
Outcome Logic: A Unifying Foundation for
Correctness and Incorrectness Reasoning

Noam Zilberstein Derek Dreyer Alexandra Silva
Cornell University MPI-SWS Cornell University

“Program correctness and incorrectness
are two sides of the same coin.”

— Peter O’Hearn [2020]

Can a single program logic handle
correctness and incorrectness?

What is Incorrectness?

• True positives
Reported bugs should actually be possible

• Under-approximation
Find bugs without inspecting the entire program

int* x = malloc(sizeof(int));
*x = 1;

Malloc is non
deterministic,

may return null

Dereference
may segfault

Incorrectness + Hoare Logic

 int* x = malloc(sizeof(int));
 *x = 1;

{𝗍𝗋𝗎𝖾}

{(𝗈𝗄 : x ↦ 1) ∨ (𝖾𝗋 : x = 𝗇𝗎𝗅𝗅)}

Does this spec characterize the bug?
No! We don’t know if

the error is
reachable

QP

[[C]]σ

τ1

τ2

τn

. . .

Any valid start state…

…ends up

inside the post

QP

[[C]]

σ

Some valid start state…

…ends up

outside the post
τ

Q’τ

QP

[[C]]

σ

If the program is deterministic…

…shrink P to

only include the

bad start state

τ2

QP

[[C]]

σ

If the program is nondeterministic…

…we need to isolate

the bad end state

τ1

QP

[[C]]σ

τ1

τ2

τn

. . .

Qn

Q2

Q1

P

[[C]]σ

τ1

τ2

τn

. . .

Outcome Logic

⊨ ⟨φ⟩ C ⟨ψ⟩ iff ∀S . S ⊨ φ ⟹ [[C]](S) ⊨ ψ

Pre and post satisfie
d

by SETS of states

Outcome Assertions

φ ::= ⊤
∣ ⊥
∣ φ ∧ ψ
∣ φ ∨ ψ

⋮
∣ φ ⊕ ψ
∣ P

S ⊨ φ ⊕ ψ iff ∃S1, S2 . S = S1 ∪ S2

and S1 ⊨ φ
and S2 ⊨ ψ

S ⊨ P iff S ≠ ∅ and S ⊆ P

 int* x = malloc(sizeof(int));
 *x = 1;

Outcome Logic and Incorrectness

This outcome must

be reachable

⟨(𝗈𝗄 : x ↦ 1) ⟩

But this outc
ome

is irrelevant

(𝖾𝗋 : x = 𝗇𝗎𝗅𝗅)⊕

⟨𝗈𝗄 : 𝗍𝗋𝗎𝖾⟩

 int* x = malloc(sizeof(int));
 *x = 1;

Dropping Outcomes

But we dropped

the extra inf
o

Still reachab
le

(𝖾𝗋 : x = 𝗇𝗎𝗅𝗅) ⊕⟨ ⊤⟩

⟨𝗈𝗄 : 𝗍𝗋𝗎𝖾⟩

Qτ

⊤

P

[[C]]σ τ2

τn

. . .

Outcome Logic and Incorrectness

⊭ ⟨φ⟩ C ⟨ψ⟩
…can be disproven in Outcome LogicAny “correct

ness”

specification
…

∃φ′ ⇒ φ . 𝗌𝖺𝗍(φ′) and ⊨ ⟨φ′ ⟩ C ⟨¬ψ⟩

iff

Incorrectness Logic [O’Hearn 2019]

⟨𝗍𝗋𝗎𝖾⟩ C ⟨(𝖾𝗋 : x = 𝗇𝗎𝗅𝗅) ⊕ ⊤ ⟩ [𝗍𝗋𝗎𝖾] C [𝖾𝗋 : x = 𝗇𝗎𝗅𝗅]

Running C in any state…

… might segfault …is reachable
from

some start state

Any crash w
here

x is null…

Manifest errors:
Which start states force the bug to appear? [Le et al. 2022]

Qn

Q2

Q1

P

[[C]]σ

τ1

τ2

τn

. . .

How can this spe
c be false?

Qn

Q2

Q1

P

[[C]]σ

τ1

τ2

τn

. . .

Q’τOption 1: so
mething

“bad” sometimes occurs

Qn

Q2

Q1

P

[[C]]σ

τ1

τ2

τn

. . .

Option 2: som
ething

“good” never occu
rs

Can a single program logic handle
correctness and incorrectness…
…with computational effects?

Outcome Logic

⊨ ⟨φ⟩ C ⟨ψ⟩ iff ∀m ∈ MΣ . m ⊨ φ ⟹ [[C]](m) ⊨ ψ

M is a monad

(with some extra prop
erties)

Probabilistic Programs
Network is unreliabl

e,

may drop message

Program succeeds 99%

of the time

 int x = ping(192.0.2.1);
⟨𝗍𝗋𝗎𝖾⟩

⟨Pr[x = 𝗈𝗄] = 99% ⊕ Pr[x = 𝖾𝗋] = 1%⟩

“Program correctness and incorrectness
are two sides of the same coin.”

— Peter O’Hearn [2020]

Program correctness and incorrectness are
two usages of the same program logic.

Conclusion
Can a single program logic handle correctness and incorrectness?

Incorrectness Reasoning
• True positives

• Under-approximation

Outcome Logic
• Semantics parametric on monadic representation of effects

• Any false triple can be disproven

• Outcome Logic can identify more types of bugs than IL

• Manifest errors: it’s useful to know which start states force a bug

