig. 3: Syntax of AQUA’s language

The language semantics are standard, inspired by those presented by Gori-
nova et al. [11] (We present the detailed semantics rules in the Appendix, available
in the full version of the paper). In summary, a probabilistic program evaluates
the posterior probability density function. Our operational semantics for a program

1 We support common continuous distributions including Normal, Uniform, Exponential,
Beta, Gamma, Student-T, Laplace, Triangular, and any mixture of the above distributions.



defines its effect on the program state, σ, which maps variables to values. A value
V can either be a constant c or an array of values [c1,c2,...]. The notations σ(x)
and σ(x 7→V ) denote accessing and updating a variable x respectively. We refer to
the return variables of the program as the global variables, and the others as local
variables. We allow local variables to have discrete distributions (e.g. Bernoulli),
as long as the density of the global variables are Lipschitz continuous. We define
a special variable L∈R+ which tracks the unnormalized posterior density of the
probabilistic program. We initialize σ(L) to 1.0 at the start of the program.

Probability Density. We review several basic terms from the probability theory.
Let x be the set of variables with values in V , and D be the set of observed
data points. Then, the posterior probability density function is p(x|D) :V →R,
such that

∫
x∈V p(x|D)dx=1. The distribution p(x|D) can be calculated from the

unnormalized probability density function f(x,D) :V →R, by p(x|D)= 1
z f(x,D),

where z is the normalizing constant: z =
∫
f(x,D)dx. If x−i contains all the

variables in x excluding xi, we define the marginal probability density function of
xi as p(xi|D)=

∫
p(x|D) dx−i. Hereon, we omit data symbol D to write p(x) and

f(x) when clear from the context. In the semantics, f(x) is represented by σ(L).

3 AQUA’s Probabilistic Inference using Density Cubes

3.1 Notations and Basic Definitions

We represent the closed, bounded set {x∈R|a≤x≤b} with its lower-bound a∈R
and upper-bound b∈R. We denote this abstraction as an interval I=[a,b]∈R2.
We refer to the lower and upper bound of I as I and I, respectively (I,I∈R).

A probabilistic program lifts a normal program operating on single values
to a distribution over values. Hence, a probabilistic program represents a joint
distribution over its variables. For our symbolic analysis, to represent the quantized
values of variables, we define tensors of intervals which we will refer to as Interval
Cube. We also assign a probability density to each interval in the Interval Cube. We
will refer to this assignment of densities as Density Cube. If there are N variables
in the program, the Density Cube will be an N -dimensional tensor.

Definition 1 (Interval Cube). We represent the value of a variable x with Interval
Cube, IxM1,M2,...,MN

where [M1,M2,...,MN ] represents the shape of the Interval
Cube and each Mi∈N is the number of intervals (splits) along the i-th dimension.
Each element of IxM1,M2,...,MN

is a single interval. We let I be the set of all Interval
Cubes. For a constant c, we denote its Interval Cube as [c], meaning a singleton
interval with both lower and upper bounds being c.

To simplify the notation, we hereon denote the shape of the hypercube as
M =[M1,M2,...,MN ] and each index in the hypercube is m∈M, M={[m1,...,mN ]|
mi∈ [1,...,Mi], i∈{1,...,N}}. We write K=M1�M2 as the element-wise product
(Hadamard product) of two shape vectors, namely Ki=M1i×M2i, i∈{1,...,N}. We
use m1 to denote the index of a Interval Cube with shape M1, m1 =[m1,...,mN ],
mi∈{1,...,M1i}, and similarly we use m2 for index in M2, and k for index in K.



Table 1: Correspondence of Symbolic Analysis and Concrete Analysis

Concrete Symbolic

Value σ(x) Interval Cube σ#(x)
Density σ(L) Density Cube σ#(P )
State : (P(Vars 7→ Value) 7→ [0, 1]) Astate : (P(Vars 7→ Interval Cube) 7→ Density Cube)
JEK : State7→Value JEK# : Astate 7→Interval Cube
JSK : State 7→State JSK# : Astate 7→Astate

Definition 2 (Density Cube). For a given probabilistic program Prog with N

variables, we define the Density Cube with shape M as PProg
M , where

PProg
M (m)=pm, for each index m∈M,

and pm denotes the value of the unnormalized probability density function at the
lower bound of the corresponding interval in the Interval Cube. The densities at
the lower bound of intervals will help us do numerical integration for posterior
calculation. Further, PProg

M ∈RM , and pm∈R.

Definition 3 (Symbolic Domain). Our symbolic state has two components, a map
from variables to Interval Cubes, and a Density Cube representing the joint density
approximation. Let Var denote the set of variables, and P be the power set, the
domain of the symbolic state is Σ=P(Var 7→I)×RM a symbolic state σ#∈Σ will
have the form

σ# =
〈
{x1 7→Ix1

M1
,x2 7→Ix2

M2
,...,xi 7→Ixi

Mi
,...},P 7→PProg

M

〉
.

The symbolic domain expresses a piecewise constant interpolation of the joint
probability density at a program point. Hereon, we refer to the set of all the
variables in the state σ# as x={x1,x2,...,xN}.

3.2 Analysis

We approximate the posterior density function of variables in our symbolic states.
Table 1 presents the correspondence of the objects in concrete semantics to symbolic
states. While a concrete state has a single valuation of variables and evaluates
to a single density value, our symbolic state stores all possible variable values in
Interval Cube and corresponding probability densities in Density Cube. As the
concrete semantics for a expression maps state to values, the symbolic semantics
map symbolic state to Interval Cube; and as the concrete semantics for a statement
map state to state, our symbolic semantics map symbolic state to symbolic state.

Analysis of Expressions. The symbolic transformer JEK# on an expression
E takes a symbolic state σ# : Astate as input, and outputs an Interval Cube.
Figure 4 presents the rules. We explain two important cases in detail:
• JE1 op E2K#: For the arithmetic/boolean operation on two Interval Cubes, which
may not always have the same shape, the resulting Interval Cube needs to contain all
possible value combinations. Specifically, for IE1

M1
with shape M1 =[M11,...,M1N ]

and IE2

M2
with shape M2 = [M21,...,M2N ], the result IE1 op E2

K has shape K =
[K1,...,KN ] with Ki=M1i×M2i to capture all the combinations of elements from



JEK# 7→(Astate 7→ Interval Cube)

JxK# :=λσ#.σ#(x)

JcK# :=λσ#.[c]

JE1[E2]K# :=λσ#.let [c,c]=JE2K#σ# in JE1[c]K#σ#

JE1 op E2K# :=λσ#.let IE1
M1

=JE1K#σ#, IE2
M2

=JE2K#σ#,K=M1�M2

in IE1 op E2
K , where IE1 op E2

K (k)=IE1
M1

(m1) op IE2
M1

(m2)

Jd(E1,...,En−1).pdf(En)K# :=λσ#.let IE1
M1

=JE1K#σ#,...,IEn
Mn

=JEnK#σ#,K=

n⊙
i=1

M i,

in Idpdf
K , where Idpdf

K (k)=d pdf(IEn
Mn

(mn),I
E1
M1

(m1),...,I
En−1

Mn−1
(mn−1))

Fig. 4: Analysis of Expressions

IE1

M1
and IE2

M2
. If M1 and M2 are not of the same length, we reshape both IE1

M1

and IE2

M2
to have the same dimension, by letting some M1i or M2i to have value 1.

We let the arithmetic or boolean operation on the interval pairs be IE1

M1
(m1) op

IE2

M2
(m2) := [IE1

M1
(m1) op IE2

M2
(m2), IE1

M1
(m1) op IE2

M2
(m2)]. We handle the

case with multiple intervals analogously. This operation on multiple Interval Cubes
can be implemented efficiently with the broadcast function in tensor libraries.
• Jd(E1,...,En−1).pdf(En)K: Similar to arithmetic operator, we apply the mathe-
matical density d pdf( ) of the distribution d whose parameters (e.g., mean, location,
shape or variance) are intervals obtained by evaluating E1,...,En−1, and it takes the
intervals of En for which we seek the density. We denote the shape of the result Inter-
val Cube as K, which is computed from the shape of the input Interval Cubes.

Analysis of Statements. Figure 5 presents the transformers JSK# on statements
S, which takes an abstract state σ# :Astate as input, and outputs an abstract state.
We explain two important rules where we modify Density Cube (the remaining
statements are standard or rely on these two rules):
• Jx∼d(E1,...,En)K#, Jfactor(E)K#: We first evaluate d.pdf( ) of E into Interval
Cube, and multiply the current Density Cube with the lower bound of intervals
from the Interval Cube. Then at the lower bound of each interval, the density is the
same as the one from concrete semantics (Lemma 7). Intuitively, we discretize the
density function and use the density at the lower bound to represent each interval.
For convenience, our discretization uses the density at the lower bound. Using the
density at the upper bound or the midpoint is also possible, and our accuracy
guarantee (Theorem 10) still holds.
• Jif (E) then {S1} else {S2}K#: We first solve the result from two branches one
conditioning on E and the other on 1−E. The true boolean expressions evaluate
to 1 and false to 0 in our analysis, and we get the interval cubes for E and 1−E
from expression rules (Figure 4). We then Join the result states by adding up the
Density Cubes from both branches.

Definition 4 (Joins). Join (t) adds the Density Cubes from two states. Formally,

σ#
1 t σ#

2 = σ#
1 (P 7→ PProg

M1,M2,...,MN
), where each element in PProg

M1,M2,...,MN
at



JSK# 7→(Astate 7→Astate)

JskipK# :=λσ
#
.σ

#

JS1;S2K# :=λσ
#
.JS2K#(JS1K#σ#

)

Jx=EK# :=λσ
#
.let I=JEK#σ#

in σ
#
(x 7→I)

Jx∼d(E1,...,En)K
# :=λσ

#
.let PM0

=σ
#
(P ), I

dpdf
K =Jd(E1,...,En).pdf(x)K

#
σ
#
, in

letM=M0�K, in σ
#
(P 7→P

′
M ),

where P
′
M (m)=PM0

(m0)·Idpdf
K (k), for allm=m0�k,

m0∈{[m01,...,m0N ]|m0i∈{1,...,M0N}},[M01,...,M0N ]=M0,

k∈{[k1,...,kN ]| ki∈{1,...,KN}}, [K1,...,KN ]=K

Jfactor(E)K# :=λσ
#
.letPM0

=σ
#
(P ), IK =JEK#σ#

,M=M0�K

in σ
#
(P 7→P

′
M ), where P

′
M (m)=PM0

(m0)·IK(k)

where P
′
M , PM0

and PK are as above

Jobserve(d(E1,...,En),x)K
# :=λσ

#
.Jfactor(d(E1,...,En).pdf(x))K

#
σ
#

Jif (E) then {S1} else {S2}K# :=λσ
#
.
(

Jfactor(E);S1K#σ#
)
t
(

Jfactor(1-E);S2K#σ#
)

Jfor (i inE1..E2) SK# :=λσ
#
.Ji=E1;if (i≤E2)then{S;for (i inE1+1..E2)S}else{skip}K#σ#

Fig. 5: Analysis of Statements

location m is σ#
1 (P )(m)+σ#

1 (P )(m), with m=[m1,m2,...,mN ], mi∈{1,...,Mi}.
Since we already initialized the global variables with their Interval Cube, σ#

1 and

σ#
2 should have the same variables and Interval Cubes. Then the joint probability

density P is changed to the sum of the densities from both states. Similarly, we
can define Meet (u) by product of σ#

1 (P )(m) and σ#
1 (P )(m).

Algorithm. Algorithm 1 takes as input a probabilistic program Prog, the shape
vector M where each element Mi is the number of intervals for variable xi, and
the interval bounds C (optional). In Section 4, we describe an adaptive scheme to
automatically search for a proper C for the analysis.

First, it initializes the probability density variable P with the single interval [1.0]
(Line 2). Then, it splits the value domain for each xi in SampledVars, which are vari-
ables sampled from a prior distribution xi∼d(E1,...,En) and not from deterministic
assignments, into Mi equi-length intervals in Ci (in the function GetInitIntervals,
Line 3-5). Mi is the i-th element in M , and Ci is the i-th element in C.

The algorithm follows the analysis rules to get the state at the end of the program
(Line 6). Then it computes the joint probability density estimation f̂ , as a piecewise
function of σ#(P ) (Line 7).

The result f̂(x) is an approximation of the true unnormalized probability density
function f(x). In the concrete domain, the posterior probabilistic density function
is calculated as p(x)= 1

z f(x), but the integration z=
∫
f(x)dx is often intractable.

We compute our approximation ẑ using integration on the piecewise function:

Definition 5 (Integration for Normalizing Constant). Suppose there are N sampled

variables x in the program, and let C=
⊗N

i=1[ai,bi]⊂RN for each xi∈ [ai,bi]⊂R be



Algorithm 1 Posterior Interval Analysis Algorithm

1: procedure PosteriorAnalysis(Prog, M , C)
2: σ#

init←{P 7→ [1]} . Initialize with probability 1
3: for xi∈SampledVars(Prog) do
4: σ#

init[xi]←GetInitIntervals(xi,Mi,Ci)
5: end for
6: σ#←JProgKσ#

init . Apply analysis rules
7: f̂(x)←PiecewiseFunc(σ#(P ))
8: ẑ←

∫
σ#[x]

f̂(x) dx; p̂(x)← 1
ẑ
f̂(x) . Normalize the Posterior

9: for xi∈SampledVars(Prog) do
10: Marginal[xi]← 1

z

∫
σ#[x−i]

p̂(x) dx−i . Marginalize

11: end for
12: return (p̂, Marginal)
13: end procedure

the bounded domain used in the analysis (
⊗

represents the Cartesian Product on in-
tervals on R). We initialize σ#[x]=C in the analysis. Then z=

∫
C
f(x) dx is approx-

imated with ẑ =
∫
σ#[x]

f̂(x) dx =
∑

m∈M(
∏N
i=1(Ixi

Mi
(m) −Ixi

Mi
(m))·P P

M (m)).

The algorithm finally computes the posterior and the marginals for every variable
(Lines 8-11). When the program has N variables, and each variable has the same
number of intervals M , Algorithm 1 has the time complexity O(N ·MN ) and space
complexity O(MN ).

3.3 Formal Guarantee of Accuracy

In this section we formally derive how well the symbolic state σ# approximates
the joint unnormalized density function f and the posterior density function p.

Definition 6 (Concretization of Symbolic States). Define γ as the concretization

function, s.t. γ(σ#)= f̂ , where f̂(x)=σ#(P )(m) if x∈⊗N
i=1[Ixi

Mi
(m),Ixi

Mi
(m))⊂

RN for any m, and 0 otherwise.

Lemma 7 shows that at any program point, the error is bounded if we use the
analysis result γ(σ#)= f̂ as an approximation of joint density function f , and the
error will reduce by the more number of intervals. To simplify the presentation, we
use x(m) = [Ix1

M1
(m),..., IxN

MN
(m)] for all variables, and analogously for x(m).

Lemma 7 (Discretization Error). The error of discretization is |f̂(x)−f(x)| ≤
µ·maxm‖x(m)−x(m)‖ if x 6=x(m), and if x=x(m) the error is 0.

Proof Sketch. We show that at any program point, (1) σ#(P )(m)=f(x) when x=
x(m), meaning the abstract transformers are exact at the lower bounds, and (2) f
is µ-Lipschitz continuous. By definition of µ-Lipschitz continuous, |f(x1)−f(x2)|≤



µ·‖x1−x2‖, we can prove the Lemma. The proof is by structural induction: we first
show at initialization of the program, σ# satisfies (1) and (2) because f(x)=1.0
and σ#(P )(m)=[1.0]. Then for each statement, we show if the pre-state satisfies
(1), the post-state has σ#(P )(m)=f(x(m)); and if the pre-state satisfies (2), f is
Lipschitz continuous. We present the full proof in the Appendix.

The error of AQUA’s approximation to the normalizing constant z is also bounded:

Lemma 8 (Integration Error). Let U =
∏N
i=1 (bi−ai) be the volume of C. For

all the probability distributions supported in our language, the error is |z−ẑ| ≤
Uµmaxm ‖x(m) − x(m)‖. If we use M equal-length intervals for each variable,

|z−ẑ|≤Uµ 1
M (
∑N
i=1(bi−ai)2)

1
2 . Then |z−ẑ|→0 as M→∞.

Proof Sketch. Recall, all posteriors f in our language (Section 2) are Lipschitz
continuous. We derive the error bound by applying the Lipschitz continuous property
of f and the triangle inequality. We present the full proof in the Appendix.

Moreover, the integration error bound above will decrease when we decrease the
interval length, or increase the number of intervals. Then at the end of the analysis,
we approximate the posterior probability density function p(x) on C as:

Definition 9 (Posterior Probability Density Approximation). Define p̂(x)= 1
ẑ f̂(x)

as the approximation of p(x).

Now we show the end-to-end error of the analysis. As Theorem 10 states,
by applying sufficiently many intervals, the random variables following AQUA’s
posterior estimation in C will converge in distribution to the true posterior in C.
Without loss of generality, suppose we apply at least M equal-length intervals for
each variable in its domain [ai,bi], i.e. M = min{M1,M2,...,MN}. And we refer
p̂M (x) as AQUA’s approximation of p(x) by applying at least M equal-length
intervals for each variable.

Theorem 10 (Convergence of Posterior Density Approximation). Define FC(x)
= 1
z

∫ x

−∞1[u∈C]· ·p(u)du as the true cumulative distribution function (CDF) on C,

where z=
∫
C
p(x)dx, and F̂C,M (x)=

∫ x

−∞p̂M (u)du as the approximate CDF. Then

lim
M→∞

F̂C,M (x)=FC(x).

Proof Sketch. By combining the error bounds in Lemma 7 and Lemma 8 and
applying triangle inequality, we can show the end-to-end error is bounded by
|F̂C,t(x)−FC(x)| ≤ 1

M ·ẑz (θµz+UµFC(x)), where θ = ‖x−a‖ is the distance

from x to a= [a1,a2,...,aN ]. Recall C =
⊗N

i=1[ai,bi], so a is the lower bound of
C. Then θ, µ (Lipschitz constant of f), z (normalizing constant), U (volume of
C), and FC(x) are all constants regarding M , and ẑ→z>0 as M→∞. Hence
|F̂C,t(x)−FC(x)|→0 as M→∞.

We allow a user to provide a bounded domain C, or infer it with automatically
with a heuristic (Section 4). Although AQUA’s formal guarantee is in a bounded
domain, it can give runtime warnings when any prior or likelihood has probability



Algorithm 2 Posterior Interval Analysis with Adaptive Interval

1: procedure PosteriorAdaptiveAnalysis(Prog,M ,t0,tdist)
2: C← GetInitBounds(Prog,t0) . C=[C1,C2,...,CN ]
3: changed ← True
4: while changed do . Stop if C no longer changes
5: (p̂,Marginal)←PosteriorAnalysis(Prog,M ,C) . Apply analysis on C
6: changed ← False
7: for xi∈SampledVars(Prog) do . Adapt Ci for each variable
8: p̂i(xi)←Marginal[xi]
9: if ∃xi∈Ci, p̂i(xi)<tdist then

10: Ci← [inf{xi|p̂i(xi)>tdist},sup{xi|p̂i(xi)>tdist}]
11: changed ← True
12: end if
13: end for
14: end while
15: return (p̂, Marginal)
16: end procedure

greater than a given threshold on the rest of the domain RN−C. If AQUA does
not give any warning, the final error caused by truncating infinite domain into C
will be smaller than the threshold.

4 AQUA Analysis Optimizations

Adaptive Intervals. To find the suitable bounded intervals C=[C1,C2,...,CN ]
that cover most probability, we design a adaptive algorithm (Algorithm 2) to adjust
C the based on the result from last run. Algorithm 2 takes as inputs the program,
the vector of number of intervals, and two thresholds t0 and tdist for deciding the
interval bounds C. Increasing Ci or increasing the number of intervals in Ci will
help reduce the approximation error.

The function GetInitBounds (Line 2) takes the prior distribution of each xi as
a rough estimate of the distribution to determine an initial interval split. If the
domain of the prior distribution is bounded in [ai,bi] where −∞<ai<bi<∞, e.g.
xi∼uniform(a,b), AQUA divides [ai,bi] into Mi equi-length intervals, each with
length (bi−ai)/Mi, where Mi is given in M by the user. If the distribution is not
bounded, e.g. xi∼normal(0,1), the user can specify a threshold t0 for AQUA to
infer Cis such that values from the prior being out of Cis has probability smaller
than t0. Otherwise by default we set t0 =4·10−32.

In each iteration, the algorithm applies the analysis on the current C (line 5) and
check if we need to adapt C. We adapt C when any variable xi has density value
p̂i(xi) being almost about 0 – smaller than the user provided threshold tdist (e.g.
10−8) (line 8-10). We shrink Ci to focus on the smallest area with density greater
than a given threshold tdist. With the same number of intervals Mi, the smaller Ci
will produce thiner intervals and result in more accurate results. Practically, this
adaptive algorithm is as accurate but is much more efficient than naively increasing



the number of intervals Mi on the whole initial domain Ci. Suppose the program
takes A adaptive iterations, and it has N variables and each variable has the same
number of intervals M , Algorithm 2 has the time complexity O(A·N ·MN ) and
the space complexity O(MN ). In our experiments, A is usually less than 5.

Improving Inference for Many Local Variables. In this optimization we
change the analysis of statements in Section 3 to marginalize the local variables as
soon as possible. Local variables are those defined and only used in local blocks
(e.g. in for-loop and if-then-else from Figure 5).

By marginalizing out the local variables, we avoid repeatedly computing the
joint density on the unused variables. For example, in a robust model one may
naively calculate the joint density via f̂(x)=

∏D
i=1 d pdf(x,wi), where wis are local

variables defined in each loop body. This requires keeping a (D+1)-dimensional
density cube to capture all the variables x and wis. Instead, our optimization divides
the above product into calculating the individual d pdf(x,wi), when wi leaves its
scope, so we do not carry the current wi to the next iteration. In each iteration
we only operate on a 2-dimensional Density Cube for variables x and a single wi.
If out of N variables in the program D are local variables we will have a time
complexity O(N ·MN−D) for Algorithm 1 (while the original is O(N ·MN )).

5 Methodology

We evaluate AQUA on 24 probabilistic programs collected from existing literature.
We compare the execution time of AQUA on these programs with other probabilistic
programming languages: Stan [5], PSI [8], and SPPL [19]. We implement AQUA in
Java using ND4J library for tensor computation, and run all experiments on Intel
Xeon 3.6 GHz machine with 6 cores and 32 GB RAM. For numerical stability, we use
log probability/density (instead of original probability/density) for Density Cube.

Benchmarks. Table 2 presents the benchmarks obtained from the literature. Col-
umn Description summarizes the task of each program. Column Distributions
shows the distributions of observable and latent variables. For example, the dis-
tributions in program “prior mix” are one Bernoulli (B), one Mixture of two
Normals (N+N ), and 10 Student-T distributions (T 10). All posterior distributions
are continuous. Column #D shows the number of data observations, #N shows
the number of random variables in the program.

Comparing Posterior Distributions. The Kolmogorov-Smirnov (KS) statistic
measures the distance between two probability distributions. We use the KS statistic
for the accuracy evaluation in the analysis. Let Ftruth and F̂ denote the posterior
distributions of the variable x from the original input data and the noisy data

respectively, the KS statistic is defined as KS=supx

∣∣∣Ftruth(x)−F̂ (x)
∣∣∣, namely, the

maximum difference in the cumulative distribution functions. The KS statistic takes
a value between 0 (most close distributions) and 1 (most different distributions).
Therefore, smaller KS statistic implies better accuracy.

Experimental Setup. We manually derived the ground truth posterior distribu-
tions for all the programs. We run AQUA with the adaptive algorithm described
in Section 4. We use the equal number of M = max{60,d40000(1/N)e} intervals



Table 2: Program Description and Characteristics

Description Distributions #D #N

prior mix Mixture model[9] B×(N+N)×T 10 10 1
zeroone Bayesian neural network[3] U2×M20 20 2
tug Causal cognition model[10] U2×(N+N)2×B40 40 2
altermu Model with param symmetry[18] N3×N40 40 3
altermu2 Model with param symmetry[18] U2×N40 40 2
neural Bayesian neural network[17] U2×(B×M)39 39 2
normal mixture Mixture model with mixing rate[21] N2×Be×(B×(N+N))63 63 3
mix asym prior Mixture model with scale params[21] N2×G2×(B×(N+N))40 40 4
logistic Logistic regression[21] U2×(B×M)100 100 2
logistic RW Reweighted logistic regression[21,24] U2×Be100×(B×M)100 100 102
anova Linear regression [21] U2×N40 40 2
anova RP Localized linear regression[21,23] U2×G40×N40 40 42
anova RW Reweighted linear regression[21,24] U2×Be40×N40 40 42
lightspeed Linear regression[21] N×U×N66 66 2
lightspeed RP Localized linear regression[21,23] N×U×G66×N66 66 68
lightspeed RW Reweighted linear regression[21,24] N×U×Be66×N66 66 68
unemployment Linear regression[21] N2×U×N40 40 3
unemployment RP Localized linear regression[21,23] N2×U×G40×N40 40 43
unemployment RW Reweighted linear regression[21,24] N2×U×Be40×N40 40 43
timeseries Timeseries analysis[21] U3×N39 39 3
gammaTransform Transformed param[19] G 0 3
GPA Hybrid continuous & discrete distr.[14] B×(B×(A+U)+B×(A+U)) 1 3
radar query1 Bayesian network in robotics[8] B×(A+B)×U×N×(Tr+Tr) 2 6
radar query2 Bayesian network in robotics[8] B×(A+B)×U2×N×Tr 1 6

Distributions: A: Atomic, B: Bernoulli, Be: Beta, G: Gamma, M: Softmax, N: Normal, T: Student-T,
Tr: Triangular, U: Uniform. ‘+’ represents the mixture of two distributions, and ‘×’ represents the
product of the individual density functions in the joint probability density function.

for each variable, where N is the number of sampled variables, so that the total
number intervals MN ≥40000. Rounding up the total number of intervals to 40000
does not significantly affect time but will guarantee more accurate results. We test
Stan on its two major inference algorithms, NUTS (a variant of MCMC) and ADVI
(a variant of variational inference). For fair comparison, we allow running VI/NUTS
until it reaches the same accuracy level (in KS distance) as AQUA and report the
average time, or until it reaches the maximum iterations (fixed at 400000 for both
VI and NUTS). We set the timeout to be 20 minutes for all the inference tools.

6 Evaluation

6.1 Runtime and Accuracy Comparison

Table 3 presents the runtime and accuracy comparison of AQUA with Stan, PSI, and
SPPL. Column Program shows the name of the probabilistic program. Columns
Time (s) show the execution time (in seconds) of each tool, averaged across 5
runs. We report the total time for computing joint density and marginals for all
sampled variables. Columns Error show the error (KS distance, Section 5) of each
tool vs. the ground truth when run for the same time, averaged across 5 runs.

Overall, AQUA (Column 2-3) solves the probabilistic programs with average
time 5.08s, median time 1.35s. For 20 out of 24 programs, it takes less than two
seconds to compute the results. AQUA results in average error 0.01, median error
0.01, and maximum error 0.02. With our optimization on local variables (Section 4),
we are able to handle the 7 robust programs which have 42-102 variables, which
might timeout with a naive approach.



Table 3: Runtime Comparison for AQUA, Stan, PSI, and SPPL. Stan column
shows time needed reach AQUA’s accuracy.

Program AQUA Stan VI Stan NUTS PSI SPPL
Time(s) Error Time(s) Error Time(s) Error Time (s) Time (s)

prior mix 4.77 0.02 0.53 0.31 5.67 0.19 inte �
zeroone 0.98 0.00 0.44 0.21 630.73 0.21 91.16 �
tug 0.83 0.01 1.20 0.25 519.94 0.06 inte �
altermu 1.35 0.00 0.96 0.31 29.46 0.03 inte �
altermu2 0.76 0.00 0.75 0.34 25.98 0.07 inte �
neural 0.85 0.01 0.82 0.03 5.10 0.01 t.o. �
normal mixture 1.19 0.02 1.02 0.12 25.67 0.04 t.o. �
mix asym prior 24.63 0.02 1.04 0.09 16.41 0.03 t.o. �
logistic 0.99 0.02 0.74 0.07 17.31 0.02 t.o. �
logistic RW 1.87 0.01 15.37 0.09 72.45 0.02 t.o. �
anova 0.90 0.01 0.75 0.07 6.72 0.02 inte �
anova RP 1.55 0.01 6.89 0.07 77.48 0.02 t.o. �
anova RW 1.40 0.01 6.93 0.06 24.67 0.02 t.o. �
lightspeed 0.74 0.00 0.71 0.04 3.56 0.00 inte �
lightspeed RP 1.37 0.01 6.18 0.06 61.37 0.02 t.o. �
lightspeed RW 1.09 0.02 6.19 0.05 61.37 0.05 t.o. �
unemployment 1.44 0.02 0.64 0.21 5.07 0.01 inte �
unemployment RP 42.34 0.01 6.78 0.25 12.46 0.01 t.o. �
unemployment RW 27.41 0.02 7.07 0.23 2.53 0.01 t.o. �
timeseries 1.55 0.01 0.87 0.23 12.66 0.01 inte �
gammaTransform 0.72 0.00 0.62 0.05 3.01 0.01 inte 1.30
GPA 0.46 0.02 � � � � 0.12 0.05
radar query1 0.87 0.01 � � � � inte �
radar query2 1.82 0.02 � � � � inte �
Avg 5.08 0.01 3.17 0.15 77.12 0.04 � �
Median 1.35 0.01 0.99 0.10 20.99 0.02 � �
[time] : VI or NUTS takes more time than AQUA, or AQUA take more time than VI and NUTS.

[error ] Has the error (in terms of a KS distance) larger than 0.01 from the best solution.
“�”: the PPL cannot work on the program. “t.o.”: timeout, “inte”: evaluates to unsolved integrals.

Stan VI (Column 4-5) finishes fast but results in significantly larger error than
AQUA or Stan NUTS. The average error from VI is 0.15, minimum error is 0.03
and maximum error is 0.34. For all cases, VI cannot reach the same accuracy level
as AQUA. While VI often fits the posterior means correctly but it is not able to
capture the joint distribution shape especially when it is non-Gaussian (it is a well
known characteristic of VI). Stan NUTS (Column 6-7) takes more time than
AQUA to reach the same level of accuracy of AQUA, although in theory NUTS
will converge to the true distribution with enough iterations. AQUA provides the
similar (with difference <0.01) or even better accuracy (with smaller KS distance)
in all cases for NUTS and NUTS fails to reach the same accuracy level by the
maximum number of iterations in 12 cases.

PSI (Column 8) and SPPL (Column 9) are not able to give result in many
cases. PSI does not finish running within 20 minutes in 11 cases, or evaluates to
unsolved integrals in 11 cases, since the exact integration in posterior calculation is
often intractable. SPPL does not allow transformed variables in factor statements,
which is essential to specify the likelihood of the variables given observed data, and
thus is inapplicable to most of the programs.
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Fig. 6: Programs handled by AQUA for which Stan NUTS is imprecise.

Figure 6 presents the posterior densities from six programs where Stan NUTS
was not able to reach the same accuracy level of AQUA, within maximum iterations.
X-axis shows the value of a variable in the program, Y-axis shows the posterior
probability density of the variable. A solid blue line shows the ground truth, a dashed
red line shows the density function computed from AQUA, the gray histogram
shows the density estimated with samples from Stan NUTS after running for the
same time as AQUA. For each program we present the posterior from one variable
(the first one in alphabetical order); the posteriors from other variables show a
similar pattern. These examples show that AQUA is able to closely track the density
of mixture models with large difference in densities (prior mix), non-differentiable
distributions (zeroone and tug), models with variable symmetries (in altermu
and altermu2 such symmetries can cause non-identifiability of variables from
data), and some robust models with strong correlation between variables that can
form complicated posterior geometries (anova RP).

6.2 Estimating the Tails of Posterior Distribution

We illustrate AQUA’s ability to capture tails on several robust models. The
distribution for robust models are often more spread-out than the original model, as
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Fig. 7: Capturing tails by AQUA and Stan NUTS



they are designed to capture outliers in the data. We consider two different robust
models: (1) Reparameterized-Localization (RP) [23], which assumes that each data
point is from its distribution with a local variance variable; (2) Reweighting (RW)
[24], which down-weights potential outliers in the data. We show the results from
AQUA and NUTS running for the same amount of time, together with the ground
truth. We omit VI since its accuracy is significantly worse.

Figure 7 presents the comparison of AQUA and NUTS. Plots (a),(e) are the
full posterior distributions of original distribution. We highlight the left tail
[µ−4σ, µ−2σ], where µ is the posterior mean of and σ its standard deviation.
Plots (b),(f) show the magnified tails from original distribution, plots (c),(g)
show the tails from the RP transformation, and (d),(h) show the tails from RW
transformation. AQUA is able to capture the tails precisely for both original and
robust models, while Stan NUTS is less precise on the robust models (e.g., its KS
metric is 0.05 compared to AQUA’s 0.02).

7 Related Work

Symbolic Inference. Researchers have proposed several symbolic inference tech-
niques in recent years [8,19,16,12]. Each of these techniques have limitations which
AQUA improves upon. DICE [12] only supports discrete distributions. Hakaru [16]
and PSI [8], which do exact inference using computer algebra, often cannot solve
integrals for complicated probabilistic programs with continuous distributions (as
our evaluation also shows for PSI). SPPL [19] does not allow users to specify the
likelihood on transformed variables with continuous distributions. QCoral [4] and
SYMPAIS [15] combine symbolic execution with sampling to solve the satisfac-
tion probability of constraints, but they do not output the whole posterior. In
contrast, AQUA supports a wide range of probabilistic models with continuous
distribution, involving transformed or correlated random variables, and provides
scalable, exact (or near exact), and interpretable solutions.
Volume Computation. Several works use volume computation methods to make
a precise approximation of probabilistic inference [20,2,22]. These approaches have
constraints on the form of programs they support, regarding conditioning and
continuous distributions. For instance, Sweet et al. [22] support only discrete and
FairSquare [2] approximates Gaussians with only five intervals; FairSquare [2] and
Sankaranarayanan et al. [20] compute only the probability of an event, not the
entire posterior. None of these systems can support conditioning on continuous
variables, and thus we have not used them in our evaluation.

8 Conclusion

AQUA is a new inference algorithm which works on general, real-world probabilistic
programs with continuous distributions. By using quantization with symbolic
inference, AQUA solved all benchmarks in less than 43s (median 1.35s). Our
evaluation shows that AQUA is more accurate than approximate algorithms and
supports programs that are out of reach of state-of-the-art exact inference tools.
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solution space quantification for probabilistic software analysis. PLDI (2014)

5. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., et al.: Stan: A probabilistic program-
ming language. JSTATSOFT 20(2) (2016)

6. Dutta, S., Legunsen, O., Huang, Z., Misailovic, S.: Testing probabilistic programming
systems. In: FSE (2018)

7. Dutta, S., Zhang, W., Huang, Z., Misailovic, S.: Storm: program reduction for testing
and debugging probabilistic programming systems. In: FSE (2019)

8. Gehr, T., Misailovic, S., Vechev, M.: PSI: Exact symbolic inference for probabilistic
programs. CAV (2016)

9. Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian
data analysis. Chapman and Hall/CRC (2013)

10. Goodman, N., Tenenbaum, J.: Probabilistic Models of Cognition. probmods.org
11. Gorinova, M.I., Gordon, A.D., Sutton, C.: Probabilistic programming with densities in

SlicStan: efficient, flexible, and deterministic. POPL (2019)
12. Holtzen, S., Van den Broeck, G., Millstein, T.: Scaling exact inference for discrete

probabilistic programs. OOPSLA (2020)
13. Huang, Z., Wang, Z., Misailovic, S.: PSense: automatic sensitivity analysis for proba-

bilistic programs. ATVA (2018)
14. Laurel, J., Misailovic, S.: Continualization of probabilistic programs with correction.

ESOP (2020)
15. Luo, Y., Filieri, A., Zhou, Y.: Sympais: Symbolic parallel adaptive importance sampling

for probabilistic program analysis. arXiv preprint arXiv:2010.05050 (2020)
16. Narayanan, P., Carette, J., Romano, W., Shan, C.c., Zinkov, R.: Probabilistic inference

by program transformation in hakaru (system description). FLOPS (2016)
17. Neal, R.M.: Bayesian learning for neural networks. Springer (2012)
18. Nishihara, R., Minka, T., Tarlow, D.: Detecting parameter symmetries in probabilistic

models. arXiv preprint arXiv:1312.5386 (2013)
19. Saad, F.A., Rinard, M.C., Mansinghka, V.K.: SPPL: a probabilistic programming

system with exact and scalable symbolic inference. PLDI (2021)
20. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic

programs: Inferring whole program properties from finitely many paths. PLDI (2013)
21. (2018), https://github.com/stan-dev/example-models
22. Sweet, I., Trilla, J.M.C., Scherrer, C., Hicks, M., Magill, S.: Whats the over/under?

probabilistic bounds on information leakage. POST (2018)
23. Wang, C., Blei, D.M.: A general method for robust bayesian modeling. Bayesian

Analysis 13(4), 1159–1187 (2018)
24. Wang, Y., Kucukelbir, A., Blei, D.M.: Robust probabilistic modeling with bayesian

data reweighting. ICML (2017)

probmods.org
https://github.com/stan-dev/example-models

	AQUA: Automated Quantized Inference  for Probabilistic Programs

