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Abstract

Definitions of sequential equilibrium and perfect equilibrium are given in games
of imperfect recall. Subtleties regarding the definition are discussed.
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1 Introduction

Sequential equilibrium [Kreps and Wilson 1982] and perfect equilibrium [Selten 1975] are
perhaps the most common solution concepts used in extensive-form games. They are
both trying to capture the intuition that agents play optimally, not just on the equilibrium
path, but also off the equilibrium path.

Unfortunately, both solution concepts have been defined only in games of perfect
recall, where players remember all the moves that they have made and what they have
observed.

Perfect recall seems to be an unreasonable assumption in practice. To take just one
example, consider even a relatively short card game such as bridge. In practice, in the
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middle of a game, most people do not remember the complete bidding sequence and the
complete play of the cards (although this can be highly relevant information!). Indeed,
more generally, we would not expect most people to exhibit perfect recall in games that
are even modestly longer than the standard two- or three-move games considered in
most game theory papers.  Nevertheless, the intuition that underlies sequential and
perfect equilibrium, namely, players should play optimally even off the equilibrium path,
seems to make sense even in games of imperfect recall. An agent with imperfect recall
will still want to play optimally in all situations. And although, in general, calculating
what constitutes optimal play may be complicated (indeed, the definition of sequential
equilibrium is itself complicated), there are many games where it is not that hard to do.
However, the work of Piccione and Rubinstein [1997b] (PR from now on) suggests some
subtleties. The following two examples, both due to PR, illustrate the problems.

Example 1.1: Consider the game described in Figure 1, which we call the “match
nature” game:
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Figure 1: Subtleties with imperfect recall, illustrated by the match nature game.

It is not hard to show that the strategy that maximizes expected utility chooses action
S at node z1, action B at node x5, and action R at the information set X consisting of
x3 and 4. Call this strategy b. Let b’ be the strategy of choosing action B at x, action
S at x9, and L at X. As PR point out, if node x; is reached and the agent is using b,
then he will not feel that b is optimal, conditional on being at xy; he will want to use
b'. Indeed, there is no single strategy that the agent can use that he will feel is optimal
both at z; and x5. 11

The problem here is that if the agent starts out using strategy b and then switches to
b if he reaches z; (but continues to use b if he reaches z5), he ends up using a “strategy”
that does not respect the information structure of the game, since he makes different



moves at the two nodes in the information set X = {3, z4}.! As pointed out by Halpern
[1997], if the agent knows what strategy he is using at all times, and he is allowed to
change strategies, then the information sets are not doing a good job here of describing
what the agent knows, since the agent can be using different strategies at two nodes in
the same information set. The agent will know different things at x3 and x4, despite
them being in the same information set.

Example 1.2: The following game, commonly called the absent-minded driver paradoz,
illustrates a different problem. It is described by PR as follows:

An individual is sitting late at night in a bar planning his midnight trip home.
In order to get home he has to take the highway and get off at the second
exit. Turning at the first exit leads into a disastrous area (payoff 0). Turning
at the second exit yields the highest reward (payoff 4). If he continues beyond
the second exit he will reach the end of the highway and find a hotel where he
can spend the night (payoff 1). The driver is absentminded and is aware of
this fact. When reaching an intersection he cannot tell whether it is the first
or the second intersection and he cannot remember how many he has passed.

The situation is described by the game tree in Figure 2.

Figure 2: The absentminded driver game.

Clearly the only decision the driver has to make is whether to get off when he reaches
an exit. A straightforward computation shows that the driver’s optimal strategy ez ante
is to exit with probability 1/3; this gives him a payoff of 4/3. On the other hand, suppose
that the driver starts out using the optimal strategy, and when he reaches the information
set, he ascribes probability « to being at e;. He then considers whether he should switch

LAs usual, we take a pure strategy b to be a function that associates with each node in the game
tree a move, such that if z and 2’ are two nodes in the same information set, then b(z) = b(z’). We
occasionally abuse notation and write “strategy” even for a function b’ that does not necessarily satisfy
the latter requirement; that is, we may have b/(z) # b’ (2’) even if z and ' are in the same information
set.



to a new strategy, where he exits with probability p. Another straightforward calculation
shows that his expected payoff is then

a((L=pP+4p(1—p))+ (1 —a)((1 —p) +4p) =1+ (3 — a)p — 3ap”. (1)

Equation 1 is maximized when p = min(1, (3 — «)/6«), with equality holding only if
a = 1. Thus, unless the driver ascribes probability 1 to being at e;, he should want to
change strategies when he reaches the information set. This means that as long as a < 1,
we cannot hope to find a sequential equilibrium in this game. The driver will want to
change strategies as soon as he reaches the information set. 1

According to the technique used by Selten [1975] to ascribe beliefs, also adopted by
PR, if the driver is using the optimal strategy, e; should have probability 3/5 and e,
should have probability 2/5. The argument is that, according to the optimal strategy,
ey is reached with probability 1 and e, is reached with probability 2/3. Thus, 1 and 2/3
should give the relative probability of being at e; and e;. Normalizing these numbers
gives us 3/5 and 2/5, and leads to non-existence of sequential equilibrium. (This point
is also made by Kline [2005].)

As shown by PR and Aumann, Hart, and Perry (AHP) [1997], this way of ascribing
beliefs guarantees that the driver will not want to use any single-action deviation from the
optimal strategy. That is, there is no “strategy” b’ that is identical to the optimal strategy
except at one node and has a higher payoff than the optimal strategy. PR call this the
modified multi-self approach, whereas AHP call it action-optimality. AHP suggest that
this approach solves the paradox. On the other hand, Piccione and Rubinstein [1997a]
argue that it is hard to justify the assumption that an agent cannot change her future
actions. (See also [Gilboa 1997; Lipman 1997] for further discussion of this issue.)

Our goal in this paper is to define sequential equilibrium equilibrium for games of
imperfect recall. As these examples show, such definitions require a clear interpretation
of the meaning of information sets and the restrictions they impose on the knowledge and
strategies of players. Moreover, as we shall show, there are different intuitions behind the
notion of sequential equilibrium. While they all lead to the same definition in games of
perfect recall, this is no longer the case in games of imperfect recall. Our definition can
be viewed as trying to capture a notion of er ante sequential equilibrium. The picture
here is that players choose their strategies before the game starts and are committed
to it, but they choose it in such a way that it remains optimal even off the equilibrium
path. This, unfortunately, does not correspond to the more standard intuitions behind
sequential equilibrium, where agents are reconsidering at each information set whether
they are doing the “right” thing, and can change their strategies if they should choose to.
While we believe that defining such a notion of interim sequential rationality would be of
great interest (and discuss potential definitions of such a notion in Section 4), it raises a
number of new subtleties in games of incomplete information, since the obvious definition
is in general incompatible with the exogenously-given information structure. (This is



essentially the point made by the match nature game in Figure 1; we discuss the issue in
more detail in Section 4.5.) We believe that having a definition of sequential rationality
that agrees with the standard definition of games of perfect recall and is conceptually
clear and well motivated in games of imperfect recall will help us understand better the
interplay between rationality and imperfect recall. ~ Moreover, as we argue briefly in
Section 5, the ex ante notion is particularly well motivated in a setting where players
are choosing an algorithm, and are charged for the complexity of the algorithm, in the
spirit of the work of Rubinstein [1986]; we explore some of these issues in definitions of
sequential equilibrium in this setting, based on the ideas of this paper, in [Halpern and
Pass 2013].

The rest of this paper is organized as follows. In Section 2, we expand briefly on
a number of the issues touched on above, such as belief ascription; these preliminaries
will be necessary before giving our formal definition of (ex ante) sequential and perfect
equilibrium in Section 4, where we also show that sequential equilibrium and perfect
equilibrium exist in games of imperfect recall, under our definitions. We also discuss
interim sequential equilibrium. We conclude with some discussion in Section 5.

2 Preliminaries

In this section, we discuss a number of issues that will be relevant to our definition
of sequential equilibrium: imperfect recall and absentmindedness, what players know,
behavioral vs. mixed strategies, and belief ascription.

2.1 Imperfect Recall and Absentmindedness

We assume that the reader is familiar with the standard definition of extensive-form
games and perfect recall in such games (see, for example, [Osborne and Rubinstein 1994]
for a formal treatment). Recall that a game is said to exhibit perfect recall if, for all
players ¢ and all nodes z; and x5 in an information set X for player ¢, if h; is the
history leading to z; for j = 1,2, player ¢ has played the same actions in h; and hs
and gone through the same sequence of information sets. If a game does not exhibit
perfect recall, it is said to be a game of imperfect recall. A special case of imperfect
recall is absentmindedness; absentmindedness occurs when there are two nodes on one
history that are in the same information set. The absent-minded driver game exhibits
absentmindedness; the match nature game does not.

2.2 Knowledge of Strategies

The standard (often implicit) assumption in most game theory papers is that players
know their strategies. = This assumption tends to be explicit in epistemic analyses of



game theory; it arises in much of the discussion of imperfect recall as well. For simplicity,
consider one-player games, that is, decision problems, with perfect recall. Then it could
be argued that players do not really need to know their strategies. After all, a rational
player could just compute at each information set what the optimal move is, and play it.
If the optimal move is not unique, there is no problem—any choice of optimal move will
do.

Things change when we move to games of imperfect recall. ~ Consider the match
nature game. If the agent cannot recall his strategy, then certainly any discussion of
reconsideration at xy becomes meaningless; there is no reason for the agent to think that
he will realize at x4 that he should play R. But if the agent cannot recall even his initial
choice of strategy (and thus cannot commit to a strategy) then strategy b (playing B at
x1, S at xo, and R at X) may not turn out to be optimal. When the agent reaches S,
he may forget that he was supposed to play R. While it could be argued that, as long as
the agent remembers the structure of the game, he can recompute the optimal strategy.
However, this argument no longer holds if we change the payoffs at z, and z5 to —6 and
3, respectively, so that the left and right sides of the game tree are completely symmetric.
Then it is hard to see how an agent who does not recall what strategy he is playing will
know whether to play L or R at X. A prudent agent might well decide to play S at
both z; and x5! Because we are considering an ex ante notion of sequential equilibrium,
we assume that an agent can commit initially to playing a strategy (and will know this
strategy at later nodes in the game tree). But we stress that we view this assumption as
problematic if we allow reconsideration of strategies at later information sets.

2.3 Mixed Strategies vs. Behavioral Strategies

There are two types of strategies that involve randomization that have been considered
in extensive-form games. A mized strategy in an extensive-form game is a probability
measure on pure strategies. Thus, we can think of a mixed strategy as corresponding to
a situation where a player tosses a coin and chooses a pure strategy at the beginning of
the game depending on the outcome of the coin toss, and then plays that pure strategy
throughout the game. By way of contrast, with a behavioral strategy, a player randomizes
at each information set, randomly choosing an action to play at that information set.
Formally, a behavioral strategy is a function from information sets to distributions over
acts. (We can identify a pure strategy with the special case of a behavioral strategy
that places probability 1 on some action at every information set.) Thus, we can view
a behavioral strategy for player ¢ as a collection of probability measures indexed by the
information sets for player i; there is one probability measure on the actions that can be
performed at information set X for each information set X for player 7.

It is well known that in games of perfect recall, mixed strategies and behavioral
strategies are outcome-equivalent. That is, given a mixed strategy b for player i, there
exists a behavioral strategy b such that, no matter what strategy profile (mixed or be-
havioral) b_; the remaining players use, (b,b_;) and (¥, b_;) induce the same distribution
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on the leaves (i.e., terminal histories) of the game tree; and conversely, for every mixed
strategy b, there exists a behavioral strategy b’ such that for all strategy profiles b_; for
the remaining player, (b,b_;) and (I/,b_;) are outcome-equivalent. (See [Osborne and
Rubinstein 1994] for more details.)

It is also well known that this equivalence breaks down when we move to games
of imperfect recall. In games without absentmindedness, for every behavioral strategy,
there is an outcome-equivalent mixed strategy; but, in general, the converse does not
hold [Isbell 1957]. Once we allow absentmindedness, as pointed out by PR, there may
be behavioral strategies that are not outcome-equivalent to any mixed strategy. This is
easy to see in the absentminded driver game. The two pure strategies reach z; and z3,
respectively. Thus, no mixed strategy can reach z,, while any behavioral strategy that
places positive probability on both B and F has some positive probability of reaching zs.
The same argument also shows that there exist mixed strategies that are not outcome-
equivalent to any behavioral strategy.

Thus, to deal with games of imperfect recall, in general, we need to allow what Kaneko
and Kline [1995] call behavioral strateqy miztures.? A behavioral strategy mixture b; for
player ¢ is a probability distribution on behavioral strategies for player ¢ that assigns
positive probability to only finitely many behavioral strategies for player i. As Kaneko
and Kline note, a behavioral strategy mixture involves two kinds of randomization: before
the game and in the course of the game. A behavioral strategy is the special case of a
behavioral strategy mixture where the randomization happens only during the course of
the game; a mixed strategy is the special case where the randomization happens only
at the beginning. For the remainder of the paper, when we say “strategy”, we mean
“behavioral strategy mixture”, unless we explicitly say otherwise.

It is worth noting that players do not have to mix over too many behavioral strategies
when employing a behavioral strategy mixture. Specifically, we show that a behavioral
strategy mixture for player ¢ in a game I' is outcome-equivalent to a mixture of at most
d; + 1 behavioral strategies, where d; is a constant that depends only of the size of the
game I'. A behavioral strategy mixture for a player ¢ in a game I' can be described by
specifying for each information set I for i a probability distribution over nodes z’ ¢ I that
can be reached from some node x € I. 3 If we set d; to be the total number of final nodes
of any information set I for i (where x is a final node of I if there are no nodes 2’ in I
that come after x in the game tree), then by Carathéodory’s Theorem [Rockafellar 1970],
which says that any point in the convex hull of a set P in R? is the convex combination
of at most d + 1 points in P, it follows that a behavioral strategy mixture for player 7 in
a game I is outcome-equivalent to a mixture of at most d; + 1 behavioral strategies.*

2They actually call them behavior strateqy miztures; we write “behavioral” for consistency with our
terminology elsewhere.

3Note that this representation may lose information about when the mixing is done, but since we
care only about outcome-equivalence, this is not a problem for us.

4In a game of perfect recall, any behavioral strategy is outcome-equivalent to a convex combination of
pure strategies, so there is a fixed finite set P such that every behavioral strategy is a convex combination



A consequence of this fact is that we can identify a mixed behavioral strategy for player
i with an element of ([0, 1] x R%)(%+1)—each mixed behavioral strategy can be viewed as
a tuple of the form ((ai,b1), ..., (ag;+1, ba,+1), where ay, ..., aq441 € [0,1], X a; = 1, and b,
is a mixed behavioral strategy for player i, and thus in R%. Since it is well known that
the convex closure of a compact set in a finite-dimensional space is closed [Rockafellar
1970], it follows that the set of behavioral strategy mixtures of a finite game T is closed,
and thus also compact. Summarizing this discussion, we have the following proposition.

Proposition 2.1: If " is a finite game, then the set of behavioral strateqy mixtures in I’
is compact. Furthermore, there exists some constant d (which depends on the number of
actions in T') such that for every behavioral strategy mizture c, there exists an outcome-
equivalent behavioral strategy mixture ¢’ that mizes only over d behavioral strategies.

Solution concepts typically depend only on outcomes, and so are insensitive to the
replacement of strategies by outcome-equivalent strategies. For example, if a strategy
profile b is a Nash (resp., sequential) equilibrium, and b; is outcome-equivalent to b}, then
b is also a Nash (resp., sequential) equilibrium. Nash showed that every finite game has
a Nash equilibrium in mixed strategies. By the outcome-equivalence mentioned above,
in a game of perfect recall, there is also a Nash equilibrium that is a behavioral strategy
profile. This is no longer the case in games of imperfect recall. Wichardt [2008] gives
an example of a game with imperfect recall with no Nash equilibrium in behavioral
strategies.

Sequential equilibrium is usually defined in terms of behavioral strategies. This is
because it is typically presented as an interim notion. That is, players are viewed as
making decision regarding whether they should change strategies at each information
set. Thus, it makes sense to view them as using behavioral strategies rather than mixed
strategies. Although we view our notion of sequential equilibrium as an ex ante notion,
we allow agents to use behavioral strategy mixtures. The interpretation is that the agent
randomizes at the beginning to choose a behavioral strategy (one that is compatible
with the information structure of the game). The agent then commits to this behavioral
strategy and follows it throughout the game. The agent has the capability to randomize
at each information set, but he is committed to doing the randomization in accordance
with his ex ante behavioral strategy choice.

of the strategies in P. But in a game of imperfect recall, although there is a fixed d such that every
behavioral strategy mixture is convex combination of d + 1 behavioral strategies, there is no finite set
P such that every behavioral strategy mixture is a convex combination of the behavioral strategies in
P. (Proof sketch: Consider the absentminded driver game. Behavioral strategies lead to a distribution
over leaves of the form (z,z(1 —x), (1 —z)?), for z € [0,1]. Thus, if we view the distribution as a vector
of the form (a,b, c), we must have b < a, with b = a iff a = b = 0, and we can make the ratio of b/a as
close to 1 as we like, by making a sufficiently small. Any finite collection P of behavioral strategies has
a maximum value for b/a. Thus, for any finite set P of behavioral strategies in the absentminded driver
game, there must be a behavioral strategy that is not in the convex closure of P.)



2.4 Expected Utility of Strategies

Every behavioral strategy mixture profile b induces a probability measure 7, on leaves
(terminal histories). We identify a node x in a game with the event consisting of the
leaves that can be reached from z. In the language of Grove and Halpern [1997], we are
identifying x with the event of reaching x. Given this identification, we take m,(x) to be
the probability of reaching a leaf that comes after x when using strategy b.

For the purposes of this discussion, fix a game I', and let Z denote the leaves (i.e.,
terminal histories) of I'. As usual, we can take EU;(b) to be >, o, mp(2)ui(2). If Vis a
subset of leaves such that m,(Y") > 0, then computing the expected utility of b for player
1 conditional on Y is equally straightforward. It is simply

EU(b|Y) =Y m(z | Y)ul(z).

zeY

3 Beliefs in Games of Imperfect Recall

Fix a game I'. Following Kreps and Wilson [1982], a belief system p for T' is a function
that associates with each information set X in I' a probability px on the histories in X.
PR quite explicitly interpret px(x) as the probability of being at the node x, conditioned
on reaching X. Just as Kreps and Wilson, they thus require that > oy ux(x) = 1.

Since we aim to define an ez ante notion of sequential rationality, we instead interpret
wx () as the probability of reaching x, conditioned on reaching X. We no longer require
that Y cx px(z) = 1. While this property holds in games of perfect recall, in games of
imperfect recall, if X contains two nodes that are both on a history that is played with
positive probability, the sum of the probabilities will be greater than 1. For instance, in
the absent minded driver’s game, the ex ante optimal strategy reaches e; with probability
1 and reaches ey with probability 2/3.

Given an information set X, let the upper frontier of X [Halpern 1997], denoted X,
to consist of all those nodes € X such that there is no node 2/ € X that strictly
precedes x on some path from the root. Note that for games where there is at most
one node per history in an information set, we have X = X. Rather than requiring
that > ,cx pux(x) = 1, we require that > _¢ pux(2) = 1, that is, that the probability
of reaching the upper-frontier of X, conditional on reaching X, be 1. Since X=Xin
games of perfect recall, this requirement generalizes that of Kreps and Wilson. Moreover,
it holds if we define px in the obvious way.

Claim 3.1: If X is an information set that is reached by strategy profile b with positive
probability and px(z) = m(z | X), then > ¢ px(z) = 1.



Proof: By definition, >° ¢ px(2) = >, cx m(z | X) = W(X | X)=1.1

zeX

Given a belief system p and a strategy profile b, define a probability distribution pb
over terminal histories in the obvious way: for each terminal history z, if there is no
prefix of 2 in X, then 1% (z) = 0; otherwise, let z, be the shortest history in X that is
a prefix of z, and define p%(2) to be the product of ux(x,) and the probability that b
leads to the terminal history z when started in x,.

Our definition of the probability distribution ;% induced over terminal histories is
essentially equivalent to that used by Kreps and Wilson [1982] for games of perfect recall.
The only difference is that in games of perfect recall, a terminal history has at most one
prefix in X. This no longer is the case in games of imperfect recall, so we must specify
which prefix to select. For definiteness, we have taken the shortest prefix; however, it
is easy to see that if px(x) is defined as the probability of b reaching = conditioned on
reaching X, then any choice of x, leads to the same distribution over terminal histories
(as long as we choose consistently, that is, we take x, = z, if z and 2’ have a common
ancestor in X).

Note that if a terminal history z has a prefix in X, then the shortest prefix of z in
X is in X. Moreover, defining p% in terms of the shortest history guarantees that it
is a well-defined probability distribution, as long as >- ¢ px(z) = 1, even if px is not
defined by some strategy profile v'.

Claim 3.2: If Z is the set of terminal histories and ) _¢ pux(z) = 1, then for any
strategy profile b, we have 3., u% (2) = 1.

Proof: By definition,

> ez ,U_l;((z) = Y.ezbx(z)m(z | x2)
ZZEZ ZIEX ,LLX(LE)?T(,(Z | x)
Prex Mx(2) ez m(2 | @)
ZmeX 125'¢ (:L‘)

= 1.

Following Kreps and Wilson [1982], let EU;(b | X, 1) denote the expected utility for
player i, where the expectation is taken with respect to u%.

The following proposition justifies our method for ascribing beliefs. Say that a belief
system p is compatible with a strategy b if, for all information sets X such that m,(X) > 0,
we have px(x) = m(x | X).

Proposition 3.3: If information set X is reached by strategy profile b with positive
probability, and p is compatible with b, then

BU(b| X) = EUL(b | X, ).
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Proof: Let Z be the set of terminal histories, and let Zx consist of those nodes in Z
that have a prefix in X similarly, let Z, consist of those nodes in Z whose prefix is .
Using the fact that X = {x, : 2 € Zx}, we get that

EU(b| X, p)
= Yiez i (2)ui(2)
= Dliezx pix () my(z | 22 )ui(2)
Yoezy M2 | X)my(2 | 22)ui(2)
- ZzEZX ﬂ_b(z ’ X)ul(z)
= EU;(b| X).

4 Perfect and Sequential Equilibrium

4.1 Perturbed Games

Weak compatibility tells us how to define beliefs for information sets that are on the
equilibrium path. But it does not tell us how to define the beliefs for information sets
that are off the equilibrium path. We need to know how to do this in order to define both
sequential and perfect equilibrium. To deal with this, we follow Selten’s approach of con-
sidering perturbed games. Given an extensive-form game I' and a function 7 associating
with every information set X and action ¢ that can be performed at X, a probability
n. > 0 such that, for each information set X for player 4, if A(X) is the set of actions
that 7 can perform at X, then > .c4x)n. < 1. We call n a perturbation of T'. We think
of 7. as the probability of a “tremble”; since we view trembles as unlikely, we are most
interested in the case that 7. is small.

A perturbed game is a pair (I',n) consisting of a game I' and a perturbation 7. A
behavioral strategy b for player ¢ in (I, ) is acceptable if, for each information set X and
each action ¢ € A(X), b(X) assigns probability at least 7. to ¢. A behavioral strategy
mixture b is acceptable in (T, n) if for each information set X and each action ¢ € A(X),
the expected probability of playing ¢ according to b is at least 7..

We can define best responses and Nash equilibrium in the usual way in perturbed
games (I',7n); we simply restrict the definitions to the acceptable strategies for (I',n).
Note that if b is an acceptable strategy profile in a perturbed game, then m,(X) > 0 for
all information sets X.

4.2 Best Responses at Information Sets

There are a number of ways to capture the intuition that a strategy b; for player 7 is a
best response to a strategy profile b_; for the remaining players at an information set X.

11



To make these precise, we need some notation. Given a behavioral strategy b, let b;[X/c]
denote the behavioral strategy that is identical to b; except that, at information set X,
action c is played.

Switching to another action at an information set is, of course, not the same as
switching to a different strategy at an information set. If &’ is a strategy for player i, we
would like to define the strategy [b;, X, '] to be the strategy where i plays b up to X,
and then switches to O’ at X. Intuitively, this means that ¢ plays ' at all information
sets that come after X. The problem is that the meaning of “after X” is not so clear in
games with imperfect recall. For example, in the match nature game, is the information
set X after the information set {x1}? While z3 comes after x1, x4 does not. The obvious
interpretation of switching from b to & at x; would have the agent playing o’ at x3 but
still using b at x4. As we have observed, the resulting “strategy” is not a strategy in the
game, since the agent does not play the same way at x3 and x4.

This problem does not arise in games of perfect recall. Define a strict partial order <
on nodes in a game tree by taking x < x’ if z precedes 2’ in the game tree. There are two
ways to extend this partial order on nodes to a partial order on information sets. Given
information sets X and X' for a player i, define X < X' iff, for all 2/ € X', there exists
some z € X such that x < 2’. It is easy to see that < is indeed a partial order. Now
define X <" X' iff, for some 2 € X' and x € X, x < 2. It is easy to see that < agrees
with <" in games of perfect recall. However, they do not in general agree in games of
imperfect recall. For example, in the match nature game, {z2} <" X, but it is not the
case that {zo} < X. Moreover, although <’ is a partial order in the match nature game,
in general, in games of imperfect recall, <’ is not a partial order. In particular, in the
game in Figure 3, we have X; <’ X, and X, <’ X;. °

Define ¢ < 2/ iff z = 2/ or x < 2/; similarly, X < X" iff X = X" or X < X'. We
can now define [b, X, V'] formally, where b is a behavioral strategy mixture and b’ is a
behavioral strategy. We start by defining [b, X, '] when both b and ¥’ are behavioral
strategies. In that case, [b, X, 0] is the strategy according to which i plays b at every
information set X’ such that X < X', and otherwise plays b. If ¢ is a behavioral strategy
mixture and b’ is a behavioral strategy then [c, X, V'] is the behavioral strategy mixture
that puts probability ¢(b) on the behavioral strategy [b, X, t']. We do not define [c, X, /]
in case ¢ is a behavioral strategy mixture (as opposed to just a behavioral strategy);

randomization over behavioral strategies is allowed only at the beginning of the game.
6

®Okada [1987] defined a notion called by Kline [2005] occurrence memory; a partition satisfies oc-
currence memory if, for all information sets X and X', if X <’ X, then X < X’. Thus, if a partition
satisfies occurrence memory, < is equivalent to <’. Kline interprets occurrence memory as saying that
an agent recalls what he learned (but perhaps not what he did).

6We could define a more general notion of deviation at X that we denote [c, X, f], where f is a
continuous function from behavioral strategies to behavioral strategies. Intuitively, f(b) is the strategy
that the agent switches to at X if he was initially using b (that is, his initial coin toss when using mixed
behavioral strategy c tells him to use b). By doing this, we allow the change of strategy to depend on
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Figure 3: A game where <’ is not a partial order.

The strategy [b, X, V] is well defined even in games of imperfect recall, but it is perhaps
worth noting that the strategy [b, {x1}, ] in the match nature game is the strategy where
the player goes down at x;, but still plays R at information set X, since we do not have
X < {z1}. Thus, [b,{z1},b] as we have defined it is not better for the player than b.
Similarly, in the game in Figure 3, if b is the strategy of playing R, at X; and Ry at X,
while ¥ is the strategy of playing L; at X; and Ly at X5, then [b, {xo}, ] is b.

If we are thinking in terms of players switching strategies, then strategies of the form
[b, X, V'] allow as many switches as possible. To make this more precise, if b and b are
behavioral strategies, let (b, X, b") denote the “strategy” of using b until X is reached and
then switching to . More precisely, (b, X,b')(z) = b/(x) if 2/ < z for some node 2’ € X;
otherwise, (b, X,V/)(x) = b(x). Intuitively, (b, X,’) switches from b to b’ as soon as a
node in X is encountered. As observed above, (b, X,V’) is not always a strategy. But
whenever it is, (b, X,0') = [b, X, V'].

Proposition 4.1: If ¢ is a behavioral strategy mixture and b’ is behavioral strategy, then
(¢, X,0) is a strategy in game I iff (¢, X, V') = [c, X, V].

Proof: We first prove the proposition in case c is a pure behavioral strategy b. Suppose
that (b, X,0') # [b, X,b]. Then there must exist some information set X’ such that

the agent’s choice of initial behavioral strategy. This seems reasonable, since we are implicitly assuming
that the the agent knows how his coin landed—he knows the strategy that he is actually using. Thus,
the strategy he switches to should be allowed to depend on the choice. We stick with our current
formalism for ease of notation, but all our results, and specifically Theorem 4.2, which says that a
perfect equilibrium exists in all finite games, would continue to hold if we allowed this more general
notion of deviation.
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(b, X,b') and [b, X, b'] differ at X’. If X < X', then at every node in x € X', the player
plays t/(X’) at = according to both (b, X, ') and [b, X, b']. Thus, it must be the case that
X A X'. This means the player plays b(X’) at every node in X’ according to [b, X, b'].
Since (b, X, V') and [b, X, V'] disagree at X’ it must be the case that the player plays
b'(X') at some node z € X' according to (b, X,b"). But since X A X', there exists some
node 2’ € X’ that does not have a prefix in X. This means that (b, X, ) must play
b(X') at ’. Thus, (b, X, V') is not a strategy.

Now suppose that ¢ is a nontrivial mixture over behavioral strategies, and that
(¢, X,0) # [e, X, b']. Thus, there exists some b in the support of ¢ such that (b, X, V') #
[b, X, ']; by the argument above, (b, X,¥') is not a strategy, so (¢, X,b') cannot be one
either.

Conversely, if (¢, X,b") = [¢, X', b], then clearly (¢, X,¥) is a strategy. I

4.3 Defining Perfect and Sequential Equilibrium

We now define (our versions of) perfect and sequential equilibrium for games of imperfect
recall.

4.3.1 Perfect equlibrium

We start with perfect equilibrium. Here we use literally the same definition as Selten
[1975], except that we use behavioral strategy mixtures rather than behavioral strate-
gies. The strategy profile b* is a perfect equilibrium in ' if there exists a sequence
(T, m1), (T,19),...) and a sequence of behavioral strategy mixture profiles b, %, ... such
that (1) n, — 0; (2) b* is a Nash equilibrium of (T',7;); and (3) ¥ — b*.7 Selten [1975]
shows that a perfect equilibrium always exists in games with perfect recall. Essentially
the same proof shows that it exists even in games with imperfect recall.

Theorem 4.2: A perfect equilibrium exists in all finite games.

Proof: Consider any sequence (I',;n;), (I, 12), . . .) of perturbed games such that 7, — 0.
By standard fixed-point arguments, each perturbed game (I', 7;) has a Nash equilibrium
b* in behavioral strategy mixtures. (Here we are using the fact that, by Proposition
2.1, the set of behavioral strategy mixtures is compact.) By a standard compactness
argument, the sequence b', 0%, ... has a convergent subsequence. Suppose that this sub-
sequence converges to b*. Clearly b* is a perfect equilibrium. (Although the behavioral
strategy mixtures in the profile b* may not have finite support, by Proposition 2.1, we
can assume without loss of generality that the mixtures in fact have finite support.) I

"We can work with mixed strategies instead of behavioral strategy mixtures if we do not allow
absentmindedness; with absentmindedness, we need behavioral strategy mixtures to get our results.
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As we have observed, as a technical matter, using mixed strategies rather than behav-
ioral strategies makes no difference in games of perfect recall. However, it has a major
impact in games of imperfect recall. Since it is easy to see that every perfect equilibrium
is a Nash equilibrium, it follows from Wichardt’s [2008] example that perfect equilibrium
does not exist in games of imperfect recall if we restrict to behavioral strategies.

Recall that we view the players as choosing a behavioral strategy mixture at the
beginning of the game. They then do the randomization, and choose a behavioral strategy
appropriately. At this point, they commit to the behavioral strategy chosen, remember
it throughout the game, and cannot change it. However, they make this initial choice in
a way that it is not only unconditionally optimal (which is all that is required of Nash
equilibrium), but continues to be optimal conditional on reaching each information set.

It is easy to see that a perfect equilibrium b* of I' is also a Nash equilibrium of T'.
Thus, each strategy b} is a best response to b*, ex ante. However, we also want b; to
be a best response to b*,; at each information set. This intuition is made precise using
intuitions from the definition of sequential equilibrium, which we now review.

A behavioral strategy b; is completely mized if, for each information set X and action
c € A(X), b; assigns positive probability to playing c. A behavioral strategy mixture
is completely mixed if every behavioral strategy in its support is completely mixed. A
belief system u is consistent with a strategy b if there exists a sequence of completely
mixed strategy profiles b, %, ... converging to b such that px () is lim, e mpn(z | X).
Note that if p is consistent with b, then it is compatible with b.

The following result makes precise the sense in which a perfect equilibrium is a best
response at each information set.

Proposition 4.3: Ifb is a perfect equilibrium in game I, then there exists a belief system
1 consistent with b such that, for all players i, all information sets X for player v, and
all behavioral strategies V' for player i, we have

EU;(b | X, p) = BU(([bi, X, ],0-5) | X, ).

Proof: Since b is a perfect equilibrium, there exists a sequence of strategy profiles
b, b%, ... converging to b and a sequence of perturbed games (I',7;), (I',72), . . . such that
N — 0 and b" is a Nash equilibrium of (T, mi). All the strategies b', %, ... are completely
mixed (since they are strategies in perturbed games). We can assume without loss of
generality that, for each information set X and x € X, the limit lim, o, mpn(z | X)
exists. (By standard arguments, since I' is a finite game, by Proposition 2.1, we can
find a subsequence of b',b%, ... for which the limits all exist, and we can replace the
original sequence by the subsequence.) Let p be the belief assessment determined by this
sequence of strategies.

We claim that the result holds with respect to u. For suppose not. Then there exists
a player 7, information set X, behavioral strategy ' for player i, and ¢ > 0 such that
EU,(b | X,pn) + € < BEU;(([bs, X, b],b-;) | X,u)). It follows from Proposition 3.3 that
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BUW | X) = EU(b | X,p) and BU((0, X,H),65,) | X) = EU((bi, X, 6], b |
X, ). Since b* — b and n; — 0, there exists some strategy 0" and k > 0 such that b” is
acceptable for (I',my) for all &' > k, and EU; (0¥ | X)+¢/2 < EU;(([bF, X, 0"]),b%,) | X).
8 But this contradicts the assumption that b*" in a Nash equilibrium of (I',7;/).7 1

We are implicitly identifying “b is a best response for ¢ at information set X” with
“BUOb | X,n) > EU(([bi, X,V],b—;) | X,pu))” for all behavioral strategies /. How
reasonable is this? In games of perfect recall, if an action at a node x’ can affect i’s
payoff conditional on reaching X, then ' must be in some information set X’ after X.
This is not in general the case in games of imperfect information. For example, in the
match nature game, the player’s action at x4 can clearly affect his payoff conditional on
reaching xo, but the information set X that contains x4 does not come after {z5}, so we
do not allow changes at x4 in considering best responses at x,. While making a change
at x4 makes things better at x5, it would make things worse at z;, a node that is not
after xo. Given our ex ante viewpoint, this is clearly a relevant consideration. What we
are really requiring is that b is a best response for ¢ at X among strategies that do not
affect i’s utility at nodes that do not come after X. This last phrase does not have to be
added in games of perfect recall, but it makes a difference in games of imperfect recall.
We return to this point in Section 4.4.

Sequential’ equilibrium We can now define a notion of sequential equilibrium just as
Kreps and Wilson [1982] did. However, this notion turns out not out not to imply Nash
equilibrium, so we call it sequential’ equilibrium. We later define a strengthening that
we call sequential equilibrium that is better behaved (and arguably better motivated).

Definition 4.4: A belief assessment is pair (b, ;1) consisting of a strategy b and a belief
system p. A belief assessment (b, 1) is a sequential equilibrium in a game I if p is con-
sistent with b and, for all players ¢, all information sets X for player ¢, and all behavioral
strategies b’ for player i at X, we have

EU(b| X, 1) > EU((b:, X, 6].b—) | X, ).

It is immediate from Proposition 4.3 that every perfect equilibrium is a sequential’
equilibrium. Thus, a sequential’ equilibrium exists for every game.

Theorem 4.5: A sequential equilibrium exists in all finite games.

8Note that this argument works essentially without change if we allow the more general notion of
deviation mentioned in Footnote 6, although it is critical that the function f is continuous.

9Note that we here rely on the fact that &’ is a behavioral strategy and not a behavioral strategy
mixture; if it were a behavioral strategy mixture, then we could no longer guarantee that the “strategy”
obtained by switching from b to ¥’ at X is a behavioral strategy mixture (since mixing now happens
twice during the game).
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Note that in both Examples 1.1 and 1.2, the ex ante optimal strategy is a sequential’
equilibrium according to our definition. In Example 1.1, it is because the switch to what
appears to be a better strategy at x; is disallowed. In Example 1.2, the unique belief
i consistent with the ex ante optimal strategy assigns probability 1 to reaching e; and
probability 2/3 to reaching e;. However, since e is not on the upper frontier of X, for
all strategies b, EU(b | X.) = EU(b | e;) = EU(b), and thus the ez ante optimal strategy
is still optimal at X..

Although our definition of sequential’ equilibrium agrees with the traditional defini-
tion of sequential equilibrium [Kreps and Wilson 1982] in games of perfect recall, there
are a number of properties of sequential equilibrium that no longer hold in games of
imperfect recall. First, it is no longer the case that every sequential’ equilibrium is a
Nash equilibrium. For example, in the match nature game, it is easy to see that the
strategy ' is a sequential’ equilibrium but is not a Nash equilibrium. It is easy to show
that every sequential’ equilibrium is a Nash equilibrium in games where each agent has
an initial information set that precedes all other information sets (in the < order defined
above). At such an information set, the agent can essentially do ez ante planning. There
is no such initial information set in the match nature game, precluding such planning. If
we want to allow such planning in a game of imperfect recall, we must model it with an
initial information set for each agent.

Summarizing this discussion, we have the following result.
Theorem 4.6: In all finite games,
(a) every perfect equilibrium is a Nash equilibrium;

(b) in games where all players have an initial information set, every sequential equi-
librium s a Nash equilibrium.

However, there exist games where a sequential equilibrium is not a Nash equilibrium.

It is also well known that in games of perfect recall, we can replace the standard
definition of sequential equilibrium by one where we consider only single-action deviations
[Hendon, Jacobsen, and Sloth 1996]; this is known as the one-step deviation principle.
This no longer holds in games of imperfect recall either. Again, consider the modification
of the match nature game with an initial node x_;. As we observed above, in this case,
starting at x_; by playing down and then playing b is the only sequential’ equilibrium.
However, replacing b by 0’ gives a strategy that satisfies the one-step deviation property.

4.4 Sequential Equilibrium

As we argued above (see the discussion after Proposition 4.3), the sense in which our ez
ante notions of perfect equilibrium and sequential’ equilibrium capture optimality is that
there is (from the ez ante point of view) no information set X at which an agent can
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do better without affecting his utility at nodes that do not come after X. This suggests
that we might consider a stronger optimality requirement. Instead of looking at just one
information set, we can consider a set X = {X1,..., X,,} of information sets for player i,
and require that ¢ not be able to do better at all information sets in X without affecting
his utility at nodes that do not come after X'. In games of perfect recall, looking at a set
X of information sets rather than just a single information set does not affect the notion
of sequential’ equilibrium. But it does in the case of imperfect recall. Consider the match
nature game again. As we observed, the strategy ' is a sequential’ equilibrium in that
game. However, if instead of looking at the information sets {x;} and {z2} individually,
we consider both of them, and require that a strategy do optimally conditional on reaching
{z1, x5} (the union of these information sets), then the only strategy that does so is b; V/
does not meet this requirement.

To make this precise, we need to generalize the definition of a belief system. Recall
that a belief system p for a game I' associates with each information set X in I' a
probability px on the histories in X. Such a belief system does not suffice if we need
to compute whether b, does better conditional on reaching a set X of information sets.
A generalized belief system p for a game I' associates with each (non-empty) set X of
information sets in I a probability puy on the histories in the union of the information
sets X; € X. As before, we interpret py(z) as the probability of reaching x conditioned
on reaching X' and require that > 5 px(7) = 1, where X denotes the upper frontier of
histories in X, that is, all the nodes © € UX such that there is no node ' € X with
2’ < x. We can now define expected utility in exactly the same way as before.

As before, we say that a generalized belief system p is compatible with a strategy b
if, for all information sets X of informations sets such that m,(X) > 0, we have uy(z) =
mp(x | X). The analogue of Proposition 3.3 holds:

Proposition 4.7: If a set X of information sets is reached by strateqy profile b with
positive probability, and p is compatible with b, then

EU;(b| X)=EU;(b| X, p).
Proof: The proof is identical to the proof of Proposition 3.3. i

All the other notions we introduced generalize in a straightforward way. A generalized
belief system u is consistent with a strategy b if there exists a sequence of completely
mixed strategy profiles b!,b% ... converging to b such that puy(z) is lim, e mpm (2 | X).
We say that X' precedes X', written X' < X', iff for all 2’ € X’ there exists some z € UX
such that x precedes ' on the game tree; that is, we are defining < exactly as before,
identifying the set X with the union of the information sets it contains. As before, we
define [b, X', ] to be the strategy according to which i plays " at every information set
X' such that X < X', and otherwise plays b. Let (b, X, V) denote the “strategy” of using
b until X is reached and then switching to ¥’. The analogue of Proposition 4.1 holds:
(b, X, V) is a strategy in game I iff (b, X, b") = [b, X, b'].
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We now have the following generalization of Proposition 4.3.

Proposition 4.8: Ifb* is a perfect equilibrium in game I, then there exists a generalized
belief system v consistent with b* such that, for all players i, all non-empty sets X of
information sets for player i, and all behavioral strategies V' for player i at X, we have

Proof: The proof is identical to that of Proposition 4.3, except that we use Proposition
4.7 instead of Proposition 3.3. 1

We can now formally define sequential equilibrium.

Definition 4.9: A pair (b, 1) consisting of a strategy profile b and a generalized belief
system p is called a generalized belief assessment. A generalized belief assessment (b, p)
is a sequential equilibrium in a game I' if p is consistent with b and for all players i,
all non-empty sets X of information sets for player 4, and all behavioral strategies b for

player 7, we have
EU;(b| X, p) = BEU(([b;, X, 6], b-) | X, ).

It is immediate from Proposition 4.8 that every perfect equilibrium is a sequential
equilibrium. Thus, every game has a sequential equilibrium.

Theorem 4.10: A sequential equilibrium exists in all finite games.

It is immediate from the definitions that every sequential equilibrium is a sequential’
equilibrium. Furthermore, as the definition of sequential equilibrium considers changes
at all sets of information sets, and in particular, the set consisting of all information sets,
it follows that every sequential equilibrium is a Nash equilibrium. (Recall that this was
not the case for sequential’ equilibrium.) Finally, we note that if (b, ) is a sequential’
equilibrium of a game of perfect recall I" (so that it is a sequential equilibrium in the sense
of Kreps and Wilson [1982]), then there exists a generalized belief system p’ such that
(b, i) is a sequential equilibrium in I' in the sense that we have just defined: Consider
the sequence of strategy profiles b',0?, ... that define p; this sequence also determines
a generalized belief system p’. We claim that (b, i) is a sequential equilibrium in our
sense. If not, there exists some player i, a set X of information sets for i, and a behavioral
strategy b;, such that conditional on reaching X', ¢ prefers using ', given belief assessment
i/. This implies that there exists an information set X € X such that i also prefers
switching to b’ at X, given belief assessment p/. But p and i/ assign the same beliefs to
the information set X (since they are defined by the same sequence of strategy profiles),
which means that i also prefers switching to b at X, given belief assessment u, so (b, )
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cannot be a sequential’ equilibrium. We conclude that in games of perfect recall, every
sequential’ equilibrium is also a sequential equilibrium.

As we noted earlier, this is no longer true in games of imperfect recall—in the game
in match nature game, ¢’ is a sequential’ equilibrium, but is not a sequential equilibrium.
The argument above fails because for games of imperfect recall, (b;, X', b') (i.e., switching
from b; to V' at information set X’) might not be a valid strategy even if (b;, X', ') is; this
cannot happen in games of perfect recall.

Summarizing this discussion, we have the following result.
Theorem 4.11: In all finite games,
(a) every sequential equilibrium is a Nash equilibrium;

(b) in games of perfect recall, a strategy profile b is a sequential equilibrium iff it is a
sequential equilibrium.

However, there exist games of imperfect recall where a sequential equilibrium is not a
sequential equilibrium.

4.5 Interim Sequential Equilibrium

As we said, we view our notions of perfect equilibrium and sequential equilibrium as ex
ante notions. The players decide on a mixed strategy at the beginning of the game, and
do not get to change it. Each player ¢ makes her decision in such a way that it will be
optimal conditional on reaching each of her information sets (or conditional on reaching
any one of a set of her information sets).

It seems perfectly reasonable to consider interim notions of perfect equilibrium and
sequential equilibrium as well, where the view is that, at each information set for player
1, the player reconsiders what to do. We discuss such interim notions here. For the
remainder of this discussion, we focus on sequential equilibrium. For simplicity, we
also consider only games without absentmindedness, so as to avoid having to deal with
questions about how to ascribe beliefs to players at information sets. While there is no
controversy about how this should be done without in games without absentmindedness,
this is not the case in games with absentmindedness (see, for example, [Grove and Halpern
1997)).

Reconsideration at an information set X allows a player ¢ to switch from a strategy
b to a strategy b’. As before, we let b be a behavioral strategy mixture, but restrict b’
to be a behavioral strategy. If we allow such switches, then we need to be careful to
explain whether ¢ remembers that she has switched strategies. If she does not remember
that she has switched, then “switching” to a different strategy is meaningless. On the
other hand, as we observed in the introduction, allowing the player to remember the
switch is in general incompatible with the exogenously-given information structure. For
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example, if the agent can remember the switch from b to ¢’ in the match nature game,
she is effectively using a “strategy” that makes different moves at x3 and zy.

There are a number of ways of dealing with this problem. The first is to restrict
changes at X to strategies of the form [b, X, b']. That is, we can simply use Definition 4.4
without change. While this solves the problem, the motivation that we gave earlier for
restricting to strategies of the form [b, X, '] no longer applies. While ez ante, switching
to a strategy that makes a player better off at X and worse off at information sets that
do not come after X is not an improvement, once the player is at X, there is no reason
for her to care what happens at nodes that do not come after X.

If there is a unique optimal strategy conditional on reaching each information set X
(and also ez ante) given the agent’s belief assessment and the strategy profile of the other
players, then we can give another motivation for considering changes only to strategies
of the form [b, X, b']. In this case, if switching from b to [b, X, '] was an improvement for
player ¢ at information set X, and X < X', player ¢ does not have to remember what he
decided at X; he can reconstruct it. But at a node 2’ in an information set X’ such that
X <" X’ but X £ X', player i cannot be sure that he actually went through X, and thus
cannot be sure that he actually switched strategies. In this case, it is not unreasonable
for the player to use the strategy originally chosen. This leads to using strategies of the
form [b, X, V]

Battigalli [1997] considers another variant of interim sequential equilibrium that he
calls constrained time consistency.'® This is even more restrictive than the notion we have
considered here; it further restricts the kinds of changes allowed at an information set
X. Given a (behavioral) strategy b, define an ordering <, on information sets by taking
X <, X' if X < X" and 7%(X’) = 0. Given an action c, let the strategy (b, X,c,b')
be the strategy that agrees with b except at X, where the action c is played, and at
information sets X’ such that X < X', where b/(X’) is played. Battigalli’s motivation
for considering strategies of the form (b, X, ¢, ') is somewhat similar to that given in the
second argument: if the player reconsiders at X by playing ¢, he will remember his initial
strategy choice b and play it unless he is at an information set that he could not have
reached by playing b. This will serve as a signal that he changed strategies, and he will
be able to somehow reconstruct the choice of ¥'. But if there is not a unique optimal
strategy for a player conditional on reaching an information set X, it is not clear how
this reconstruction will work. Moreover, it is not clear why the deviation at X should be
to a specific action rather than a distribution over actions.

All this discussion is intended to show is that the interplay with the exogenously-given
structure and the possibility of what of the strategy is recalled makes defining an interim
notion of sequential equilibrium delicate.

We conclude this section by considering one approach to defining interim equilibrium
that is very much in the spirit of how Piccione and Rubinstein seem to be handling their

10 Actually, Battigalli [1997] considers only decision problems, not games, but we can easily translate
his notion to the context of games.
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examples. As we show, by defining the details carefully, we are led to considering a
different but related game. Moreover, the ex ante sequential equilibrium of the related
game acts like the interim sequential equilibrium of the original game.

To be more specific, PR seem to assume that, from time to time, the decision maker
may reconsider his move. This decision is not a function of the information set; if it were,
reconsideration would either happen at every point in the information set (and necessarily
happen first at the upper frontier), or would not happen at all. Ex ante sequential
equilibrium captures this situation. Rather, PR implicitly seem to be assuming that, at
each node of the game tree, the agent may decide to reconsider his strategy. Moreover, if
he does decide to switch strategies, then he will remember his new strategy. We can model
this possibility of reconsideration formally by viewing it as under nature’s control. For
definiteness, we assume that nature allows reconsideration at each node with some fixed
probability e. We can model the process of reconsideration by transforming the original
game [" into a reconsideration game I'"*““. We replace each node x where some player
7 moves in the original game tree by a node 2™ where nature moves. With probability
1 — €, nature moves to x, where ¢ moves as usual; with probability €, nature moves to
2, where 7 gets to reconsider his strategy. The game continues as in I' from 2/, with no
further reconsideration moves (since we allow reconsideration to happen only once). The
information sets in I'"*>¢ are determined by the assumption that the agent can recall his
strategy if he changes strategies.

Rather than defining the transformation from I' to I'"*“¢ formally, we show how it
works in the case of the absentminded driver in Figure 4. Corresponding to the nodes e;
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Figure 4: The transformed absentminded-driver game

and ey in the original absentminded-driver game, we have moves by nature, n; and ns.
With probability 1 — ¢, we go from n; to e;, where the driver does not have a chance
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to reconsider; with probability €, we go to €|. Similarly, ny leads to ey and e}, with
probablity 1 — e and e, respectively. From ¢/, the game continues as before; if he does
not exit, the driver reaches the second exit (denoted €}), but has no further chance to
reconsider. We assume that the driver knows when he has or has had the option of
reconsidering, so €/, ¢€,, and ej are in the same information set X’. Implicitly, we are
assuming that, because e; and e; are in the same information set, if the agent decides
to do something different at €/, €, and €} upon reconsideration, he will decide to do
the same thing at all these nodes. The nodes e; and e; from the original game are
in information set X. This means that the agent can perform different actions at X'
and at X. Call the reconsideration version of the absentminded-driver game I'*. Note
that the upper frontier of X’ consists of €] and ¢€j (although the upper frontier of X
consists of just e;). Moreover, given a strategy b*, if puy is consistent with b*, then the
probability of e, for ¢ = 1,2 is just the normalized probability of reaching e, under b*
(i.e., puxs(€;) = mp(e;)/(mp= (e1) + 7= (€2))). As a consequence, a rational agent would use
a different action at X and X', since he would have quite different beliefs regarding the
likelihood of being at corresponding nodes in these information sets.

As Piccione and Rubinstein point out, the optimal ex ante strategy in the absent-
minded driver game is to exit with probability 1/3. But if the driver starts with this
strategy and has consistent beliefs, then when he reaches information set X, he will
want to exit with probability 2/3. PR thus argue that there is time inconsistency. In
our framework, there is no time inconsistency. As e goes to 0, the optimal ex ante
strategy in the reconsideration game I'"*“¢ (which is also a sequential equilibrium) indeed
converges to exiting with probability 1/3 at nodes in X, and exiting with probability
2/3 at nodes in X’. But there is nothing inconsistent about this! By capturing the
reconsideration process within the game carefully, we can capture interim reasoning,
while still maintaining an ex ante sequential equilibrium.

We can similarly transform the match nature game to get the game. The result is
illustrated in Figure 5, with some slight changes to make it easier to draw. First, we have
combined nature’s initial “reconsideration” move with the original initial move by nature,
so, for example, rather than nature moving to x; with probability %, nature moves to x;
with probability %, and to z7, where the agent can reconsider, with probability 5. For
simplicity, we have also omitted the reconsideration at the information set X, since this
does not affect the analysis.

Now at the node z/ corresponding to z;, the agent will certainly want to use the
strategy of playing B then L, even though at x; he will use the ex ante optimal strategy
of the original game, and play S (independent of €). Clearly, at both xs and z, he
will continue to play B, followed by R. In the reconsideration game, there are four
information sets corresponding to the information set X in the original game. There is
X itself, the set X’ that results from reconsideration at a node in X (which is not shown
in the figure), and singleton sets {z4} and {z)} that result after reconsideration at x| and
xh. We allow x4 and 2) to be in different information sets because the agent could (and,
indeed, will) decide to use different strategies at 2} and x4, and hence do different things
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Figure 5: The transformed match nature game

at x4 and 2. Specifically, at 2} he will switch to B to be followed by L at x%, while at z,
he will continue to use B, to be followed by R at z/,. This formalizes the comments that
we made in the introduction: the assumption that reconsideration is possible and that
the agent will remember his new strateqy after reconsideration “breaks” the information
set {3, x4}.

Note that every node z in a reconsideration game I',... can be associated with a
unique node the original game T'; we denote this node o(x). We say that that a strategy
b is a PR-interim sequential equilibrium in a game I if, for all €, there exist ex ante
sequential equilibria 6 in I'"*“€ such that the strategies 0 converge to a strategy b*, and,
for all nodes z in I'"*>¢ ! we have that b*(x) = b(o(z)). The arguments of PR show that
there is no PR~interim sequential equilibrium in the absent-minded driver game or the
match nature game.

It must be stressed that this approach of using reconsideration games makes nu-
merous assumptions (e.g., an agent remembers his new strategy after switching; nature
allows reconsideration at each node with a uniform probability €; reconsideration hap-
pens only once). But, in a precise sense, these assumption do seem to correspond to PR’s
arguments.

By way of contrast, in PR’s modified multiself approach the agent changes only his
action when he reconsiders, and does not remember his new action. We can also model
this in our framework using reconsideration games. The structure of the game tree
remains the same, but the information sets change. For example, in the reconsideration
game corresponding to the absentminded-driver game, the node 2 is now in the same
information set as r; and x»; in the reconsideration game corresponding to the matching
nature game, the nodes x4 and 2y are now in the same information set as x3 and .
PR show that an ex ante optimal strategy is also modified multiself consistent, but
in their definition of modified multiself consistent, they consider only information sets
reached with positive probability. Marple and Shoham [2013] define a notion of distributed

1Note that the game true for I'"*“ has the same nodes for all choices of ¢, so it does matter which e
is chosen.
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sequential equilibrium (DSE) that extends modified multiself consistency to information
sets that are reached with probability 0, and prove that a DSE always exists. Taking
7€ to be the reconsideration game appropriate for the modified multiself notion, it is
not hard to show that a strategy b is a DSE iff there exist ex ante sequential equilibria
b€ in ¢ such the strategies b¢ converge to a strategy b*, and, for all nodes z in T"¢¢¢,
b*(z) = b(o(x)).

This discussion shows that ex ante sequential equilibrium can also be a useful tool
for understanding interim sequential equilibrium notions.

5 Discussion

Selten [1975] says that “game theory is concerned with the behavior of absolutely rational
decision makers whose capabilities of reasoning and remembering are unlimited, a game
... must have perfect recall.” We disagree. We believe that game theory ought to be con-
cerned with decision makers that may not be absolutely rational and, more importantly
for the present paper, players that do not have unlimited capabilities of reasoning and
remembering.

In this paper, we have defined ex ante notions of sequential equilibrium and perfect
equilibrium. We have also pointed out the subtleties in doing so. We did so in the
standard game-theoretic model of extensive-form games with information sets. A case
can be made that the problems that arise in defining sequential equilibrium stem in
part from the use of the standard framework, which models agents’ information using
information sets (and then requires that agents act the same way at all nodes in an
information set). This does not allow us to take into account, for exampe, whether
or not an agent knows his strategy. Halpern [1997] shows that many of the problems
pointed out by PR can be dealt with using a more “fine-grained” model, the so-called
runs-and-systems framework [Fagin, Halpern, Moses, and Vardi 1995], where agents have
local states that characterize their information. The local state can, for example, include
the agents’ strategy (and modifications to it). It would be interesting to explore how
the ideas of this paper play out in the runs-and-systems framework. We have taken
preliminary steps to doing this in a computational setting [Halpern and Pass 2013], but
clearly more work needs to be done to understand what the “right” solution concepts are
in a computational setting.

This is certainly not a new sentiment; work on finite automata playing games, for
example, goes back to Neyman [1985] and Rubinstein [1986]. Nevertheless, we believe
that there is good reason for describing games by game trees that have perfect recall
(but then adding the possibility of imperfect recall later), using an approach suggested
by Halpern [1997].

To understand this point, consider a game like bridge. Certainly we may have players
in bridge who forget what cards they were dealt, some bidding they have heard, or what
cards were played earlier. But we believe that an extensive form description of bridge
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should describe just the “intrinsic” uncertainty in the game, not the uncertainty due to
imperfect recall, where the intrinsic uncertainty is the uncertainty that the player would
have even if he had perfect recall. For example, after the cards are dealt, a player has
intrinsic uncertainty regarding what cards the other players have. Given the description
of the game in terms of intrinsic uncertainty (which will be a game with perfect recall),
we can then consider what algorithm the agents use. (In some cases, we may want to
consider the algorithm part of the strategic choice of the agents, as Rubinstein [1986]
does.) If we think of the algorithm as a Turing machine, the Turing machine determines
a local state for the agent. Intuitively, the local state describes what the agent is keeping
the track of. If the agent remembers his strategy, then the strategy must be encoded in
the local state. If he has switched strategies and wants to remember that fact, then this
too would have to be encoded in the local state. If we charge the agent for the complexity
of the algorithm he uses (as we do in a related paper [Halpern and Pass 2015]), then an
agent may deliberately choose not to have perfect recall, since it is too expensive.

The key point here is that, in this framework, an agent can choose to switch strate-
gies, despite not having perfect recall. The strategy (i.e., algorithm) used by the agent
determines his information set, and the switch may result in a different information struc-
ture. Thus, unlike the standard assumption in game theory (also made in this paper)
that information sets are given exogenously, in [Halpern and Pass 2015], the information
sets are determined (at least in part) endogenously, by the strategy chosen by the agent.
(We can still define exogenous information sets, which can be viewed sets as giving an
upper bound on how much the agent can know, even if he remembers everything.) The
ex ante viewpoint seems reasonable in this setting; before committing to a strategy, an
agent considers the best options even off the equilibrium path.'? In [Halpern and Pass
2013], we define sequential equilibrium using the ideas of this paper, adapted to deal with
the fact that information sets are now determined endogenously, and show that, again,
sequential equilibria exist if we make some reasonable assumptions.

Acknowledgments: We thank Jeff Kline, Jorgen Weibull, and anonymous referees of
an earlier draft of the paper for very useful comments.
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