Antfarm: Efficient Content Distribution with Managed Swarms

Ryan S. Peterson and Emin Gün Sirer

Department of Computer Science, Cornell University
United Networks, LLC

April 22, 2009

Problem Domain

What is the most efficient way to disseminate a large set of files to a large set of clients?

Client-Server

server

clients

Client-Server

Peer-to-Peer

Peer-to-Peer

Limited information
No control or performance guarantees

Peer-to-Peer

Antfarm Goals

- High performance
- Low cost of deployment
- Performance guarantees
 - Administrator control over swarm performance
- Accounting
 - Enables different resource contribution policies

Antfarm Approach

- Key insight: view content distribution as an optimization problem
- Hybrid architecture
 - P2P swarming with a logically centralized coordinator
- Clean slate protocol

Antfarm System Model

Antfarm System Model

Overview

The System

Evaluation

Antfarm

Overview

The System

Evaluation

Strawman Coordinator

- One could schedule every data transfer in the system
 - All packets for all time
 - Unscalable, impractical!
- Antfarm coordinator makes critical decisions based on observed dynamics

Antfarm Coordinator

- Models swarm dynamics
 - Measures and extracts key parameters
- Formulates optimization problem
 - Calculates optimal bandwidth allocation
- Enacts allocation decisions
 - Maximizes aggregate bandwidth
 - Minimizes average download time

Antfarm Formalization

Maximize system-wide aggregate bandwidth subject to a bandwidth constraint

Response Curves

Seeder bandwidth

Response Curves

Swarm Dynamics

Swarms exhibit different dynamics based on size, peer resources, network conditions...

Swarm Dynamics

Antfarm Optimization

Seeder bandwidth

Antfarm Optimization

Seeder bandwidth

Performance Control

- Can provide swarm performance guarantees
 - Guarantee minimum level of service
 - Prioritize swarms

Antfarm Allocation

Adapting to Change

- Swarm dynamics change
 - Churn
 - Network conditions
- Antfarm updates response curves
 - Coordinator explores around point of operation

Wire Protocol

- Coordinator mints small, unforgeable tokens
- Peers trade each other tokens for blocks
- Peers return spent tokens to the coordinator as proof of contribution

Antfarm

Overview

The System

Evaluation

Antfarm

Overview

The System

Evaluation

Antfarm Performance

Swarm Starvation

BitTorrent: Starves New Swarm

Antfarm: Seeds New Swarm

Scalability

Scalability

Antfarm Implications

- No fine-tuning
- Subsumes hacks devised for BitTorrent
 - Share ratio
 - Manual pruning

Related Work

- Content Distribution Networks
 - Akamai, CoBlitz, CoDeeN, ECHOS, Coral, Slurpie, YouTube, Hulu, GridCast, Tribler, Joost, Huang et al. 2008, ...
- P2P Swarming
 - BitTorrent, BitTyrant, PropShare, BitTornado, BASS,
 Annapureddy et al. 2007, Guo et al. 2005, ...
- Incentives and microcurrencies
 - Dandelion, BAR Gossip, Samsara, Karma, SHARP, PPay,
 Kash et al. 2007, ...

Conclusions

- Model swarm dynamics and allocate bandwidth optimally
- Novel hybrid architecture
- PlanetLab deployment shows that Antfarm outperforms client-server and P2P

Questions?