Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning

Noam Zilberstein De

Cornell University

Derek Dreyer MPI-SWS

Alexandra Silva

Cornell University

"Program correctness and incorrectness are two sides of the same coin."

– Peter O'Hearn [2020]

Can a single program logic handle correctness and incorrectness?

What is Incorrectness?

True positives Reported bugs should actually be possible

 Under-approximation Find bugs without inspecting the entire program

int* x = malloc(sizeof(int)); *x = 1;

Dereference may segfault

Malloc is nondeterministic, may return null

Incorrectness + Hoare Logic

{true} int* x = malloc(sizeof(int)); *x = 1; $\{(\mathsf{ok}: x \mapsto 1) \lor (\mathsf{er}: x = \mathsf{null})\}$

Does this spec characterize the bug?

No! We don't know if the error is reachable

 σ

....we need to isolate the bad end state

Outcome Logic

$\vDash \langle \varphi \rangle C \langle \psi \rangle \quad \text{iff} \quad \forall S . S \vDash \varphi \implies [[C]](S) \vDash \psi$ Pre and post satisfied by SETS of states

Outcome Assertions

$\phi ::= 1$ $| \varphi \wedge \psi$ $| \varphi \lor \psi$ $| \varphi \bigoplus \psi \checkmark$ P

 $\Rightarrow S \vDash \varphi \oplus \psi \quad \text{iff} \quad \exists S_1, S_2 . S = S_1 \cup S_2 \\ \text{and} S_1 \vDash \varphi \\ \text{and} S_2 \vDash \psi$

 $S \models P$ iff $S \neq \emptyset$ and $S \subseteq P$

Outcome Logic and Incorrectness

(ok : true) int* x = malloc(sizeof(int)); *X = 1; $\langle (\mathsf{ok} : x \mapsto 1) \oplus (\mathsf{er} : x = \mathsf{null}) \rangle$

But this outcome is irrelevant

This outcome must be reachable

(ok:true) int* x = malloc(sizeof(int)); *x = 1; $\langle (\text{er} : x = \text{null}) \oplus T \rangle$

still reachable

But we dropped the extra info

Outcome Logic and Incorrectness

...can be disproven in Outcome Logic iff $\exists \varphi' \Rightarrow \varphi \quad sat(\varphi') \quad and \quad \models \langle \varphi' \rangle \ C \ \langle \neg \psi \rangle$

Incorrectness Logic [O'Hearn 2019]

Any crash where x is null...

[true] C [er : x = null]

...is reachable from some start state

Running C in any state...

 $\langle \text{true} \rangle C \langle (\text{er} : x = \text{null}) \oplus T \rangle$

··· might segfault

Manifest errors: Which start states force the bug to appear? [Le et al. 2022]

How can this spec be false?

Can a single program logic handle correctness and incorrectness...

...with computational effects?

Outcome Logic

$\models \langle \varphi \rangle \ C \ \langle \psi \rangle \quad \text{iff} \quad \forall m \in M\Sigma \ . \ m \models \varphi \implies \llbracket C \rrbracket(m) \models \psi$

M is a monad (with some extra properties)

(true) int x = ping(192.0.2.1); $\langle \Pr[x = \mathsf{ok}] = 99\% \oplus \Pr[x = \mathsf{er}] = 1\% \rangle$

"Program correctness and incorrectness are two sides of the same coin."

– Peter O'Hearn [2020]

Program correctness and incorrectness are two usages of the same program logic.

Conclusion

Incorrectness Reasoning

- True positives
- Under-approximation

Outcome Logic

- Semantics parametric on *monadic* representation of effects
- Any false triple can be disproven
- Outcome Logic can identify more types of bugs than IL
- Manifest errors: it's useful to know which start states force a bug

Can a single program logic handle correctness and incorrectness?