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1 Introduction
Hoare Logic (HL) [Hoare 1969] is a proof system for establishing partial correctness of programs—

properties of individual executions that will always hold if the program terminates. However, certain

properties—e.g., establishing that a system is secure via confidentiality, integrity, or authenticity—

cannot be expressed in terms of individual executions and are therefore beyond the scope of classical
Hoare Logic. This is because attackers may compare several different traces to infer hidden secrets.

Clarkson and Schneider [2010] gave characterizations for this richer class of behaviors, calling them

hyperproperties. To overcome this limitation of Hoare Logic, Benton [2004] proposed a relational
extension of Hoare Logic for reasoning about multiple executions and verifying hyperproperties.
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The common element of Hoare Logic and its relational counterparts is that they apply only to

properties over all executions (in the case of relational logics, all pairs of executions). O’Hearn

[2020] refers to this class of logics as overapproximate and argues that it hinders their application in

establishing the presence of bugs, advocating for the development of a new generation of program

logics that focus on bug-finding, akin to the approaches in symbolic execution literature described

by Godefroid et al. [2010]. O’Hearn [2020] proposed Incorrectness Logic (IL) (independently proposed
by de Vries and Koutavas [2011] under the name reverse Hoare logic) as an analogue of Hoare Logic

for developing the formal theory of bug-finding. Subsequently, other similar logics and extensions

of IL were proposed [Möller et al. 2021; Raad et al. 2020]. IL can witness the reachability of particular

bad outcomes but cannot make guarantees about all the possible outcomes.

The aforementioned theories of incorrectness diverge significantly from theories of correctness

(such as HL), meaning that entirely separate analysis algorithms must be used for verification vs

bug-finding. To overcome this limitation, new theories for unified reasoning about both correctness

and incorrectness have been proposed [Bruni et al. 2021; Dardinier and Müller 2024; Maksimović

et al. 2023; Zilberstein 2024; Zilberstein et al. 2023, 2024]. These include logics not only for individual

program traces but also on hyperproperties [Dardinier and Müller 2024].

We build on two such developments—Outcome Logic (OL) [Zilberstein 2024; Zilberstein et al.

2023, 2024] and Hyper Hoare Logic (HHL) [Dardinier andMüller 2024]—which advocate that a single

logic can be used to prove (or disprove) a wide variety of properties, including hyperproperties, and

we present a novel (quantitative) weakest pre calculus perspective. Weakest precondition calculi date

back to the 1970’s when Dijkstra [1975, 1976] introduced them as predicate transformer semantics

for imperative programs. Given a command𝐶 and a postcondition𝑄 , theweakest liberal precondition
is the weakest assertion 𝑃 such that running 𝐶 in any state satisfying 𝑃 will terminate in a state

satisfying 𝑄 or not terminate at all. Pratt [1976] observed that these calculi have a close connection

to Hoare Logic and they were later used in a completeness proof for Hoare Logic [Clarke 1979].
1

Weakest liberal preconditions have been generalized to probabilistic programs to allow for

reasoning about expected values of random variables in a program that terminates from a single
initial state. The core idea in these quantitative calculi [Kaminski 2019; Kozen 1985; McIver and

Morgan 2005; Zhang and Kaminski 2022] is that one can replace predicates over states by real-

valued functions. All these calculi, classical and quantitative, offer predicate transformers that have

two key benefits over program logics: First, they discover the most precise assertions to make a

triple valid. Second, they provide a calculus with a clear path towards mechanizability.

In this paper, we present a novel weakest pre calculus (whp) for reasoning about quantitative
hyperproperties over programs with effects that cause the program execution to branch such as

nondeterminism or probabilistic choice, in the style of weighted programming [Batz et al. 2022] or

OL [Zilberstein 2024] (Section 3). We generalize existing work on quantitative weakest pre calculi

[Zhang and Kaminski 2022] by considering program termination from initial sets of states or initial
probability distributions rather than single initial states. We thus obtain weakest preconditions for

HHL and enable reasoning about so-called hyperquantities (Section 4), which include expected

values (considered in previous work), but also more general quantities that were not supported

before, e.g. variance. UnlikeHHL, ourwhp supports quantitative probabilistic reasoning, employing

hyperquantities evaluated in probability distributions. Moreover, we show that many existing logics

are subsumed by whp (Section 5), and how to prove (and disprove) properties in those logics.

whp is hence a single calculus for correctness and incorrectness analysis, which enjoys expected

1
Although the original relative completeness proof of Cook [1978] used the strongest postcondition, a later, simplified proof

by Clarke [1979] used the weakest liberal precondition.
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healthiness and duality properties (Section 6). whp can be applied in a variety of settings, which

we illustrate through a range of examples (Section 7).

Similarly to how predicate transformers and Hoare-like logics empower programmers to demon-

strate correctness, we contend that our framework offers researchers a deeper comprehension of

existing logics. Our calculus reveals novel dualities between forward and backward transformers,

correctness and incorrectness, as well as nontermination and unreachability.

1.1 Main challenges
While we observe parallels with existing wp calculi [Kaminski 2019; Morgan et al. 1996], HHL, and

OL, extending these frameworks to our setting of (quantitative) hyperproperties involves several

non-trivial steps, including lifting the calculus from initial states to hyperproperties and weighted

sets of states, and completely revisiting the rules to handle our more expressive assertion language

with hyperquantitites. For example, we will show that our loop rule involves a fixpoint over a

higher-order function (Proposition 4.10), which is not considered in previous works. A summary of

these key technical insights follows.

Weighted Strongest Postcondition. One of our key advances is to anticipate the strongest postcon-

dition (sp) rather than use a standard operational semantics such as that of Batz et al. [2022, Section

3.3]. To achieve this, we developed a novel forward weighted sp transformer; it is interesting that

within our framework (1) we subsume both sp and slp (arguably the main contributions of Zhang

and Kaminski [2022]), and (2) the order of factors changes in some rules.

To demonstrate this, we introduce the ⊙ operator, which represents multiplication in the context

of semirings, and will be explained fully in Section 3.1. In our programming language, these semiring

elements are used as weights for traces. For example, Boolean weights can be used to describe

which traces are possible in a nondeterministic program, whereas real-valued weights quantify the

likelihoods of probabilistic outcomes.

In commutative semirings, the order of multiplication does not matter; that is, 𝑎 ⊙ 𝑏 = 𝑏 ⊙ 𝑎 for

any elements 𝑎 and 𝑏. However, in non-commutative semirings—which deal with sequences and

order-sensitive operations—𝑎 ⊙𝑏 may not equal 𝑏 ⊙𝑎. An example is the formal languages semiring

in Example 4.6, where ⊙ corresponds to word concatenation, which is clearly order dependent.

Now, we investigate the predicate transformer semantics of these weighting constructs. Below,

we see that sp weights the result in the opposite order as compared to wp.

sp J⊙ 𝑒K (𝑓 ) = 𝑓 ⊙ 𝑒 wp J⊙ 𝑒K (𝑓 ) = 𝑒 ⊙ 𝑓

Our loop rule, while similar to those in [Zhang and Kaminski 2022, Table 2], features a slightly

different factor order as well. These differences, while subtle, are crucial, and the correctness of

our rules is supported by the novel dualities presented in Theorem 4.5 and Example 4.6. This

underscores that previous rules [Dijkstra and Scholten 1990; Zhang and Kaminski 2022] were

accurate only because they used commutative semirings.

Quantitative Reasoning over Hyperproperties. Defining the meaning of quantitative reasoning in a

hyperproperty setting was another challenge. We observed the similarity between hyperproperties

and weighted distributions, which necessitated the development of new rules and interpretations to

handle this complexity. Each of thewhp rules are different compared to those of Zhang and Kaminski

[2022]. In addition, the rule for nondeterministic choice is different from those of Hyper Hoare

Logic (HHL) and Outcome Logic (OL), since we aim for completeness in a predicate transformer

semantics, whereas HHL and OL both require additional infinitary rules.
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Restrictions of Hyperquantities. We investigated why reasoning over quantities—as in Batz et al.

[2022]; Kaminski [2019]; Kozen [1985]; McIver and Morgan [2005]; Zhang and Kaminski [2022]—

is simpler, and studied the restrictions of hyperquantities to derive simpler rules similar to the

existing ones (Section 6). This involved identifying and formalizing conditions under which our

more general framework could simplify, bridging the complexity gap between hyperproperties and

traditional properties while maintaining greater expressivity. In fact, even in restricted settings

(e.g., the expected value hyperquantity), we can reason about initial probability distributions rather

than single initial states.

2 Overview: Strategies for Reasoning about Hyperproperties
We begin our discussion by focusing on noninterference [Goguen and Meseguer 1982]—a hyper-

property commonly used in information security applications. More precisely, noninterference

stipulates that any two executions of a program with the same public inputs (but potentially differ-

ent secret inputs) must have the same public outputs. This guarantees that the program does not

leak any secret information to unprivileged observers. As a demonstration, consider the following

program, where the variable ℓ (for low) is publicly visible, but ℎ (for high) is secret.

𝐶ni = assume h > 0 # ℓ B ℓ + h
Suppose we aim to prove 𝐶ni satisfies noninterference. Following the approach of logics such as

Hyper Hoare Logic (HHL), one can define low(ℓ) to mean that the value of ℓ is equal in any pair

of executions, and then attempt to establish the validity of |=hh { low(ℓ) } 𝐶ni { low(ℓ) }, meaning

that if 𝐶ni is executed twice with the same initial ℓ , then ℓ will also have the same value in both

executions when (and if) the program finishes—hence, the initial values of ℎ cannot influence ℓ .

HHL is sound and complete, meaning that any true triples can be proven in it. However, doing so

is not always straightforward. For example, although the specification of the triple above does not

mention ℎ, intermediary assertions required to complete the proofmust mention ℎ, and introducing

this information cannot be done in a mechanical way, but rather requires inventiveness.

Furthermore, whereas HHL (analogously to OL) can disprove any of its triples [Dardinier and

Müller 2024, Theorem 4], deriving either a positive or negative result—i.e., proving that a program

is secure or not—requires one to know a priori which spec they wish to prove, or trying both.

The predicate transformer approach we advocate in this paper proves highly advantageous

as it only requires a single hyperpostcondition to determine the most precise hyperprecondition
that validates (or invalidates) a triple. In that sense, it solves the two aforementioned issues by

mechanically working backward from the postcondition, discovering intermediary assertions along

the way, and finding the most precise precondition with respect to the desired spec.

In this paper, we define a novel whp calculus, and the validity of low(ℓ) ⊆ whp J𝐶niK (low(ℓ))
is the answer to the noninterference problem, without the risk of attempting to prove an invalid

triple. In the case of the above example, our calculus leads us to a simple counterexample; if we

have ℓ = 0 and ℎ = 1 in the first execution and ℓ = 0 and ℎ = 2 in the second execution, then

clearly low(ℓ) holds, but the values of ℓ will be distinguishable at the end. This means that the

program is insecure. In the remainder of this section, we will give an overview of the technical

ideas underlying our whp calculus.

2.1 Classical Weakest Pre
Dijkstra’s original weakest precondition calculus employs predicate transformers of type

wpJ𝐶K : B → B , where B = Σ → {0, 1} .
The set B of maps from program states (Σ) to Booleans ({0, 1}) can also be thought of as predicates

or assertions over program states. The angelic weakest precondition transformer wpJ𝐶K maps a
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postcondition𝜓 to a preconditionwp J𝐶K (𝜓 ) such that executing𝐶 on an initial state inwp J𝐶K (𝜓 )
guarantees that 𝐶 can2 terminate in a final state in 𝜓 . Given a semantics function J𝐶K such that

J𝐶K(𝜎, 𝜏) = 1 iff executing 𝐶 on initial state 𝜎 can terminate in 𝜏 , the angelic wp is so defined:

wp J𝐶K (𝜓 ) = {𝜎 ∈ Σ | ∃𝜏 . J𝐶K(𝜎, 𝜏) = 1 ∧ 𝜏 ∈ 𝜓 }
This allows to check if an angelic total correctness triple holds via the well-known fact

|=atc {𝐺 } 𝐶 { 𝐹 } is valid for angelic total correctness iff 𝐺 =⇒ wp J𝐶K (𝐹 ) .

While the above is a set perspective on wp, an equivalent perspective on wp is a map perspective:

the predicatewp J𝐶K (𝜓 ) is a map that takes as input an initial state 𝜎 , determines for each reachable

final state 𝜏 the (truth) value𝜓 (𝜏), takes a disjunction over all these truth values, and finally returns

the truth value of that disjunction. More symbolically, wp J𝐶K (𝜓 ) (𝜎) =
∨
𝜏 : J𝐶K(𝜎,𝜏)=1 𝜓 (𝜏).

2.2 Weakest Pre over Hyperproperties
To reason about hyperproperties [Clarkson and Schneider 2010], we lift our domain of discourse

from sets of states to sets of sets of states, i.e. we go
from wpJ𝐶K : B → B to whpJ𝐶K : BB → BB ,

where B = Σ → {0, 1}, as before, and BB = P(Σ) → {0, 1}.
Given a postcondition𝜓 ∈ B (i.e. a predicate ranging over states), classical angelic wp J𝐶K (𝜓 )

anticipates for a single initial state 𝜎 whether running 𝐶 on 𝜎 can reach 𝜓 . Given a hyper-

postcondition 𝜓𝜓 ∈ BB (a predicate ranging over sets of states), the weakest hyperprecondi-

tion whp J𝐶K (𝜓𝜓 ) anticipates for a given set of initial states 𝜙 (a precondition), whether the set of

states reachable from executing 𝐶 on every state in 𝜙 satisfies𝜓𝜓 . From a set perspective, we have:

whp J𝐶K (𝜓𝜓 ) = {𝜙 ∈ P(Σ) | sp J𝐶K (𝜙) ∈ 𝜓𝜓 } ,
where sp J𝐶K (𝜙) is the classical strongest postcondition [Dijkstra and Scholten 1990] of 𝐶 with

respect to precondition 𝜙 ; in other words: the set of all final states reachable by executing 𝐶 on any

initial state in𝜙 . From amap perspective,whp J𝐶K (𝜓𝜓 ) maps a hyperproperty𝜓𝜓 over postconditions

to a hyperproperty whp J𝐶K (𝜓𝜓 ) over preconditions. In other words, we are anticipating whether

the strongest postcondition of 𝜙 satisfies the hyperpostcondition𝜓𝜓 :

whp J𝐶K (𝜓𝜓 ) (𝜙) = 𝜓𝜓 (sp J𝐶K (𝜙)) .
In particular, executing 𝐶 on a precondition 𝜙 satisfying whp J𝐶K (𝜓𝜓 ) guarantees that the set

of reachable states sp J𝐶K (𝜙) will satisfy 𝜓𝜓 . Reasoning about hyperproperties is strictly more

expressive as it relates multiple executions. We showcase this in the following examples.

Example 2.1 (Weakest Hyperpreconditions). Given some precondition 𝜙 , if 𝜙 satisfies

(1) whp J𝐶K (𝜆𝜌. |𝜌 | = 2), then the number of states reachable from 𝜙 by executing 𝐶 is 2.

(2) whp J𝐶K (𝜆𝜌. Bugs ⊆ 𝜌), where Bugs ⊆ Σ, then all states in the set Bugs are reachable by

running 𝐶 on some state in 𝜙 (this amounts to Incorrectness Logic [O’Hearn 2020]).

(3) whp J𝐶K (𝜆𝜌. 𝜌 ⊆ Good), where Good ⊆ Σ, then starting from 𝜙 only Good can be reached or

𝐶 does not terminate (this amounts to partial correctness [Hoare 1969]).

We refer to Clarkson and Schneider [2010] for more examples of hyperproperties. △

Remark 2.2. Outcome Logic [Zilberstein et al. 2023] and Hyper Hoare Logic [Dardinier and Müller

2024] can handle all of Example 2.1 via |= {𝜙𝜙 } 𝐶 {𝜓𝜓 } triples, but are agnostic of preconditions
not satisfying 𝜙𝜙 since 𝜙 ∉ 𝜙𝜙 does not imply sp J𝐶K (𝜙) ∉ 𝜓𝜓 . Predicate transformers, on the other

hand, yield the most precise assertions in the sense that 𝜙 ∈ whp J𝐹K (𝜓𝜓 ) iff sp J𝐶K (𝜙) ∈ 𝜓𝜓 . △

2𝐶 is a nondeterministic program. For the demonic setting and for deterministic programs, we can replace “can” by “will”.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 300. Publication date: October 2024.



300:6 Linpeng Zhang, Noam Zilberstein, Benjamin Lucien Kaminski, and Alexandra Silva

2.3 Quantitative Reasoning over Hyperproperties
As shown in [Kaminski 2019; Kozen 1985; McIver and Morgan 2005], one can replace predicates

over states by real-valued functions, also known as quantities [Zhang and Kaminski 2022, Section 3].

These quantitative calculi subsume the classical ones by mimicking predicates through the use of

Iverson brackets [Knuth 1992]. To design a calculus for quantitative reasoning over hyperproperties,

we lift quantities in A =
{
𝑓

�� 𝑓 : Σ → R∞≥0
}
, i.e. functions of type Σ → R∞≥0, to hyperquantities.

Definition 2.3 (Hyperquantities). The set of all hyperquantitiesAA =
{
𝑓𝑓

�� 𝑓𝑓 : (Σ → R∞≥0) → R∞≥0
}

is the set of all functions 𝑓𝑓 : A→ R∞≥0 associating an extended real (i.e. either a non-negative real
number or +∞) to each quantity in A. The point-wise order 𝑓𝑓 ⪯ 𝑔𝑔 ⇐⇒ ∀ 𝑓 ∈ A : 𝑓𝑓 (𝑓 ) ≤ 𝑔𝑔(𝑓 )
renders ⟨AA, ⪯⟩ a complete lattice with join ⋎ and meet ⋏, given point-wise by

𝑓𝑓 ⋎ 𝑔𝑔 = 𝜆𝑓 . max

{
𝑓𝑓 (𝑓 ), 𝑔𝑔(𝑓 )

}
and 𝑓𝑓 ⋏ 𝑔𝑔 = 𝜆𝑓 . min

{
𝑓𝑓 (𝑓 ), 𝑔𝑔(𝑓 )

}
.

Joins and meets over arbitrary subsets exist. For 𝑎 ⋎ 𝑏 ⋏ 𝑐 , we assume that ⋏ binds stronger. △

Hyperquantities enable quantitative reasoning, e.g., measures over probability distributions.

Example 2.4 (Hyperquantities over Distributions). Given a quantity 𝑓 : Σ → R∞≥0 ∈ A (think: random

variable 𝑓 ), we define hyperquantities

E[𝑓 ] ≜ 𝜆𝜇.
∑︁
𝜎

𝑓 (𝜎) · 𝜇 (𝜎) Cov[𝑓 , 𝑔] ≜ 𝜆𝜇. E[𝑓 𝑔] (𝜇) − E[𝑓 ] (𝜇) · E[𝑔] (𝜇) Var[𝑓 ] ≜ Cov[𝑓 , 𝑓 ]

that take as input quantities (interpreted as probability distributions) 𝜇 : Σ → R∞≥0. The above

hyperquantities are then respectively expected value, variance and covariance of 𝑓 (and 𝑔) over 𝜇. △

We now present as an example an adaptation of [Dardinier and Müller 2024, Example 3] – show-

casing how Boolean Hyper Hoare Logic (HHL) would deal with statistical properties.

Example 2.5 (Mean Number of Requests). Consider a program 𝐶db where after termination the

variable 𝑛 represents the number of database requests performed. For a final set of states 𝜌 ⊆ Σ, we

define its mean number of requests by mean𝑛 (𝜌) =
∑
𝜎 ∈𝜌

𝜎 (𝑛)
|𝜌 | .

HHL allows to bound mean𝑛 by a specific number, say 2, by taking as hyperpostcondition

𝑄 = 𝜆𝜌.mean𝑛 (𝜌) ≤ 2. Proving the HHL triple |=hh { true } 𝐶db {𝑄 } then ensures that for every

initial set of states, the mean number of performed requests after the execution of𝐶db is at most 2. △

Example 2.6 (Quantitative Information Flow). Consider a program, 𝐶qif containing lowly and highly

sensitive variables. As outlined in [Zhang and Kaminski 2022, Section 8.1], we will demonstrate

in Section 7.3.1, how our framework also enables to determine, for instance, the maximum initial

value allowable for the secret variable ℎ based on observing a specific final value for 𝑙 . HHL allows

reasoning only about the existence of some information flow or about a bound over ℎ.

Using instead quantitative weakest hyper pre has two main advantages over using HHL:

Beyond Decision Problems. WhileHHL andOutcome Logic (OL) are capable of statistical reasoning,

our quantitative calculus can directly measure quantities of interest, such as the information flow.

Probability Distributions. Reasoning about means is restrictive, especially for infinite sets. As

shown in Example 2.4, hyperquantities assign numerical values such as expected values to dis-

tributions. For example, whp J𝐶dbK (E[𝑛]) (𝜇) maps every distribution 𝜇 to the expected number of
requests after executing 𝐶db on some initial state drawn from 𝜇.

2.4 Limitations
Hyperproperties over probability distributions. We can only reason about properties over proba-

bility distributions or hyperproperties over single states (i.e., properties over sets of states) in our
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framework. In other words, we cannot reason about hyperproperties over probability distributions,

such as probabilistic non-interference [O’Neill et al. 2006]. An attempt to do so would start by

defining probabilistic non-interference for observational (i.e., input/output) programs (as opposed to

Definition 3 of O’Neill et al. [2006], which focuses on interactive programs):

𝜆𝑆. ∀𝜎1, 𝜎2 ∈ 𝑆. 𝜎1 (𝑙) = 𝜎2 (𝑙) =⇒ ∀𝑣. sp J𝐶K
(
1𝜎1

)
( [𝑙 = 𝑣]) = sp J𝐶K

(
1𝜎2

)
( [𝑙 = 𝑣]).

if ( h is even ) {
{ l B 0 } [ 0.99 ] { l B 1 }

} else {
{ l B 0 } [ 0.01 ] { l B 1 }

}
Fig. 1. A program that does not satisfy proba-

bilistic non-interference.

In other words, we require that if the program is run

starting from two states with the same initial values of

𝑙 , then the probability of observing each possible value

of 𝑙 is equal in both runs. For example, consider the pro-

gram in Figure 1, which is the non-interactive analog

of Program 4 from O’Neill et al. [2006]. If the proba-

bilistic choices were replaced with non-deterministic

ones, then the program would satisfy generalized non-

interference, since we cannot infer the value of h by observing the value of 𝑙 . However, with

probabilistic choices, the situation changes; observing l = 0 means that it is more likely that the first

path has been chosen, i.e., that h is even. We can address this situation with the above definition,

and show that the program above does not satisfy probabilistic non-interference. Unfortunately,

such property is a hyperproperty over probability distributions, and goes beyond our framework.

Extending whp to support probabilistic non-interference is an interesting future direction.

Demonic total correctness & angelic partial correctness. Similarly to Ascari et al. [2023]; Dardinier

and Müller [2024]; Zhang and Kaminski [2022]; Zilberstein et al. [2023], we subsume neither

demonic Hoare logic for total correctness, nor angelic Hoare logic for partial correctness, which are

subsumed respectively by existing demonic wp and angelic wlp [Kaminski 2019]. This limitation

is due to how our whp anticipates an angelic sp (as usual in literature), which only considers

terminating states, and not the existence of divergent ones. We stress that this limitation holds for

Hyper Hoare Logic and Outcome Logic, and that our initial objective was to establish a weakest

precondition calculus for them.

3 Syntax and Semantics
We introduce a language of commands wReg, which encompasses nondeterministic imperative

constructs similar to those found in the Guarded Command Language [Dijkstra 1976]. Furthermore,

we adopt the weighting assertion as in [Batz et al. 2022; Zilberstein 2024], which enables represen-

tation of general weights over states. This includes reasoning of expected values over probability

distributions, as studied in [Kaminski 2019; McIver and Morgan 2005].

3.1 Algebraic Preliminaries for Weights
We begin by reviewing some algebraic structures, starting with the weights of computation traces.

Definition 3.1 (Naturally Ordered Semirings). A monoid ⟨𝑈 , ⊕, 0⟩ consists of a set𝑈 , an associative

binary operation ⊕ : 𝑈 ×𝑈 → 𝑈 , and an identity element 0 ∈ 𝑈 (with 𝑢 ⊕ 0 = 0 ⊕ 𝑢 = 𝑢). The

monoid is partial if ⊕ : 𝑈 ×𝑈 ⇀ 𝑈 is partial, and commutative if ⊕ is commutative (i.e.𝑢 ⊕𝑣 = 𝑣 ⊕𝑢).
A semiring ⟨𝑈 , ⊕, ⊙, 0, 1⟩ is an algebraic structure such that ⟨𝑈 , ⊕, 0⟩ is a commutative monoid,

⟨𝑈 , ⊙, 1⟩ is a monoid, and the following additional properties hold:

(1) Distributivity: 𝑢 ⊙ (𝑣 ⊕𝑤) = 𝑢 ⊙ 𝑣 ⊕ 𝑢 ⊙𝑤 and (𝑢 ⊕ 𝑣) ⊙ 𝑤 = 𝑢 ⊙𝑤 ⊕ 𝑣 ⊙𝑤

(2) Annihilation: 0 ⊙ 𝑢 = 𝑢 ⊙ 0 = 0

The semiring is partial if ⟨𝑈 , ⊕, 0⟩ is a partial monoid (but ⊙ is total).
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On a (partial) semiring ⟨𝑈 , ⊕, ⊙, 0, 1⟩, we define a relation ≤ by 𝑢 ≤ 𝑣 iff ∃𝑤 . 𝑢 ⊕ 𝑤 = 𝑣 . The

semiring is called naturally ordered if ≤ is a complete partial order. △

As shown later in Figure 2, semirings will serve as the structure from which we draw weights of

computation traces in our semantics. To this end, we extend the definition of quantities [Zhang

and Kaminski 2022, Definition 3.1] to any semiring, similar to Zilberstein [2024, Definition 2.3].

Definition 3.2 (Quantities). Given a partial semiring A = ⟨𝑈 , ⊕, ⊙, 0, 1⟩, the set AA (𝑋 ) of all
quantities is defined as the set of all functions 𝑓 : 𝑋 → 𝑈 , i.e. AA (𝑋 ) = { 𝑓 | 𝑓 : 𝑋 → 𝑈 }. △

We will write A instead of AA (𝑋 ) when A and 𝑋 are clear from context. Semiring addition, scalar

multiplication, and constants are lifted pointwise to quantities as follows:

(𝑚1 ⊕𝑚2) (𝑥) ≜ 𝑚1 (𝑥) ⊕𝑚2 (𝑥), (𝑢 ⊙𝑚) (𝑥) ≜ 𝑢 ⊙𝑚(𝑥), and 𝑢 (𝑥) ≜ 𝑢

For example, by taking𝑋 as the set of program states Σ and the semiring ⟨R±∞, max, min, −∞, +∞⟩
one can represent the quantities of Zhang and Kaminski [2022, Definition 3.1]. Other instances of

semirings encode other computations. For example:

• Nondeterministic computation employs the Boolean semiring Bool = ⟨{0, 1}, ∨, ∧, 0, 1⟩.
• Randomization adopts probabilities in the partial semiring Prob = ⟨[0, 1], +, ·, 0, 1⟩, where 𝑥 + 𝑦
is undefined if 𝑥 + 𝑦 > 1.

• Expectations in quantitative weakest pre [Hark et al. 2019; McIver and Morgan 2005] adopts

non-negative values in the semiring PosReals = ⟨R≥0, +, ·, 0, +∞⟩
• Optimization problems (e.g., the path with minimum weight) can be encoded via the tropical

semiring Tropical = ⟨[0, +∞], min, +, +∞, 0⟩ which utilises non-negative real-valued weights

with minimum and addition operations.

We refer to Batz et al. [2022, Table 1] and Zilberstein [2024, Section 2] for more examples and details.

In the rest of the paper we will employ a more general definition of hyperquantities (Definition 2.3)

that is parametrised to arbitrary semi-rings.

Definition 3.3 ((Weighted) Hyperquantities). Given a partial semiring A = ⟨𝑈 , ⊕, ⊙, 0, 1⟩, the
set AAA of all hyperquantities is defined as the set of all functions 𝑓𝑓 : (Σ → 𝑈 ) → R∞≥0, i.e.
AAA = APosReals (AA (Σ)).
Similarly to quantities, when A is clear from the context, we will write AA. We point out that

we are purposely mapping quantities of type Σ → 𝑈 to hyperquantities of type (Σ → 𝑈 ) → R∞≥0
and not (Σ → 𝑈 ) → 𝑈 ′

. While we argue that one can develop a similar calculus via two possibly

different semi-rings, our aim is to enable quantitative reasoning within the very well-understood

real numbers, as done by [Kaminski 2019]. This allows us to generalize beyond hyperproperties,

while still keeping our framework concrete enough to immediately build further tools on top of it.

3.2 Program States andQuantities
A state 𝜎 is a function that assigns a natural-numbered value to each variable. To ensure that the set

of states is countable, we restrict to a finite set of program variables Vars. The set of program states

is given by Σ = { 𝜎 | 𝜎 : Vars → N }. The semantics of an arithmetic, boolean or weight expression 𝑒

is denoted by J𝑒K : Σ → N ∪ 𝑈 and is obtained in a state 𝜎 , by evaluating 𝑒 after replacing all

occurrences of variables 𝑥 by 𝜎 (𝑥). Moreover, we denote by 𝜎 [𝑥/𝑣] a new state obtained from 𝜎 by

setting the valuation of 𝑥 ∈ Vars to 𝑣 ∈ N. Formally: 𝜎 [𝑥/𝑣] (𝑦) = 𝑣 , if 𝑦 = 𝑥 ; and 𝜎 (𝑦), otherwise.
A particular useful quantity is the Iverson bracket [Knuth 1992]: denoted as [𝜑] for a given

predicate𝜑 , it takes as input a state 𝜎 and evaluates to 1 if the statement is true and 0 if the statement

is false. We generalise it to arbitrary semirings, subsuming other quantitative generalisations such

as [Zhang and Kaminski 2022, Definition 3.5].
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J𝑥 B 𝑒K(𝜎, 𝜏) ≜ [𝜎 [𝑥/𝜎 (𝑒)] = 𝜏] (assignment)

J𝑥 B nondet()K(𝜎, 𝜏) ≜
⊕
𝛼 ∈N

[𝜎 [𝑥/𝛼] = 𝜏] (nondeterministic assignment)

J⊙ 𝑒K(𝜎, 𝜏) ≜ J𝑒K(𝜎) ⊙ [𝜎 = 𝜏] (weighting)

J𝐶1 # 𝐶2K(𝜎, 𝜏) ≜
⊕
𝜄∈Σ

J𝐶1K(𝜎, 𝜄) ⊙ J𝐶2K(𝜄, 𝜏) (sequential composition)

J{𝐶1 } □ {𝐶2 }K(𝜎, 𝜏) ≜ J𝐶1K(𝜎, 𝜏) ⊕ J𝐶2K(𝜎, 𝜏) (nondeterministic choice)

J𝐶 ⟨𝑒,𝑒′⟩K(𝜎, 𝜏) ≜ (lfp 𝑋 . Φ𝐶,𝑒,𝑒′ (𝑋 )) (𝜎, 𝜏) (iteration)

where Φ𝐶,𝑒,𝑒′ (𝑋 ) (𝜎, 𝜏) = J𝑒K(𝜎) ⊙
(⊕
𝜄∈Σ

J𝐶K(𝜎, 𝜄) ⊙ 𝑋 (𝜄, 𝜏)
)

⊕ J𝑒 ′K(𝜎) ⊙ [𝜎 = 𝜏] △

Fig. 2. Denotational semantics J𝐶K : (Σ×Σ) → 𝑈 of wReg programs, whereA = ⟨𝑈 , ⊕, ⊙, 0, 1⟩ is a semiring

and the least fixed point is defined via point-wise extension of the natural order ≤ such that 𝑓 ≤ 𝑓 ′ iff
𝑓 (𝜎1, 𝜎2) ≤ 𝑓 ′(𝜎1, 𝜎2) for all 𝜎, 𝜎 ′ ∈ Σ.

Definition 3.4 (Iverson Brackets). For any semiring A = ⟨𝑈 , ⊕, ⊙, 0, 1⟩ and a predicate 𝜑 over

program states Σ, the Iverson bracket [𝜑] : Σ → 𝑈 is defined as

[𝜑] (𝜎) ≜
{
1, if 𝜎 |= 𝜑 ; and 0, otherwise . △

3.3 Weighted Programs
Throughout the paper, we denote A = ⟨𝑈 , ⊕, ⊙, 0, 1⟩ as a naturally ordered, complete, Scott

continuous, partial semiring with a top element ⊤ ∈ 𝑈 such that ⊤ ≥ 𝑢 for all 𝑢 ∈ 𝑈 . We assign

meaning to wReg-statements in terms of a denotational semantics, taking as input an initial state 𝜎
and a final state 𝜏 , and returning the sum of the weights of all paths starting from 𝜎 and terminating

in 𝜏 after the execution of𝐶 . The syntax of the weighted regular command language (wReg) is below:
𝐶 F 𝑥 B 𝑒 (assignment) | 𝑥 B nondet() (nondet. assign.) | ⊙ 𝑒 (weighting)

| 𝐶 #𝐶 (sequencing) | {𝐶 } □ {𝐶 } (nondet. choice) | 𝐶 ⟨𝑒,𝑒′⟩
(iteration)

where ⊙ 𝑒 weights the current computation branch. Similarly to [Batz et al. 2022; Zhang and

Kaminski 2022], we do not provide an explicit syntax for weights because we focus on semantic

assertions. Our weighting construct is more expressive than Batz et al. [2022]; Zilberstein [2024]:

not only we can represent values 𝑢 ∈ 𝑈 and Boolean tests (via Iverson brackets), but we also reason

about intensional properties of the computation. The iteration 𝐶 ⟨𝑒,𝑒′⟩
, introduced in [Zilberstein

2024], terminates with weight 𝑒 ′ or executes the body 𝐶 with weight 𝑒 . This construct simplifies

the representation of while loops with while ( 𝜑 ) {𝐶 }, probabilistic iterations using 𝐶 ⟨𝑝,1−𝑝 ⟩
, and

Kleene’s star as 𝐶 ⟨1,1⟩
. Its usefulness is evident, especially in partial semirings where loops via

Kleene star may not be well-defined due to its nondeterministic nature [Zilberstein 2024, Footnote 2].

Many common constructs, such as tests, branchings and loops are syntactic sugar, for instance:

assume 𝜑 ≜ ⊙𝜑 diverge ≜ ⊙ 0

if ( 𝜑 ) {𝐶1 } else {𝐶2 } ≜ { assume 𝜑 # 𝐶1 } □ { assume ¬𝜑 # 𝐶2 }
{𝐶1 } [ 𝑝 ] {𝐶2 } ≜ { ⊙ 𝑝 # 𝐶1 } □ { ⊙ 1 − 𝑝 # 𝐶1 }
while ( 𝜑 ) {𝐶 } ≜ 𝐶 ⟨𝜑,¬𝜑 ⟩ 𝐶★ ≜ 𝐶 ⟨1,1⟩

The semantics is shown in Figure 2 and is described below.

Assignment: The semantics for assignment asserts that the weight of transitioning from 𝜎 to 𝜏

after executing 𝑥 B 𝑒 is 1 if 𝜏 is equal to 𝜎 with the value of 𝑥 updated to 𝜎 (𝑒), or 0 otherwise.
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Nondeterministic Assignment: The denotational semantics for 𝑥 B nondet(), indicates that
the weight of transitioning from initial state 𝜎 to final state 𝜏 after executing 𝑥 B nondet() is 1 if

𝜎 and 𝜏 differ only in the value of 𝑥 , and 0 otherwise. This is achieved by treating

⊕
akin to an

existential quantifier. Specifically, given 𝜎 , we consider all possible values that 𝑥 may take after the

execution of 𝑥 B nondet().

Assume/Weighting: The semantics for assume 𝜑 indicates that the weight of transitioning from 𝜎

to 𝜎 is determined by the evaluation of 𝜑 in 𝜎 . If 𝜏 ≠ 𝜎 , then the weight of the transition is 0.

The intuition of the weighting statement in Batz et al. [2022] is to weight arbitrary constant

values 𝑢 ∈ 𝑈 , which does not generalize assume 𝜑 (but only assume true and assume false). In our

setting, weight can be any expression, so ⊙ 𝑒 is a proper generalization of the assume rule and is

defined asJ⊙ 𝑒K(𝜎, 𝜏) = J𝑒K(𝜎) ⊙ [𝜎 = 𝜏] . Here, the weighting rule expresses that the weight of
transitioning from 𝜎 to itself after a weighting operation is determined by the weight J𝑒K(𝜎).

Sequential Composition: The semantics for𝐶1 #𝐶2 calculates the weight of transitioning from 𝜎

to 𝜏 after executing a sequence of𝐶1 followed by𝐶2, considering all possible intermediate states 𝜎 ′
.

Nondeterministic Choice: The semantics for {𝐶1 } □ {𝐶2 } captures the weight of transitioning
from 𝜎 to 𝜏 after executing either𝐶1 or𝐶2, with the weight being the sum of the individual weights.

Iteration: The intended meaning of𝐶 ⟨𝑒,𝑒′⟩
is to be equal to

{
⊙ 𝑒 # 𝐶 # 𝐶 ⟨𝑒,𝑒′⟩ } □ { ⊙ 𝑒 ′ }. Replacing

the recursive instance of 𝐶 ⟨𝑒,𝑒′⟩
with 𝑋 , we get Φ𝐶,𝑒,𝑒′ (𝑋 ), and so by Kleene’s fixpoint theorem, the

least fixed point corresponds to iterating on the least element of the complete partial order 0, which

yields an ascending chain of unrollings. This process can be demonstrated through the following

sequence:

Φ𝐶,𝑒,𝑒′ (0) (𝜎, 𝜏) = J{ ⊙ 𝑒 # diverge } □ { ⊙ 𝑒 ′ }K(𝜎, 𝜏)
Φ2

𝐶,𝑒,𝑒′ (0) (𝜎, 𝜏) = J{ ⊙ 𝑒 # 𝐶 # { ⊙ 𝑒 # diverge } □ { ⊙ 𝑒 ′ } } □ { ⊙ 𝑒 ′ }K(𝜎, 𝜏)
and so on, whose supremum is the least fixed point of Φ𝐶,𝑒,𝑒′ .

Well-definedness of the Denotational Semantics
The semantics of iteration loops is well-defined if Φ𝐶,𝑒,𝑒′ (𝑋 ) is a total function. This is always the
case for any total semirings (such as Bool,Tropical), rendering our semantics more general than

several others [Batz et al. 2022; Dardinier and Müller 2024; Zhang and Kaminski 2022]. For partial

semi-rings, extra caution is necessary as ⊕ may not always be well-defined. Hence:

(1) We restrict the assignment 𝑥 B nondet(), Kleene’s star 𝐶★
and nondeterministic choices

{𝐶1 } □ {𝐶2 } to total semi-rings only.

(2) We allow only nondeterministic choices of the form { 𝑒 # 𝐶1 } □ { 𝑒 # 𝐶2 } and loops𝐶 ⟨𝑒,𝑒′⟩
where

the expressions are compatible [Zilberstein 2024, Section A.3], that is, J𝑒1K(𝜎) ⊕ J𝑒2K(𝜎) is
defined for any 𝜎 ∈ Σ.

Restricting to compatible expressions allows the use of if ( 𝜑 ) {𝐶1 } else {𝐶2 } and the guarded

loop while ( 𝜑 ) {𝐶 } for every semiring. Additionally, the probabilistic choice {𝐶1 } [ 𝑝 ] {𝐶2 }
remains well-defined for the partial semiring Prob. For the remainder of the paper, we assume that

programs are constructed in this manner, ensuring they are always well-defined.

4 Quantitative Weakest Hyper Pre
4.1 AQuantitative Strongest Post for Weighted Programs
As hinted in Section 2.2, we want our calculus to anticipate the so-called strongest post. Therefore,

we define a novel quantitative strongest post transformer for wReg.
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Definition 4.1 (Quantitative Strongest Post). The strongest post transformer sp : wReg → (A→ A)
is defined inductively according to the rules in Table 3 on p. 13, middle column. △

Let us show what sp computes semantically, before providing some intuitions on the rules.

Theorem 4.2 (Characterization of sp). For all programs 𝐶 ∈ wReg and final states 𝜏 ∈ Σ,

sp J𝐶K (𝜇) (𝜏) =
⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙ J𝐶K(𝜎, 𝜏) .

Theorem 4.2 guarantees the correct behavior of sp
3
by asserting that it appropriately maps initial

quantities to final quantities, including probability distributions and program sets of states. In

particular, Table 1 shows that by instantiating our calculus with different semirings we subsume

several existing strongest post calculi. Additionally, similarly to [Batz et al. 2022, Table 1], weighted

strongest post can handle optimization and combinatorial problems as well, with the main difference

to be our calculus moving forward instead of backward.

𝑪 wp J𝑪K (𝒇 )

𝑥 B 𝑒 𝑓 [𝑥/𝑒]
𝑥 B nondet()

⊕
𝛼 𝑓 [𝑥/𝛼]

⊙𝑤 𝑤 ⊙ 𝑓

𝐶1 # 𝐶2 wp J𝐶1K
(
wp J𝐶2K (𝑓 )

)
{𝐶1 } □ {𝐶2 } wp J𝐶1K (𝑓 ) ⊕ wp J𝐶2K (𝑓 )
𝐶 ⟨𝑒,𝑒′⟩

lfp 𝑋 . J𝑒 ′K ⊙ 𝑓 ⊕ J𝑒K ⊙ wp J𝐶K (𝑋 )
Table 2. Rules for weighted wp [Batz et al. 2022, Table

2], extended to wReg.

We contend that our definition of sp is inher-

ently intuitive, extending the classical concept

of "reachable sets" to final distributions where

the binary notion of reachability is substituted

with real values. This inherent intuitiveness is

additionally justified by the close connection

between weakest pre and strongest post in our

framework. To underscore this point, we ex-

tend the weighted wp of [Batz et al. 2022, Table

2] to our language wReg, as shown in Table 2

and we revisit Kozen’s duality between forward transformers and wp.

Theorem 4.3 (Kozen [1985] Duality). For all programs 𝐶 , probability distributions 𝜇 : Σ → [0, 1],
and all functions 𝑓 ∈ A, we have wp J𝐶K (𝑓 ) (𝜎) = ∑

𝜏 ∈Σ J𝐶K(𝜎, 𝜏) · 𝑓 (𝜏).

We now prove a more general version of the duality above for weighted programming.

Theorem 4.4 (Extended Kozen Duality For Weighted Programming). For all programs 𝐶 ∈
wReg and final states 𝜏 ∈ Σ, the following equality holds:

wp J𝐶K (𝑓 ) (𝜎) =
⊕
𝜏 ∈Σ

J𝐶K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

We can also prove that the following more symmetrical duality between our sp and wp holds:

Theorem 4.5 (Weighted sp-wp Duality). For all programs 𝐶 and all functions 𝜇, 𝑔 ∈ A, we have⊕
𝜏 ∈Σ

sp J𝐶K (𝜇) (𝜏) ⊙ 𝑔(𝜏) =
⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙ wp J𝐶K (𝑔) (𝜎) .

3
It is essential to note that our formulation of sp differs from the one disproven by [Jones 1990, p. 135]. The latter focuses

on identifying the most precise assertion for the triples defined in [Jones 1990, p. 124].

Calculus Semiring
Strongest Postcondition [Dijkstra and Scholten 1990] ⟨{0, 1},∨,∧, 0, 1⟩
Strongest Liberal Postcondition [Zhang and Kaminski 2022] ⟨{0, 1},∧,∨, 1, 0⟩
Quantitative Strongest Post [Zhang and Kaminski 2022] ⟨R±∞,max,min,−∞, +∞⟩
Quantitative Strongest Liberal Post [Zhang and Kaminski 2022] ⟨R±∞,min,max, +∞,−∞⟩

Table 1. Existing strongest post calculi subsumed via our quantitative strongest post.
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In essence, Theorem 4.5 establishes a novel equivalence between forward and backward trans-

formers. An intuition for the probabilistic semiring Prob is that computing the expectation of a

quantity𝑔 after the program execution—captured in the final distribution sp J𝐶K (𝜇)—is analogous to
calculating the expected value throughwp J𝐶K (𝑔) (𝜎) but with the added nuance of being weighted

by the initial distribution 𝜇. In the case of other semirings, the idea is that on the left-hand side

all terminating traces originating from 𝜇 are aggregated and then 𝑔 appended. Conversely, on the

right-hand side, the process is reversed: we initiate from 𝑔 and move backward until we reach 𝜇.

Example 4.6. Consider the semiring of formal languages A = ⟨P({𝑎, 𝑏}∗),∪, ⊙, ∅, {𝜖}⟩ and the

program 𝐶 = { ⊙ {𝑎} } □ { ⊙ {𝑏} }. Let 𝜇 = 𝜆𝜎. {𝑎} and 𝑔 = 𝜆𝜎. {𝑏} represent the prequantity we

aim to prepend and the postquantity we intend to append at the end of the execution, respectively.

This results in the following language:⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙ wp J𝐶K (𝑔) (𝜎) =
⊕
𝜎 ∈Σ

{𝑎} ⊙ (wp J⊙ {𝑎}K (𝑔) (𝜎) ⊕ wp J⊙ {𝑏}K (𝑔) (𝜎))

= {𝑎} ⊙ ({𝑎𝑏} ⊕ {𝑏𝑏}) = {𝑎𝑎𝑏, 𝑎𝑏𝑏}
which is exactly⊕

𝜏 ∈Σ
sp J𝐶K (𝜇) (𝜏) ⊙ 𝑔(𝜏) =

⊕
𝜏 ∈Σ

(sp J⊙ {𝑎}K (𝜇) (𝜎) ⊕ sp J⊙ {𝑏}K (𝜇) (𝜎)) ⊙ {𝑏}

= ({𝑎𝑎} ⊕ {𝑎𝑏}) ⊙ {𝑏} = {𝑎𝑎𝑏, 𝑎𝑏𝑏} △

Let us explain the rules in Table 3 individually.

Assignment: The quantitative strongest post sp J𝑥 B 𝑒K (𝑓 ) is calculated by considering all

possible values 𝛼 that 𝑥 could have had before the assignment and summing all evaluations of

quantity 𝑓 under those possible 𝛼 .

Nondeterministic Assignment: The statement 𝑥 B nondet() is analogous to 𝑥 B 𝑒 , but without

any restriction on the initial value of 𝑥 , since the assignment is entirely nondeterministic and hence

the original value of 𝑥 cannot be retrieved.

Assume/Weighting: In the assume statement, the strongest post is given by [𝜑] · 𝑓 , where [𝜑]
acts as a filter, nullifying states for which the predicate does not hold.

The weighting statement ⊙ 𝑎 extends the assume rule by allowing any weighting function 𝑎. The

strongest post for weighting involves scaling the initial quantity 𝑓 by the weight 𝑎.

Sequential Composition: The quantitative strongest post for sequential composition 𝐶1 # 𝐶2 is

obtained by evaluating the second program𝐶2 starting from the strongest post of the first program

𝐶1. The quantity sp J𝐶1K (𝑓 ) represents the possible states reached with associated weights after

executing 𝐶1, and 𝐶2 is then executed from these states.

Nondeterministic Choice: For the nondeterministic choice {𝐶1 } □ {𝐶2 }, the strongest post is
the sum of the strongest posts of 𝐶1 and 𝐶2. This accounts for the possibility of either program

being executed, resulting in a combination of the quantities reached by each.

Iteration: The begin post for the iteration𝐶 ⟨𝑒,𝑒′⟩
is an extension to the one in [Zhang and Kaminski

2022, Definition 4.1], but generalised to arbitrary weights 𝑒, 𝑒 ′ instead of predicates. It is thus

obtained via loop unrollings

Ψ𝑓 (0) ⊙ J𝑒 ′K = sp J{ ⊙ 𝑒 # diverge } □
{
⊙ 𝑒 ′

}
K (𝑓 )

Ψ2

𝑓
(0) ⊙ J𝑒 ′K = sp J

{
⊙ 𝑒 # 𝐶 # { ⊙ 𝑒 # diverge } □

{
⊙ 𝑒 ′

} }
□

{
⊙ 𝑒 ′

}
K (𝑓 )

which converge to the least fixed point of Ψ𝑓 (𝑋 ) = 𝑓 ⊕ sp J𝐶K
(
𝑋 ⊙ J𝑒K

)
, yielding the rule

sp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓 ) =
(
lfp 𝑋 . 𝑓 ⊕ sp J𝐶K

(
𝑋 ⊙ J𝑒K

) )
⊙ J𝑒 ′K
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𝑪 sp J𝑪K (𝒇 ) whp J𝑪K (𝒇𝒇 )
𝑥 B 𝑒

⊕
𝛼 𝑓 [𝑥/𝛼] ⊙ [𝑥 = 𝑒 [𝑥/𝛼]] 𝑓𝑓 [𝑥/𝑒]

𝑥 B nondet()
⊕

𝛼 𝑓 [𝑥/𝛼] 𝜆𝑓 . 𝑓𝑓 (
⊕

𝛼 𝑓 [𝑥/𝛼])
⊙𝑤 𝑓 ⊙𝑤 𝑓𝑓 ⊙𝑤

𝐶1 # 𝐶2 sp J𝐶2K
(
sp J𝐶1K (𝑓 )

)
whp J𝐶1K

(
whp J𝐶2K (𝑓𝑓 )

)
{𝐶1 } □ {𝐶2 } sp J𝐶1K (𝑓 ) ⊕ sp J𝐶2K (𝑓 )

⊕
𝜈1,𝜈2

𝑓𝑓 (𝜈1 ⊕ 𝜈2) ⊙ whp J𝐶1K ( [𝜈1]) ⊙ whp J𝐶2K ( [𝜈2])
𝐶 ⟨𝑒,𝑒′⟩ (

lfp 𝑋 . 𝑓 ⊕ sp J𝐶K
(
𝑋 ⊙ J𝑒K

) )
⊙ J𝑒 ′K 𝜆𝑓 . 𝑓𝑓

( (
lfp 𝑋 . 𝑓 ⊕ sp J𝐶K

(
𝑋 ⊙ J𝑒K

) )
⊙ J𝑒 ′K

)
Table 3. Rules for defining the quantitative strongest post and weakest hyper pre transformers.

4.2 Quantitative Weakest Hyper Pre
First of all, we show in which sense we can represent hyperproperties via functions. We have already

seen that predicates can be encoded via Iverson brackets ( Definition 3.4), and decoded by the support

set, since every quantity 𝑓 : Σ → 𝑈 can be seen as a set of states via supp (𝑓 ) = {𝜎 : 𝑓 (𝜎) ≠ 0}.
For example, the set of reachable states starting from 𝜙 ⊆ Σ is supp

(
sp J𝐶K ( [𝜙])

)
. To encode and

decode hyperpredicates, we need to introduce hyper Iverson brackets.

Definition 4.7 (Hyper Iverson Brackets). Given a semiring A = ⟨𝑈 , ⊕, ⊙, 0, 1⟩, for a hyperpredicate
𝜙𝜙 : P(P(Σ)) we define the hyper Iverson bracket [𝜙𝜙] : (Σ → 𝑈 ) → R∞≥0 by

[𝜙𝜙] (𝑓 ) =

{
+∞ if supp (𝑓 ) ∈ 𝜙𝜙 ; and 0 otherwise. △

For a hyperquantity 𝑓𝑓 , its corresponding hyperpredicate is defined by supp (𝑓𝑓 ) = {𝑓 : 𝑓𝑓 (𝑓 ) > 0}.
We shall remark that hyperpredicates in our setting can represent predicates over quantities,

including hyperproperties and predicates over probability distributions.

Definition 4.8 (Quantitative Weakest Hyper Pre). The quantitative weakest hyper pre transformer
whp : Reg → (AA→ AA) is defined inductively according to the rules in Table 3, right column.

Let us show for some of the rules how the quantitative weakest hyper pre semantics can be

developed and understood analogously to Dijkstra’s classical weakest preconditions.

Assignment. The weakest precondition of an assignment is given by wp J𝑥 B 𝑒K (𝜓 ) = 𝜓 [𝑥/𝑒],
where𝜓 [𝑥/𝑒] denotes the substitution of the variable 𝑥 in𝜓 with the expression 𝑒 . From a semantic

perspective, this replacement can be expressed as 𝜓 [𝑥/𝑒] B 𝜆𝜎.𝜓
(
𝜎 [𝑥 ↦→ 𝜎 (𝑒)]

)
. In simpler

terms, the weakest precondition operates by predicting the operational semantics: it examines

whether, given an initial state 𝜎 , the final state 𝜎 [𝑥 ↦→ 𝜎 (𝑒)] adheres to the condition𝜓 .

For quantitative weakest hyper pre, a similar approach is taken, but we anticipate the strongest

post rather than the operational semantics. Therefore, the value of 𝑓𝑓 in the resulting distribution (or

set of states) after the execution of 𝑥 B 𝑒 on the initial distribution (or set) 𝑓 corresponds to 𝑓𝑓 , but

evaluated at the final distribution sp J𝑥 B 𝑒K (𝑓 ) =
⊕

𝛼 𝑓 [𝑥/𝛼] ⊙ [𝑥 = 𝑒 [𝑥/𝛼]]. We thus define the

syntactic replacement of the variable 𝑥 in a hyperquantity 𝑓𝑓 by 𝑓𝑓 [𝑥/𝑒] B 𝜆𝑓 . 𝑓𝑓 (sp J𝑥 B 𝑒K (𝑓 )),
yielding the rule whp J𝑥 B 𝑒K (𝑓𝑓 ) = 𝑓𝑓 [𝑥/𝑒]

Nondeterministic Assignment: The nondeterministic assignment is analogous to the standard

assignment, but now with 𝑥 ranging over any possible value.

Assume/Weighting. We havewp Jassume𝜑K (𝜓 ) = 𝜑∧𝜓 . Indeed, if the initial state 𝜎 satisfies the

combined precondition𝜑∧𝜓 , the execution of assume𝜑 entails progression through the assumption

of 𝜑 . Since the assumption itself does not alter the program state, the process concludes in state

𝜎 , which also satisfies the post𝜓 . Conversely, if 𝜎 fails to meet 𝜑 ∧𝜓 , the execution of assume 𝜑
results in either not progressing through the assumption of 𝜑 or passing through the assumption
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but 𝜎 not satisfying the post𝜓 . The quantitative weakest hyper pre on an initial distribution (set) 𝑓

anticipates the strongest post, yielding the rule whp Jassume 𝜑K (𝑓𝑓 ) = 𝜆𝑓 . 𝑓𝑓 ( [𝜑] ⊙ 𝑓 ).
To simplify the notation, we introduce the product ⊙ between quantities and hyperquantities as:

𝑓𝑓 ⊙𝑤 = 𝜆𝑓 . 𝑓𝑓 (𝑓 ⊙𝑤) 𝑤 ⊙ 𝑓𝑓 = 𝜆𝑓 . 𝑓𝑓 (𝑤 ⊙ 𝑓 ) ,
leading to the syntactically simpler rule whp Jassume 𝜑K (𝑓𝑓 ) = 𝑓𝑓 ⊙ [𝜑]. For the more general

weighting statement, whp J⊙𝑤K (𝑓𝑓 ) = 𝑓𝑓 ⊙𝑤 is a generalization, where𝑤 can be any quantity.

Nondeterministic Choice. When executing nondeterministic choice {𝐶1 } □ {𝐶2 } on some

initial state 𝜎 , operationally either 𝐶1 or 𝐶2 will be executed. Hence, the execution will reach either

a final state in which executing 𝐶1 on 𝜎 terminates or a final state in which executing 𝐶2 on 𝜎

terminates (or no final state if both computations diverge).

The angelic weakest precondition of {𝐶1 } □ {𝐶2 } is given by wp J{𝐶1 } □ {𝐶2 }K (𝜓 ) =

wp J𝐶1K (𝜓 ) ∨wp J𝐶2K (𝜓 ). Indeed, whenever an initial state𝜎 satisfies the preconditionwp J𝐶1K (𝜓 )
or wp J𝐶2K (𝜓 ), then — either by executing 𝐶1 or 𝐶2 — it is possible that the computation will ter-

minate in some final state satisfying the postcondition𝜓 .

Moving to hyperquantities, the elimination of nondeterminism occurs because the strongest

post spJ{𝐶1 } □ {𝐶2 }K is deterministic. Consequently, the value of 𝑓𝑓 in the resulting distribution

(or set of states) after executing either 𝐶1 or 𝐶2 on the initial distribution (or set) 𝑓 is

whp J{𝐶1 } □ {𝐶2 }K (𝑓𝑓 ) =
⊕

𝜈1,𝜈2 : Σ→𝑈
𝑓𝑓 (𝜈1 ⊕ 𝜈2) ⊙ whp J𝐶1K ( [𝜈1]) ⊙ whp J𝐶2K ( [𝜈2]) .

Recalling that the final distribution is the combination of sp J𝐶1K (𝑓 ) and sp J𝐶2K (𝑓 ), identifying 𝜈𝑖
such that 𝜈𝑖 = sp J𝐶𝑖K (𝑓 ) makes computing 𝑓𝑓 (𝜈1 ⊕ 𝜈2) sufficient. By aggregating over every 𝜈𝑖 for

whichwhp J𝐶𝑖K ( [𝜈1]) (𝑓 ) holds, we ensure that only those 𝜈𝑖 where 𝜈𝑖 = sp J𝐶𝑖K (𝑓 ) will contribute,
making the sum non-zero. Consequently, 𝑓𝑓 (𝜈1 ⊕ 𝜈2) precisely equals 𝑓𝑓 (sp J{𝐶1 } □ {𝐶2 }K (𝑓 )).

Remark 4.9. In the case of {𝐶1 } □ {𝐶2 }, OL and HHL exhibit forward-style rules that are simpler

but not comprehensive. While these rules maintain soundness, completeness necessitates the

inclusion of an existential rule. As our approach adopts a weakest pre style calculus aiming for

both soundness and completeness, the introduction of the

⊕
quantification becomes imperative.

This quantification mirrors the existential rule utilized in OL and HHL, encompassing all relevant

cases. Our rule shares similarities with den Hartog [2002, Definition 6.5.2], although they provide

multiple rules depending on the structure of the hyperquantity. Since our paper focuses on semantic

assertions, we refrain from analyzing the syntactic structure of hyperquantities. However, we later

introduce simpler rules for the class of linear hyperquantities, as outlined in Definition 6.5.

Sequential Composition. What is the anticipated value of 𝑓𝑓 after executing𝐶1 #𝐶2, i.e. the value

of 𝑓𝑓 after first executing 𝐶1 and then 𝐶2? To answer this, we first anticipate the value of 𝑓𝑓 after

execution of𝐶2 which giveswhp J𝐶2K (𝑓𝑓 ). Then, we anticipate the value of the intermediate quantity

whp J𝐶2K (𝑓𝑓 ) after execution of 𝐶1, yielding whp J𝐶1 # 𝐶2K (𝑓𝑓 ) = whp J𝐶1K
(
whp J𝐶2K (𝑓𝑓 )

)
.

Iteration. The rule for 𝐶 ⟨𝑒,𝑒′⟩
is obtained by anticipating the execution of 𝐶 ⟨𝑒,𝑒′⟩

. It is consistent in

the sense that it is a solution of the equation:

whpJ𝐶 ⟨𝑒,𝑒′⟩K = whpJ
{
⊙ 𝑒 # 𝐶 # 𝐶 ⟨𝑒,𝑒′⟩

}
□

{
⊙ 𝑒 ′

}
K

= 𝜆ℎℎ 𝜆𝑓 .
⊕
𝜈

ℎℎ(𝜈 ⊕ 𝑓 ⊙ J𝑒 ′K) ⊙ whp J𝐶K
(
whpJ𝐶 ⟨𝑒,𝑒′⟩K( [𝜈])

)
(𝑓 ⊙ J𝑒K)

Indeed one can show the following.
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Proposition 4.10 (Consistency of iteration rule). Let

Φ(trnsf) = 𝜆ℎℎ 𝜆𝑓 .
⊕
𝜈

ℎℎ(𝜈 ⊕ 𝑓 ⊙ J𝑒 ′K) ⊙ whp J𝐶K (trnsf( [𝜈])) (𝑓 ⊙ J𝑒K)

Then, whpJ𝐶 ⟨𝑒,𝑒′⟩K is a fixpoint of the higher order function Φ(trnsf), that is:
Φ(𝜆𝑓𝑓 𝜆𝜇. 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇))) = 𝜆𝑓𝑓 𝜆𝜇. 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇))

Remark 4.11. One might attempt a rule for 𝐶 ⟨𝑒,𝑒′⟩
by defining 𝐹 (𝑋 ) = 𝜆𝑓 . 𝑋 (𝑓 ⊕ sp J𝐶K

(
𝑓 ⊙ J𝑒K

)
).

Intuitively, 𝐹 takes as input a hyperquantity 𝑋 , but instead of applying it on a distribution 𝑓 , it

computes one iteration of the loop sp J𝐶K
(
𝑓 ⊙ J𝑒K

)
and then pass all as argument of 𝑋 . Recalling

that Ψ𝑓 (𝑋 ) = 𝑓 ⊕ sp J𝐶K
(
𝑋 ⊙ J𝑒K

)
, one can then observe that for every 𝑛 ∈ N:

𝜆𝑓 . 𝑓𝑓 (𝑓 ⊙ J𝑒 ′K) = 𝜆𝑓 . 𝑓𝑓 (Ψ𝑓 (0) ⊙ J𝑒 ′K)
𝐹 (𝜆𝑓 . 𝑓𝑓 (𝑓 ⊙ J𝑒 ′K)) = 𝜆𝑓 . 𝑓𝑓 (Ψ2

𝑓
(0) ⊙ J𝑒 ′K)

.

.

.

𝐹𝑛 (𝜆𝑓 . 𝑓𝑓 (𝑓 ⊙ J𝑒 ′K)) = 𝜆𝑓 . 𝑓𝑓 (Ψ𝑛+1
𝑓

(0) ⊙ J𝑒 ′K)

However, it’s important to note that in general, 𝐹𝑛 (𝜆𝑓 . 𝑓𝑓 (𝑓 ⊙ J𝑒 ′K)) does not form an ascending

or descending chain. For example, take 𝑓𝑓 = 1𝜈 , where 𝜈 is a probability distribution. It’s very well

possible that 1𝜈 (Ψ𝑘𝑓 (0) ⊙ J𝑒 ′K) = 1 for some 𝑘, 𝜇: that is, we anticipate an incomplete proability

distribution and find out that it is equal 𝜈 . However, at the 𝑘 + 1 iteration, the anticipated probability
distribution is refined, so that it could be Ψ𝑘+1𝜇 (0) ⊙ J𝑒 ′K ≠ 𝜈 , leading to a decreasing iterate.

Additionally, it’s not always desirable to stop at the first fixpoint - as multiple extra iterations

might be needed to compute the correct anticipated probability distribution. That said, it is entirely

possible that simpler rules exist when restricting 𝑓𝑓 , see e.g. Table 7. △

After having provided an intuition on the rules, let us show that whp does actually anticipate sp.

Theorem 4.12 (Characterization of whp). For all programs 𝐶 , hyperquantities 𝑓𝑓 ∈ AA and
quantities 𝑓 ∈ A: whp J𝐶K (𝑓𝑓 ) (𝑓 ) = 𝑓𝑓 (sp J𝐶K (𝑓 )).

For a given hyperquantity 𝑓𝑓 and initial quantity 𝜇, whp J𝐶K (𝑓𝑓 ) (𝜇) represents the value assumed

by 𝑓𝑓 in the final quantity reached after the termination of 𝐶 on 𝜇. Unlike standard wp, which

distinguishes between terminating and nonterminating states, whp does not make this distinction.

When there are no terminating states, i.e., sp J𝐶K (𝜇) = 0, the value ofwhp J𝐶K (𝑓𝑓 ) (𝜇) is determined

by 𝑓𝑓 (0). The assignment of any desired value to the empty set of states 0 by the hyperquantity 𝑓𝑓

allows us to express both weakest preconditions and weakest liberal ones.

5 Expressivity
In the preceding sections, we characterized our quantitative weakest hyper pre calculus. In this

section, we aim to illustrate the expressive capabilities of the calculus by demonstrating that it

subsumes several other logics and calculi.

5.1 An Overview of Several Hoare-Like Logics
We subsume Hyper Hoare Logic for non-probabilistic programs (since HHL is non-probabilistic).

Theorem 5.1 (Subsumption of HHL). For hyperpredicates𝜓𝜓, 𝜙𝜙 and non-probabilistic program 𝐶 :
|=
hh

{𝜓𝜓 } 𝐶 {𝜙𝜙 } iff supp ( [𝜓𝜓 ]) ⊆ supp

(
whp J𝐶K ( [𝜙𝜙])

)
As a byproduct, whp subsumes demonic partial correctness, angelic total correctness, partial

incorrectness, and total incorrectness (according to the terminology in [Zhang and Kaminski 2022]).
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Logic Syntax Semantics Semantics via whp
Hoare Logic (partial correctness) |=pc { 𝑃 } 𝐶 {𝑄 } 𝑃 ⊆ wlpJ𝐶K (𝑄) □𝑃 ⊆ whp J𝐶K (□𝑄)
Lisbon Logic (angelic total correctness) |=atc { 𝑃 } 𝐶 {𝑄 } 𝑃 ⊆ wp J𝐶K (𝑄) ^𝑃 ⊆ whp J𝐶K (^𝑄)
Partial Incorrectness Logic |=pi [ 𝑃 ] 𝐶 [𝑄 ] 𝑄 ⊆ slpJ𝐶K (𝑃) {¬𝑃} ⊆ whp J𝐶K (□(¬𝑄))
Incorrectness Logic/Reverse Hoare Logic |=ti [ 𝑃 ] 𝐶 [𝑄 ] 𝑄 ⊆ sp J𝐶K (𝑃) {𝑃} ⊆ whp J𝐶K (𝜆𝜌. 𝑄 ⊆ 𝜌)

Table 4. Partial and total (in)correctness using classical predicate transformers and whp.

Syntax Semantics Semantics via whp
̸ |=pc { 𝑃 } 𝐶 {𝑄 } 𝑃 ∩ wp J𝐶K (¬𝑄) ≠ ∅ {𝑃} ⊆ whp J𝐶K (^(¬𝑄))
̸|=atc { 𝑃 } 𝐶 {𝑄 } 𝑃 ∩ wlpJ𝐶K (¬𝑄) ≠ ∅ ∃𝜎 ∈ 𝑃. {{𝜎}} ⊆ whp J𝐶K (□¬𝑄)
̸|=pi [ 𝑃 ] 𝐶 [𝑄 ] 𝑄 ∩ sp J𝐶K (¬𝑃) ≠ ∅ {¬𝑃} ⊆ whp J𝐶K (^𝑄)
̸|=ti [ 𝑃 ] 𝐶 [𝑄 ] 𝑄 ∩ slpJ𝐶K (¬𝑃) ≠ ∅ {𝑃} ⊆ whp J𝐶K (𝜆𝜌. 𝑄 ∩ ¬𝜌 ≠ ∅)

Table 5. Disproving partial and total (in)correctness using classical predicate transformers and whp.

To highlight this, we will utilize the following modality syntax introduced in [Zilberstein 2024]:

□𝑃 = 𝜆𝜌. [𝜌 ⊆ 𝑃] and ^𝑃 = 𝜆𝜌. [𝑃 ∩ 𝜌 ≠ ∅]
When reasoning about hyperproperties, we may omit Iverson brackets and write𝜓𝜓 ⊆ whp J𝐶K (𝜙𝜙)
instead of supp ( [𝜓𝜓 ]) ⊆ supp

(
whp J𝐶K ( [𝜙𝜙])

)
. We obtain the relationships in Table 4.

Arguably, Hoare-like logics are designed to be accessible to programmers to prove correctness,

whereas reasoning aboutwhp (andHHL,OL) enables better understanding of relationships between

different program logics, leading to definitions of new logics, as we will show in the following.

5.2 Disproving Hoare-Like Triples
For example, we can semantically define new triples by falsifying the triples of Table 4, see Table 5.

• ̸|=pc { 𝑃 } 𝐶 {𝑄 }: there is some state in 𝑃 that can terminate in ¬𝑄 , and hence it is false that

every state in 𝑃 terminates only in 𝑄 (if it terminates at all)

• ̸|=atc { 𝑃 } 𝐶 {𝑄 }: there is some state in 𝑃 that terminates only in ¬𝑄 (if it terminates at all), and

hence it is false that every state in 𝑃 can terminate in 𝑄

• ̸|=pi [ 𝑃 ] 𝐶 [𝑄 ]: there is some state in 𝑄 that is reachable from ¬𝑃 , and hence it is false that

every state in 𝑄 is reachable only from 𝑃

• ̸|=ti [ 𝑃 ] 𝐶 [𝑄 ]: there is some state in 𝑄 that is reachable only from ¬𝑃 (if it is reachable at all),

and hence it is false that every state in 𝑄 is reachable from 𝑃

It remains to define program logics for the newly defined falsifying triples. To this end, one can

prove that the existing program logics are actually falsifying program logics. More precisely:

Theorem 5.2 (Falsifying correctness triples via correctness triples).

|=pc { 𝑃 } 𝐶 {𝑄 } iff ∀𝜎 ∈ 𝑃 . ̸ |=atc { {𝜎} } 𝐶 { ¬𝑄 }
|=atc { 𝑃 } 𝐶 {𝑄 } iff ∀𝜎 ∈ 𝑃 . ̸ |=pc { {𝜎} } 𝐶 { ¬𝑄 }
|=pi [ 𝑃 ] 𝐶 [𝑄 ] iff ∀𝜎 ∈ 𝑄. ̸ |=ti [ ¬𝑃 ] 𝐶 [ {𝜎} ]
|=ti [ 𝑃 ] 𝐶 [𝑄 ] iff ∀𝜎 ∈ 𝑄. ̸ |=pi [ ¬𝑃 ] 𝐶 [ {𝜎} ]

• |=pc { 𝑃 } 𝐶 {𝑄 }: every state in 𝑃 can only terminate in 𝑄 (if it terminates at all), and hence by

starting on any of those state it is false that it can terminate in ¬𝑄
• |=atc { 𝑃 } 𝐶 {𝑄 }: every state in 𝑃 can terminate in 𝑄 , and hence by starting on any of those

states it is false that it can terminates only in ¬𝑄 (if it terminates at all)

• |=pi [ 𝑃 ] 𝐶 [𝑄 ]: every state in 𝑄 is reachable only from 𝑃 , and hence from any of those states it

is false that it is reachable from ¬𝑃
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• |=ti [ 𝑃 ] 𝐶 [𝑄 ]: every state in 𝑄 is reachable from 𝑃 , and hence from any of those states it is

false that it is reachable only from ¬𝑃
Theorem 5.2 not only demonstrates that existing program logics can generate proofs to falsify other

triples but also establishes a crucial "if and only if" relationship. This indicates that not only the

current logics are sound, but they are complete as well: the existence of an invalid triple implies the

presence of a corresponding valid triple that renders the original one invalid. Restating Theorem 5.2

from a negative perspective as below might make it more clear how to practically falsify triples.

Corollary 5.3. ̸ |=pc { 𝑃 } 𝐶 {𝑄 } iff ∃𝜎 ∈ 𝑃 . |=atc { {𝜎} } 𝐶 { ¬𝑄 }
̸|=atc { 𝑃 } 𝐶 {𝑄 } iff ∃𝜎 ∈ 𝑃 . |=pc { {𝜎} } 𝐶 { ¬𝑄 }
̸|=pi [ 𝑃 ] 𝐶 [𝑄 ] iff ∃𝜎 ∈ 𝑄. |=ti [ ¬𝑃 ] 𝐶 [ {𝜎} ]
̸|=ti [ 𝑃 ] 𝐶 [𝑄 ] iff ∃𝜎 ∈ 𝑄. |=pi [ ¬𝑃 ] 𝐶 [ {𝜎} ]

As highlighted by Zhang and Kaminski [2022, p. 20, "Other Triples"], the use of the terms "cor-

rectness" and "incorrectness" in naming conventions may be imprecise. Correctness triples can be

seen as ∀-properties over preconditions, whereas incorrectness triples exhibit characteristics of ∀-
properties over postconditions. Furthermore, it is noteworthy that the falsification of such ∀-triples
can be interpreted as ∃-triples, a result that aligns with the expectation that disproving these prop-

erties involves finding at least one counterexample. This perspective concurs with the observation

made by Cousot [2024, Logic 23] that Incorrectness Logic provides sufficient (though not necessary)

conditions to falsify partial correctness triples, thereby demonstrating its greater-than-needed

power. Let us show how to practically falsify triples.

Example 5.4 (Backward-Moving Assignment Rule for (Total) Incorrectness Logic). Consider the triple
|=ti [𝑦 = 42 ] 𝑥 B 42 [𝑦 = 𝑥 ], obtained by taking as precondition the syntactic replacement of

𝑥 = 42 from the post. As shown in [O’Hearn 2020] with a counterexample, this is not valid. We can

prove it by computing a partial incorrectness triple with precondition 𝑦 ≠ 42.

Using the rules defined in [Zhang and Kaminski 2022, Table 2, Column 2], we have:

|=pi [𝑦 ≠ 42 ] 𝑥 B 42 [𝑦 ≠ 42 ∨ 𝑥 ≠ 42 ]
This post clearly contains at least one state with 𝑦 = 𝑥 (e.g., take a state where 𝜎 (𝑥) = 𝜎 (𝑦) = 0),

which implies ̸ |=ti [𝑦 = 42 ] 𝑥 B 42 [𝑦 = 𝑥 ] (by Corollary 5.3). △

We conclude the section by observing that we have the following connection.

Proposition 5.5 (wp / sp Connection). 𝑃 ∩ wp J𝐶K (𝑄) ≠ ∅ iff 𝑄 ∩ sp J𝐶K (𝑃) ≠ ∅.

A simple consequence of the above is the duality ̸ |=pc { 𝑃 } 𝐶 { ¬𝑄 } iff ̸ |=pi [ ¬𝑃 ] 𝐶 [𝑄 ], which is

not surprising, as the duality |=pc { 𝑃 } 𝐶 {𝑄 } iff |=pi [ ¬𝑃 ] 𝐶 [ ¬𝑄 ] has already been explored

in [Zhang and Kaminski 2022, p.22, "Duality"] and again in [Ascari et al. 2023].

5.3 Designing (Falsifying) Hoare-Like Logics via Hyperpredicate Transformers
The observations above indicate that there is no advantage for new program logics to falsify triples

from an expressivity point of view, as they can be converted into existing triples via Theorem 5.2.

However, one may wonder whether it is possible to design triples that are more useful in practice.

In this regard, we emphasize that the design of program logics should follow predicate transformer

reasoning. We provide an intuition on how whp aids in reasoning about designing logics (rather

than triples). We illustrate this with an example of partial correctness.

Partial Correctness as Classical Predicate Transformers. Partial correctness amounts to a logic that

takes 𝑄 ⊆ P(Σ) and proves every 𝑃 such that 𝑃 ⊆ wlpJ𝐶K (𝑄).
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Partial Correctness as a Hyperproperty. We observe that partial correctness, as a logic, is a hyper-

property. Indeed, 𝑃 ⊆ wlpJ𝐶K (𝑄) iff 𝑃 ∈ {𝑆 | 𝑆 ⊆ wlpJ𝐶K (𝑄)}, and this is a predicate over sets of

states. Also, by Galois connection, this is equivalent to proving sp J𝐶K (𝑃) ⊆ 𝑄 iff sp J𝐶K (𝑃) ∈ {𝑆 |
𝑆 ⊆ 𝑄}, explaining why our whp captures partial correctness (via 𝑃 ∈ whp J𝐶K (𝜆𝜌. 𝜌 ⊆ 𝑄)).

(Dis)proving Partial Correctness, Practically. One may wonder why partial correctness is much

easier than our whp calculus. At first glance, it seems that, for a given post𝑄 , one may want to find

{𝑆 | 𝑆 ⊆ wlpJ𝐶K (𝑄)}. However, the actual logic aims to find justwlpJ𝐶K (𝑄) sincewlpJ𝐶K (𝑄) fully
characterizes the original hyperproperty. Even ifwlpJ𝐶K (𝑄) itself is not found, any 𝑆 ⊆ wlpJ𝐶K (𝑄)
allows soundly proving |=pc { 𝑃 } 𝐶 {𝑄 } by checking 𝑃 ⊆ 𝑆 . The same reasoning applies to falsify

partial correctness triples. Our key insight is that it is enough to find any wlpJ𝐶K (𝑄) ⊆ 𝑆 and then

prove ̸ |=pc { 𝑃 } 𝐶 {𝑄 } by checking 𝑃 ⊈ 𝑆 . With this in mind, we argue that the most sensible

proof system to falsify partial correctness should aim for wlpJ𝐶K (𝑄) ⊆ 𝑃 .

So we obtain the following sound and complete falsifying partial correctness logic, which is the

same as partial correctness except for the following different rules:

𝐺 ⇐= 𝐺 ′ |= {𝐺 ′ } 𝐶 { 𝐹 ′ } 𝐹 ′ ⇐= 𝐹

|= {𝐺 } 𝐶 { 𝐹 } Antecedence
4

∀𝑛. |= { 𝑝 (𝑛 + 1) } 𝐶 { 𝑝 (𝑛) }
|= { ∀𝑛.𝑝 (𝑛) } 𝐶★ { 𝑝 (0) } Kleene

We argue that by similar reasoning, it is easy to find falsifying logics for the other triples.

Do we need falsifying logics? It is known from [Zhang and Kaminski 2022, p.22] thatwlpJ𝐶K (𝑄) ⊆
𝑆 corresponds to the contrapositive of Lisbon Logic, i.e., amounts to ¬𝑆 ⊆ wp J𝐶K (¬𝑄). This means

that, to prove ̸ |=pc { 𝑃 } 𝐶 {𝑄 }, one should prove |=atc { ¬𝑆 } 𝐶 { ¬𝑄 } (possibly keeping ¬𝑆 large)

and then check 𝑃 ⊈ 𝑆 . Similar reasoning applies if we want to apply Theorem 5.2, and so we argue

that reasoning via contrapositive is a lot harder to do for the average programmer.

5.4 Semantics of Nontermination and Unreachability
Triple Semantics Property

|=pc { 𝑃 } 𝐶 { false } ∀𝜎 ∈ 𝑃. �𝜏. 𝜏 ∈ J𝐶K(𝜎) Must-Nontermination

|=atc { 𝑃 } 𝐶 { true } ∀𝜎 ∈ 𝑃. ∃𝜏. 𝜏 ∈ J𝐶K(𝜎) May-Termination

|=pi [ false ] 𝐶 [𝑄 ] ∀𝜏 ∈ 𝑄. �𝜎. 𝜏 ∈ J𝐶K(𝜎) Unreachability

|=ti [ true ] 𝐶 [𝑄 ] ∀𝜏 ∈ 𝑄. ∃𝜎. 𝜏 ∈ J𝐶K(𝜎) Reachability

̸ |=pc { 𝑃 } 𝐶 { false } ∃𝜎 ∈ 𝑃. ∃𝜏. 𝜏 ∈ J𝐶K(𝜎) May-Termination

̸ |=atc { 𝑃 } 𝐶 { true } ∃𝜎 ∈ 𝑃. �𝜏. 𝜏 ∈ J𝐶K(𝜎) Must-Nontermination

̸ |=pi [ false ] 𝐶 [𝑄 ] ∃𝜏 ∈ 𝑄. ∃𝜎. 𝜏 ∈ J𝐶K(𝜎) Reachability

̸ |=ti [ true ] 𝐶 [𝑄 ] ∃𝜏 ∈ 𝑄. �𝜎. 𝜏 ∈ J𝐶K(𝜎) Unreachability

Table 6. ∀-properties on nontermination and unreachability.

As discussed in Ascari et al. [2023,

Section 5.4], we also show how exist-

ing triples capture properties such as

must-nontermination, may-termina-

tion, unreachability, and reachability,

but within our setting. Our initial fo-

cus is on illustrating ∀-properties, see
Table 6. It is noteworthy that the tran-

sition from partial to total involves

the negation of the properties under

consideration. Specifically, the negation of may-termination corresponds to must-nontermination,

and unreachability is the negation of reachability. A useful perspective is to view reachability as the

may-termination of backward semantics, while unreachability can be conceptualized as its must-

nontermination. By examining their falsification, we derive their dual counterparts, characterized

as ∃-properties, see Table 6.
We conclude by noting that we are unable to prove must-termination (which is related to demonic

total correctness) within our framework. However, we can prove may-nontermination by observing

that our calculus subsumes angelic total correctness, and to prove that while ( 𝜑 ) {𝐶 } may not

terminate when run from any state in 𝑃 , it is sufficient to prove |=atc { 𝑃 ∧ 𝜑 } 𝐶 { 𝑃 ∧ 𝜑 }, which is

analogous to the Div-While rule of Raad et al. [2024, Fig. 3].

4
Which replaces the rule of consequence.
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5.5 ExpressingQuantitative Weakest Pre
In this section we show that our calculus subsumes several existing calculi. We define 1𝜎 (𝜏) = 1 if

𝜏 = 𝜎 and 1𝜎 (𝜏) = 0 otherwise.

Nondeterministic Programs. We start by defining hyperquantities subsuming existing angelic

weakest pre and demonic weakest liberal pre [Zhang and Kaminski 2022].

Definition 5.6 (Hyper Suprema and Infima). For a given semiring A = ⟨𝑈 , ⊕, ⊙, 0, 1⟩ and a quantity

𝑓 : Σ → 𝑈 , we define hyperquantities

j
[𝑓 ] ≜ 𝜆𝜇.

j

𝜎 ∈supp(𝜇)
𝑓 (𝜎)

k
[𝑓 ] ≜ 𝜆𝜇.

k

𝜎 ∈supp(𝜇)
𝑓 (𝜎) ,

that take as input quantities 𝜇 : Σ → 𝑈 . Intuitively,

b
[𝑓 ] and

c
[𝑓 ] map a given 𝜇 to the maximum

(minimum) value of 𝑓 (𝜎) where 𝜎 is drawn from the support set supp (𝜇). △

Theorem 5.7 (Subsumption ofQuantitativewp,wlp for Nondeterministic Programs [Zhang

and Kaminski 2022]). Let A = ⟨R±∞,max,min, 0, 1⟩. For any quantities 𝑔, 𝑓 and any program 𝐶

satisfying the syntax of [Zhang and Kaminski 2022, Section 2]:

whp J𝐶K
(k

[𝑓 ]
)
(1𝜎 ) = wlpJ𝐶K (𝑓 ) (𝜎) and whp J𝐶K

(j
[𝑓 ]

)
(1𝜎 ) = wp J𝐶K (𝑓 ) (𝜎)

The result follows from the fact that whp J𝐶K (
c
[𝑓 ]) (1𝜎 ) and whp J𝐶K (

b
[𝑓 ]) (1𝜎 ) compute re-

spectively the maximum and the minimum value of 𝑓 in the support of sp J𝐶K (1𝜎 ), which is the

set of reachable states starting from 𝜎 . Our calculus is strictly more expressive than [Zhang and

Kaminski 2022] as our syntax is richer and allows to reason about weighted programs as well.

Probabilistic Programs. By employing the expected value hyperquantity, we show how whp

subsumes wp and wlp for deterministic and probabilistic programs [Kaminski 2019] as well.

Theorem 5.8 (Subsumption of Quantitative wp, wlp for probabilistic programs [Kaminski

2019]). Let Prob = ⟨[0, 1], +, ·, 0, 1⟩. For any quantities 𝑔, 𝑓 and any non-nondeterministic program 𝐶 :
whp J𝐶K (E[𝑓 ]) (1𝜎 ) = wp J𝐶K (𝑓 ) (𝜎) and whp J𝐶K (E[𝑓 ] + 1 − E[1]) (1𝜎 ) = wlpJ𝐶K (𝑓 ) (𝜎).

The results stem from our calculus, which computes E[𝑓 ] on the final distribution sp J𝐶K (1𝜎 )
using the expected values hyperquantity, which precisely yields wp J𝐶K (𝑓 ) (𝜎). Additionally, it is
known [Kaminski 2019, Theorem 4.25] that for nondeterministic programswlpJ𝐶K (𝑓 ) (𝜎) calculates
the expected value of 𝑓 in the final distribution sp J𝐶K (1𝜎 ) , but adjusted for the probability of

nontermination. This latter probability is in our setting the hyperquantity 1 − E[1].

Probabilistic termination. Since our calculus subsumes many existing quantitative wp calculi

such as those of McIver and Morgan [2005]; Zhang and Kaminski [2022], we know that is can also

prove probabilistic termination (see Kaminski [2019, Section 6] for a comprehensive overview). For

example, almost-sure termination amounts to proving that wp J𝐶K (1) (𝜎) = 1, which in our setting

is just whp J𝐶K (E[1]) (1𝜎 ) = 1. Bounds over expected values, such as those in Hark et al. [2019],

are easily handled as well; for example, whp J𝐶K (E[𝑓 ]) (𝜇) < 𝑘 checks whether the expected

value of 𝑓 after execution of the program is less than 𝑘 . While at first one may argue that this

expressiveness comes at the cost of more complex rules, we will show in Section 6 that when using

linear hyperquantities (Section 6.3), reasoning via whp is indeed very similar to reasoning via wp.

Nondeterminism, Regular Languages, and Schedulers. While the results above highlight that many

existing wp are mere specializations of whp for single initial pre-states, we claim that there are

some limitations as well, particularly in how nondeterminism is resolved. The main reason is that
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all of our transformers, being related to the strongest post sp, cannot detect whether a program 𝐶

starting from 𝜎 diverges for at least one possible execution. Therefore we cannot express demonic

wp and angelic wlp. The closest attempt is to define the following hyperquantities.

Definition 5.9 (Demonic Weakest Pre and Angelic Weakest Liberal Pre). Let the ambient semiring be

A = ⟨R±∞,max,min,−∞, +∞⟩. Given a quantity 𝑓 : Σ → R±∞, we define hyperquantities
k

[𝑓 ]⇓ ≜ 𝜆𝜇.
k

𝜎 ∈supp(𝜇)
𝑓 (𝜎) ⋏

j

𝜎 ∈supp(𝜇)
+∞ and

j
[𝑓 ]⇑ ≜ 𝜆𝜇.

j

𝜎 ∈supp(𝜇)
𝑓 (𝜎) ⋎

k

𝜎 ∈supp(𝜇)
−∞ .

One can define two novel transformers:

wp
inf

J𝐶K (𝑓 ) (𝜎) ≜ whp J𝐶K
(k

[𝑓 ]⇓
)
(1𝜎 ) and wlp

sup
J𝐶K (𝑓 ) (𝜎) ≜ whp J𝐶K

(j
[𝑓 ]⇑

)
(1𝜎 ) △

Intuitively, wp
inf

J𝐶K (𝑓 ) (𝜎) operates akin to a demonic weakest pre calculus by determining the

minimum value of 𝑓 after the execution of program𝐶 starting from 𝜎 . However, unlike the demonic

weakest pre calculus in [Kaminski 2019], we do not necessarily assign the value bottom 0 if the

program has a single diverging trace; instead, we do so only when all traces are diverging. Similarly,

for wlp
sup

, our calculus outputs 1 if all traces are diverging. In other words, both our wp
inf

and

angelic wlp
sup

attempt to avoid termination whenever possible, mirroring the behavior of the

angelic wp and demonic wlp as discussed in [Zhang and Kaminski 2022, Section 6.2].

To better illustrate, let us demonstrate that our demonic weakest pre (wp
inf
) and angelic weakest

liberal pre (wlp
sup

) transformers differ from those in [Kaminski 2019] through an example.

Example 5.10 (Comparing Nondeterminism). Let dwp and awlp be the demonic weakest pre and

angelic weakest liberal pre in [Kaminski 2019], and let 𝐶 = { diverge } □ { skip }. Then:
• dwpJ𝐶K ( [true]) = [false] ≠ [true] = wp

inf
J𝐶K ( [true])

• awlpJ𝐶K ( [false]) = [true] ≠ [false] = wlp
sup

J𝐶K ( [false]) △

Conventional treatment of nondeterministic programs in established weakest pre calculi inherently

involve schedulers [Kaminski 2019, Definition 3.7] designed to resolve nondeterminism, seeking

the maximum or minimum expected value across all possible schedulers. In contrast, our approach

aligns with the Incorrectness Logic literature, using Kleene Algebra and strongest-post-style calculi

as program semantics [Dardinier and Müller 2024; O’Hearn 2020; Zhang and Kaminski 2022;

Zilberstein et al. 2023]: for nondeterministic programs, we treat all choices as if they were executed.

To further highlight the differences, using a semantics involving schedulers and extending dwp in

the sense of Kaminski [2019] would invalidate the synctactic sugar of branching and loops.

Example 5.11. Let dwp and awlp be the demonic weakest pre and angelic weakest liberal pre

of Kaminski [2019]. We extend both for the assume statement, obtaining:

dwpJassume 𝜑K (𝑓 ) = 𝜑 ⋏ 𝑓 and awlpJassume 𝜑K (𝑓 ) = [¬𝜑] ⋎ 𝑓

We have dwpJif ( true ) { skip } else { skip }K ( [true]) = [true], whereas for the seemingly

equivalent { assume true # skip } □ { assume false # skip } we have:
dwpJ{ assume true # skip } □ { assume false # skip }K ( [true]) = [true] ⋏ [false] = [false]

Similarly, awlpJif ( true ) { skip } else { skip }K ( [false]) = [false] but:
awlpJ{ assume true # skip } □ { assume false # skip }K ( [false]) = [false] ⋎ [true] = [true] △

Whilst the fact that demonic total correctness is inexpressible in KAT [Kozen 1997] because it lacks

a way of reasoning about nontermination [von Wright 2002], here we argue that also angelic partial

correctness in the sense of [Kaminski 2019] is inexpressible. This highlights the fact that regular

languages, such as KAT variants, are not equivalent to guarded imperative languages in general.
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6 Properties
Our quantitative hyper transformers enjoy several healthiness properties, some of which are analo-

gous to Dijkstra’s, Kozen’s, or McIver & Morgan’s calculi. In this section, we argue that there exists

only one backward hyper predicate transformer, as whp enjoys several properties and dualities

that both liberal and non-liberal weakest pre style calculus have.

6.1 Healthiness Properties
Theorem 6.1 (Healthiness Properties ofQuantitative Transformers). For all programs 𝐶 ,
whpJ𝐶K satisfies the following properties:
(1) Quantitative universal conjunctiveness and disjunctiveness: For any set of hyperquantities 𝑆 ⊆ AA,

whp J𝐶K
(∏

𝑆

)
=

∏
𝑓𝑓 ∈𝑆

whp J𝐶K (𝑓𝑓 ) and whp J𝐶K
(∑︁

𝑆

)
=

∑︁
𝑓𝑓 ∈𝑆

whp J𝐶K (𝑓𝑓 )

(2) 𝑘-Strictness: For any 𝑘 ∈ R∞≥0, whp J𝐶K (𝜆𝑓 . 𝑘) = 𝜆𝑓 . 𝑘 .
(3) Monotonicity: 𝑓𝑓 ⪯ 𝑔𝑔 implies whp J𝐶K (𝑓𝑓 ) ⪯ whp J𝐶K (𝑔𝑔) .

Quantitative universal conjunctiveness and strictness in the context of wp, as well as the notions of

disjunctiveness and co-strictness for wlp, serve as quantitative analogues of Dijkstra and Scholten’s

original calculi. These properties have been explored in [Zhang and Kaminski 2022, Section 5.1].

We demonstrate that whp exhibits all these characteristics, as the 𝑘-strictness of whp implies both

strictness and co-strictness. This observation aligns with our intuition that whp functions as both

a liberal and a non-liberal calculus.

Healthiness properties are mainly beneficial for conducting compositional proofs. Some of the

key properties are outlines below:

Universal (con/dis)junctivenesses. This property allows a complex (hyper)property to be broken

down into simpler ones, which can be proved separately. The results can then be soundly recombined

to complete the proof of the original complex (hyper)property.

(K-)Strictness. In the context of classical wp, strictness (also known as the “Law of the Excluded

Miracle” [Dijkstra 1975]) ensures that no initial state can terminate in a state satisfying “false”.

Quantitative generalisations of strictness [Kaminski 2019, Definition 4.13], defined aswp J𝐶K (0) = 0,

mean that the expected value of the constantly 0 random variable after executing a program 𝐶 is 0.

In our setting, we can represent strictness by taking 𝑘 = 0: for predicates, it means it is impossible

to terminate in a set of states that satisfies the hyperpostcondition “false.” Conversely, for 𝑘 = +∞,

we have a generalisation of the so-called co-strictness: any initial precondition will terminate in a

postcondition that satisfies the hyperpostcondition “true”.

Monotonicity. Larger (hyper)quantities as inputs yield larger (hyper)quantity as results. Mono-

tonicity is a fundamental property that allows compositional reasoning and, for classical weakest

pre, it is closely related to the rule of consequence in Hoare logic. An in-depth treatment of

this particular connection can be found in Kaminski [2019, p.95]. In our context, unsurprisingly,

monotonicity enables the proof of the Cons rule from Dardinier and Müller [2024, Fig. 2].

Sub- and superlinearity, extensively studied by Kozen, McIver & Morgan, and Kaminski for

probabilistic w(l)p transformers, also find applications in our whp. Notably, our calculus adheres to

linearity and, additionally, exhibits multiplicativity.

Theorem 6.2 (Linearity). For all programs 𝐶 , whpJ𝐶K is linear, i.e. for all 𝑓𝑓 , 𝑔𝑔 ∈ AA and non-

negative constants 𝑟 ∈ R≥0, whp J𝐶K (𝑟 · 𝑓𝑓 + 𝑔𝑔) = 𝑟 · whp J𝐶K (𝑓𝑓 ) + whp J𝐶K (𝑔𝑔) .
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𝑪 whp J𝑪K (𝒇𝒇 )

𝑥 B 𝑒 𝑓𝑓 [𝑥/𝑒]
𝑥 B nondet() 𝜆𝑓 . 𝑓𝑓 (⊕𝛼 𝑓 [𝑥/𝛼])
⊙𝑤 𝑓𝑓 ⊙𝑤

𝐶1 # 𝐶2 whp J𝐶1K
(
whp J𝐶2K (𝑓𝑓 )

)
{𝐶1 } □ {𝐶2 } whp J𝐶1K (𝑓𝑓 ) ⊕ whp J𝐶2K (𝑓𝑓 )
𝐶 ⟨𝑒,𝑒′⟩ ⊕

𝑛∈N𝑊
𝑛
𝑒 (𝑓𝑓 ⊙ J𝑒 ′K)

if ( 𝜑 ) {𝐶1 } else {𝐶2 } whp J𝐶1K (𝑓𝑓 ) ⊙ [𝜑] ⊕ whp J𝐶2K (𝑓𝑓 ) ⊙ [¬𝜑]
{𝐶1 } [ 𝑝 ] {𝐶2 } whp J𝐶1K (𝑓𝑓 ) ⊙ 𝑝 ⊕ whp J𝐶2K (𝑓𝑓 ) ⊙ (1 − 𝑝)
while ( 𝜑 ) {𝐶 }

⊕
𝑛∈N𝑊

𝑛
𝜑 (𝑓𝑓 ⊙ [¬𝜑])

Table 7. Rules for the weakest hyper pre transformer for linear posts 𝑓𝑓 . Here,𝑊𝑒 (𝑋 ) = whp J𝐶K (𝑋 ) ⊙ J𝑒K
.

Theorem 6.3 (Multiplicativity). For all programs𝐶 ,whpJ𝐶K is multiplicative, i.e. for all 𝑓𝑓 , 𝑔𝑔 ∈ AA
and non-negative constants 𝑟 ∈ R≥0, whp J𝐶K (𝑟 · 𝑓𝑓 · 𝑔𝑔) = 𝑟 · whp J𝐶K (𝑓𝑓 ) · whp J𝐶K (𝑔𝑔) .

6.2 Relationship between Liberal and Non-liberal Transformers
Various dualities between wp and wlp have been explored extensively in the literature. In Dijkstra’s

classical calculus, the duality relationship is expressed as wp J𝐶K (𝜓 ) = ¬wlpJ𝐶K (¬𝜓 ). In quanti-

tative settings, particularly in Kozen’s and McIver & Morgan’s work on probabilistic programs,

this duality extends to wp J𝐶K (𝑓 ) = 1 − wlpJ𝐶K (1 − 𝑓 ) for 1-bounded functions 𝑓 . This concept is

further generalized to wp J𝐶K (𝑓 ) = −wlpJ𝐶K (−𝑓 ) in the case of non-probabilistic programs and

unbounded quantities, as demonstrated in Zhang and Kaminski [2022, Theorem 5.3].

In this section, we argue that there exists only a single whp calculus that behaves both as a

non-liberal and a liberal transformer.

Theorem 6.4 (Liberal–Non-liberal Duality). For any program𝐶 and any 𝑘−bounded hyperquan-
tity 𝑓𝑓 , we have whp J𝐶K (𝑓𝑓 ) = 𝑘 − whp J𝐶K (𝑘 − 𝑓𝑓 ).

As a consequence of the liberal–non-liberal duality of Theorem 6.4, for hyperproperties we have:

𝜙𝜙 =⇒ whp J𝐶K (𝜓𝜓 ) iff whp J𝐶K (¬𝜓𝜓 ) =⇒ ¬𝜙𝜙 .

6.3 Linear Hyperquantities
In this section, we explore a specific category of hyperquantities from which we can deduce

simplified rules akin to established wp calculi.

Definition 6.5 (Linear Hyperquantities). A hyperquantity 𝑓𝑓 ∈ AA is linear if for any quantity 𝑓 ∈ A
𝑓𝑓 (𝑟 · 𝑔 ⊕ 𝑓 ) = 𝑟 · 𝑓𝑓 (𝑔) ⊕ 𝑓𝑓 (𝑓 ) .

Theorem 6.6 (Weakest Hyper Pre for Linear Hyperqantities). For linear hyperquantities
𝑓𝑓 ∈ AA, the simpler rules in Table 7 are valid.

Similarly to other quantitative settings [Kaminski 2019; McIver and Morgan 2005; Zhang and

Kaminski 2022], the loop rule can be defined via a least fixed point of the characteristic function.

Definition 6.7 (whp–characteristic function). The whp–characteristic function (of 𝐶 ⟨𝑒,𝑒′⟩
w.r.t. 𝑓𝑓 ) is:

Φ𝑓𝑓 (𝑋 ) = 𝑓𝑓 ⊙ J𝑒 ′K ⊕ whp J𝐶K (𝑋 ) ⊙ J𝑒K. △
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Indeed, we observe that whp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓𝑓 ) = lfp 𝑋 . Φ𝑓𝑓 (𝑋 ) holds true within the natural order of

the provided semiring.When examining the semiring ⟨R±∞,max,min,−∞, +∞⟩, our calculus closely
resembles the quantitativewp as described in Zhang and Kaminski [2022], albeit in amore expressive

context. Further, by adopting ⟨R±∞,min,max, +∞,−∞⟩, we derive rules analogous to quantitative

wlp from Zhang and Kaminski [2022]. Notably, in the latter semiring, the natural order is reversed

compared to the semiring ⟨R±∞,max,min,−∞, +∞⟩. In essence, for ⟨R±∞,min,max, +∞,−∞⟩, the
least fixed point resulting from our iteration rule aligns with the rule of wlp defined through the

greatest fixed point in Zhang and Kaminski [2022].

Among linear hyperquantities we have all those in Example 2.4 and of Section 5.5. Additionally,

we contend that by combining these properties, we can extend our reasoning to encompass other

hyperquantities, such as the covariance of a random variable.

Example 6.8 (Covariance).
whp J𝐶K (Cov[𝑓 , 𝑔]) = whp J𝐶K (E[𝑓 𝑔] − E[𝑓 ] · E[𝑔])

= whp J𝐶K (E[𝑓 𝑔]) − whp J𝐶K (E[𝑓 ] · E[𝑔]) (by Theorem 6.2)

= whp J𝐶K (E[𝑓 𝑔]) − whp J𝐶K (E[𝑓 ]) · whp J𝐶K (E[𝑔]) (by Theorem 6.3)

6.4 Loops rules for linear hyperquantities
Reasoning about loops is undecidable, even for classical properties. Previously, we have shown that

our whp calculus uses least fixed points, which is often impractical. In this section, we show how to

derive simpler rules that can aid in whp reasoning for loops. For linear hyperquantities, we obtain

an inductive invariant based rule similar to the existing ones for quantitative transformers [Zhang

and Kaminski 2022, Theorem 7.1].

Theorem 6.9 (Quantitative Inductive Reasoning for whp). For any program 𝐶 and any linear
hyperquantity 𝑓𝑓 , we have:

Φ𝑓𝑓 (𝑖𝑖) ⪯ 𝑖𝑖 =⇒ whp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓𝑓 ) ⪯ 𝑖𝑖,

where Φ𝑓𝑓 (𝑋 ) = 𝑓𝑓 ⊙ J𝑒 ′K ⊕ whp J𝐶K (𝑋 ) ⊙ J𝑒K is the characteristic function of 𝐶 ⟨𝑒,𝑒′⟩ w.r.t. 𝑓𝑓 .

As a corollary, one can derive simpler rules for guarded loops, for example, the analogue of

Theorem 5.4 of Kaminski [2019], but in our hyper setting.

Corollary 6.10 (Quantitative Inductive Rule for while).

𝑓𝑓 ⊙ [¬𝜑] ⊕ whp J𝐶K (𝑖𝑖) ⊙ [𝜑] ⪯ 𝑖𝑖 ⪯ 𝑔𝑔 𝑓𝑓 is linear
whp Jwhile ( 𝜑 ) {𝐶 }K (𝑓𝑓 ) ⪯ 𝑔𝑔

while−whp

We shall observe that Corollary 6.10 subsumes both while-wp and while-wlp of Zhang and

Kaminski [2022, Theorem 7.1]. This depends on the choice of the semiring: ⟨R±∞,min,max, +∞,−∞⟩
for wp, and ⟨R±∞,max,min,−∞, +∞⟩ for wlp.

Let us provide an intuition over while−whp in our quantitative hyper setting, for example taking

into account the semiring Prob = ⟨[0, 1], +, ·, 0, 1⟩ and the expected value hyperquantity 𝑓𝑓 = E[𝑓 ].
Intuitively, the rule while−whp requires finding an invariant 𝑖𝑖 that satisfies three conditions:

(1) 𝑖𝑖 ⪯ 𝑔𝑔, meaning that 𝑔𝑔 is overapproximating the invariant 𝑖𝑖;

(2) E[𝑓 ] · [¬𝜑] ⪯ 𝑖𝑖 , meaning that the expected value of 𝑓 , when evaluated in the filtered probability

distribution (i.e., the loop is executed at most 0 times), is bounded by 𝑖𝑖;

(3) whp J𝐶K (𝑖𝑖) · [𝜑] ⪯ 𝑖𝑖 , meaning that for any initial probability distribution 𝜇, the value of 𝑖𝑖

computed over this initial distribution will be greater than or equal to the value of 𝑖𝑖 after

performing one more iteration and computing it over the resulting distribution.
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By induction, conditions (2) and (3), which represent the first premise of while-whp, imply that 𝑖𝑖

overapproximates the expected value E[𝑓 ] computed in the final probability distribution after the

loop execution. Indeed, starting from the base case in (2), we assume for the inductive step that 𝑖𝑖

over-approximates the expected value after 𝑛 loop iterations. By condition (3), 𝑖𝑖 is also an upper

bound for whp J𝐶K (𝑖𝑖) · [𝜑] ⪯ 𝑖𝑖 , meaning that it over-approximates the probability distribution

obtained after 𝑛 + 1 iterations.

Condition (1) ensures that the initial expected value 𝑔𝑔 overapproximates 𝑖𝑖 , and thus 𝑔𝑔 computed

in the initial probability distribution overapproximates the final expected value E[𝑓 ].
We showcase an example of induction reasoning that extends [Kaminski 2019, Example 5.5] by

taking into account probability distributions instead of single states.

Example 6.11 (Upper Bounds on whp). Consider the probabilistic loop 𝐶geo = 𝑥 B 𝑥 + 1
⟨0.5,0.5⟩

modeling a geometric distribution. We want to prove that E[𝑥 + 1] is an upper bound of the

expected value E[𝑥] after executing 𝐶geo. We have:

E[𝑥] · J0.5K + whp J𝑥 B 𝑥 + 1K (E[𝑥 + 1]) · J0.5K = E[𝑥 · 0.5] + E[(𝑥 + 2) · 0.5] = 𝐸 [𝑥 + 1],
and hence by Corollary 6.10 we conclude thatwhp J𝐶geoK (E[𝑥]) ⪯ E[𝑥 +1], i.e., E[𝑥 +1] (evaluated
in the initial probability distribution) is an upper bound on E[𝑥] (evaluated in the final probability

distribution) after executing 𝐶geo.

7 Case Studies
=(( 𝒈′

(( 𝒈

𝐶

(( 𝒇

In this section, we demonstrate the efficacy of quantitative weakest hyper pre rea-

soning. We use the annotation style on the right to express that 𝑔 = whp J𝐶K (𝑓 ) and
furthermore that 𝑔′ = 𝑔.

7.1 Proving hyperproperties
In this section we show how to prove noninterference [Goguen and Meseguer 1982] and generalized

noninterference [McCullough 1987; McLean 1996] within whp.

NI. Noninterference, also known as observational nondeterminism [Clarkson et al. 2014, Equation

6], amounts to proving that any two executions of the program with the same low-sensitivity

inputs must have the same low outputs. This can be formalised by defining low(𝑙) ≜ 𝜆𝑆. ∀𝜎1, 𝜎2 ∈
𝑆. 𝜎1 (𝑙) = 𝜎2 (𝑙) and proving low(𝑙) ⊆ whp J𝐶K (low(𝑙)). For example consider the program and

the whp annotations in Figure 3. The program satisfies NI since low(𝑙) ⊆ 𝜆𝑆. ∀𝜎1, 𝜎2 ∈ 𝑆. 𝜎1 (ℎ) >
0 ∧ 𝜎2 (ℎ) > 0 =⇒ 𝜎1 (𝑙) = 𝜎2 (𝑙).

GNI. Generalized noninterference is a weaker property of NI: it permits two executions of the

program with identical low-sensitivity inputs to yield different low outputs, provided that the

discrepancy does not arise from their secret input. This concept can be formally expressed by

defining glow(𝑙) ≜ 𝜆𝑆. ∀𝜎1, 𝜎2 ∈ 𝑆. ∃𝜎 ∈ 𝑆. 𝜎 (ℎ) = 𝜎1 (ℎ) ∧ 𝜎 (𝑙) = 𝜎2 (𝑙), where 𝜎 denotes a

potential third execution sharing the same secret input as 𝜎1 but producing the same low output as

𝜎2. GNI can be proved by checking low(𝑙) ⊆ whp J𝐶K (glow(𝑙)). For example consider the program

and the whp annotations in Figure 4. The program satisfies GNI since low(𝑙) ⊆ 𝜆𝑆. ∀𝜎1, 𝜎2 ∈
{𝜎 [𝑦/𝛼] | 𝜎 ∈ 𝑆}. ∃𝜎 ∈ 𝑥{𝜎 [𝑦/𝛼] | 𝜎 ∈ 𝑆}. 𝜎 (ℎ) = 𝜎1 (ℎ) ∧ 𝜎 (𝑦 + ℎ) = 𝜎2 (𝑦 + ℎ).
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=(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. 𝝈1 (𝒉) > 0 ∧ 𝝈2 (𝒉) > 0

=⇒ 𝝈1 (𝒍) = 𝝈2 (𝒍)

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ (𝒉 > 0) (𝑺). 𝝈1 (𝒍) = 𝝈2 (𝒍)

assume h > 0

=(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. 𝝈1 (𝒍) = 𝝈2 (𝒍)

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. 𝝈1 (𝒍 + 1) = 𝝈2 (𝒍 + 1)

l B l + 1

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. 𝝈1 (𝒍) = 𝝈2 (𝒍)

Fig. 3. Proving noninterference

=(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ {𝝈 [𝒚/𝜶 ] | 𝝈 ∈ 𝑺 }.
∃𝝈 ∈ {𝝈 [𝒚/𝜶 ] | 𝝈 ∈ 𝑺 }. 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒚 + 𝒉) = 𝝈2 (𝒚 + 𝒉)

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ ∃𝜶 𝑺 [𝒚/𝜶 ] .
∃𝝈 ∈ ∃𝜶 𝑺 [𝒚/𝜶 ] . 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒚 + 𝒉) = 𝝈2 (𝒚 + 𝒉)

y B nondet()

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. ∃𝝈 ∈ 𝑺. 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒚 + 𝒉) = 𝝈2 (𝒚 + 𝒉)

l B y + h

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. ∃𝝈 ∈ 𝑺. 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒍) = 𝝈2 (𝒍)

Fig. 4. Proving generalized noninterference (GNI)

7.2 Disproving hyperproperties
As pointed in Section 2, evaluating whether a program satisfies a specific hyperproperty necessitates

proving twoHHL triples. For instance, when tackling noninterference, one must attempt to establish

both |=hh { low(𝑙) } 𝐶ni { low(𝑙) } and |=hh {𝑄 } 𝐶ni { ¬low(𝑙) } (for some 𝑄 ⇒ low(𝑙)). In this

section, we illustrate the advantage of our calculus by disproving NI and GNI.

=(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. 𝝈1 (𝒉) > 0 ∧ 𝝈2 (𝒉) > 0 =⇒ 𝝈1 (𝒍 + 𝒉) = 𝝈2 (𝒍 + 𝒉)

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ (𝒉 > 0) (𝑺). 𝝈1 (𝒍 + 𝒉) = 𝝈2 (𝒍 + 𝒉)

assume h > 0

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. 𝝈1 (𝒍 + 𝒉) = 𝝈2 (𝒍 + 𝒉)

l B l + h

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. 𝝈1 (𝒍) = 𝝈2 (𝒍)

Fig. 5. Disproving noninterference

NI. Disproving NI amounts to proving

low(𝑙) ⊈ whp J𝐶K (low(𝑙)), which is

true for the program in Figure 5. For

example, take 𝑆 = {𝜎1, 𝜎2} such that

𝜎1 (𝑙) = 𝜎2 (𝑙) = 0 and 𝜎1 (ℎ) = 1 ≠

𝜎2 (ℎ) = 2. Clearly 𝑆 ∈ low(𝑙) but

𝑆 ∉ whp J𝐶K (low(𝑙)).

GNI. Disproving GNI amounts to prove low(𝑙) ⊈ whp J𝐶K (glow(𝑙)), which is true for the program

in Figure 6. For example, take 𝑆 = {𝜎1, 𝜎2} such that 𝜎1 (𝑙) = 𝜎2 (𝑙) = 0 and 𝜎1 (ℎ) = 1 ≠ 𝜎2 (ℎ) = 100.

Clearly 𝑆 ∈ low(𝑙) but 𝑆 ∉ whp J𝐶K (glow(𝑙)).
(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑨 = {𝝈 [𝒚/𝜶 ] | 𝝈 ∈ 𝑺, 𝜶 ∈ [0, 10]}. ∃𝝈 ∈ 𝑨. 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒚 + 𝒉) = 𝝈2 (𝒚 + 𝒉)

y B nondet()

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑨 = {𝝈 | 𝝈 ∈ 𝑺 ∧ 𝝈 (𝒚) ∈ [0, 10]}. ∃𝝈 ∈ 𝑨. 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒚 + 𝒉) = 𝝈2 (𝒚 + 𝒉)

assume 0 ≤ 𝑦 ≤ 10

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. ∃𝝈 ∈ 𝑺. 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒚 + 𝒉) = 𝝈2 (𝒚 + 𝒉)

l B y + h

(( 𝝀𝑺. ∀𝝈1, 𝝈2 ∈ 𝑺. ∃𝝈 ∈ 𝑺. 𝝈 (𝒉) = 𝝈1 (𝒉) ∧ 𝝈 (𝒍) = 𝝈2 (𝒍)

Fig. 6. Disproving generalized noninterference

7.3 Quantitative reasoning
In this section, we demonstrate how whp enables quantitative reasoning.

7.3.1 Quantitative Information Flow. Consider the program 𝐶qif in Figure 7. Similarly to [Zhang

and Kaminski 2022, Section 8.1], we want to infer what is the maximum initial value that the

secret variable ℎ can have, by observing a final value 𝑙 ′ for the low-sensitive variable 𝑙 . By using

whp, it is sufficient to consider the hyperpostquantity 𝑓𝑓𝑙 ′ = 𝜆𝑓 .
b
𝜏 ( [𝑙 = 𝑙 ′] ⊙ 𝑓 ) (𝜏) (ℎ). Indeed,

whp J𝐶qifK (𝑓𝑓𝑙 ′) (ℎ) tells, what is the maximum value of sp J𝐶qifK (ℎ) (𝜏) among those final states

𝜏 where the value 𝑙 ′ has been observed. Since we know from [Zhang and Kaminski 2022] that

sp J𝐶qifK (𝑓 ) (𝜏) produces the maximum initial value of ℎ, we have thatwhp J𝐶qifK (𝑓𝑓𝑙 ′) (ℎ) correctly
yields the maximum initial value of ℎ. For example, whp J𝐶qifK (𝑓𝑓80) (ℎ) = 7, meaning that if we

observe 80 as the value of 𝑙 , we know that initially ℎ would have been at most 7.
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(( 𝝀𝒇 . ⋎𝝈 (
[

99 = 𝒍′ ∧ 𝒉 > 7
]

⋎
[

80 = 𝒍′ ∧ 𝒉 ≤ 7
]

) (𝝈) ⊙ 𝒇 (𝝈)

if ( h > 7 ) { (( 𝝀𝒇 . ⋎ 𝝉 (
[

99 = 𝒍′
]

⊙ 𝒇 ) (𝝉)

l B 99

} else { (( 𝝀𝒇 . ⋎𝝉 (
[

80 = 𝒍′
]

⊙ 𝒇 ) (𝝉)

l B 80

}

(( 𝝀𝒇 . j

𝝉

(
[

𝒍 = 𝒍′
]

⊙ 𝒇 ) (𝝉)

Fig. 7. Computing quantitative information flow

((
⊕

𝒏∈N

E[(1 + 𝒏)2] ⊙ 0.5𝒏+1 −
(

⊕

𝒏∈N

E[1 + 𝒏] ⊙ 0.5𝒏+1
)2

𝑥 B 1

((
⊕

𝒏∈N

E[(𝒙 + 𝒏)2] ⊙ 0.5𝒏+1 −
(

⊕

𝒏∈N

E[𝒙 + 𝒏] ⊙ 0.5𝒏+1
)2

(𝑥 B 𝑥 + 1) ⟨
1

2
, 1
2
⟩

(( E[𝒙2
] − E[𝒙]2

(( Cov[𝒙, 𝒙]

Fig. 8. Computing the variance of a random variable

7.3.2 Variance. We show how to compute the variance of a random variable using whp. Let’s con-

sider the following gaming scenario: a player flips a fair coin continuously until a head appears. To

assess the variance in the number of flips required to conclude the game, wemodel this scenario with

the program in Figure 8. We leverage Example 6.8 to compute whp J𝑥 B 𝑥 + 1
⟨ 1
2
, 1
2
⟩K (Cov[𝑥, 𝑥])

compositionally, by computing whp J𝑥 B 𝑥 + 1
⟨ 1
2
, 1
2
⟩K

(
E[𝑥2]

)
and whp J𝑥 B 𝑥 + 1

⟨ 1
2
, 1
2
⟩K (E[𝑥]) in-

dividually, obtaining:

whp J𝑥 B 𝑥 + 1
⟨ 1
2
, 1
2
⟩K

(
E[𝑥2] − E[𝑥]2

)
=

⊕
𝑛∈N

𝑊 𝑛
0.5 (E[𝑥2] ⊙ 0.5) −

(⊕
𝑛∈N

𝑊 𝑛
0.5 (E[𝑥] ⊙ 0.5)

)
2

=
⊕
𝑛∈N
E[(𝑥 + 𝑛)2] ⊙ 0.5𝑛+1 −

(⊕
𝑛∈N
E[𝑥 + 𝑛] ⊙ 0.5𝑛+1

)
2

Finally, we take as input any probability distribution 𝜇 and compute the variance via:

whp J𝐶K (Cov[𝑥, 𝑥]) (𝜇) =
(⊕
𝑛∈N
E[(1 + 𝑛)2] ⊙ 0.5𝑛+1 −

(⊕
𝑛∈N
E[1 + 𝑛] ⊙ 0.5𝑛+1

)
2
)
(𝜇)

=
∑︁

(1 + 𝑛)2 · 0.5𝑛+1 − (
∑︁

(1 + 𝑛) · 0.5𝑛+1)2 = 6 − 4 = 2 .

We contend that employing whp offers the advantage of mechanization and compositional compu-

tation without necessitating specialized knowledge of probability theory.

7.4 Automation
Unsurprisingly, our whp calculus (in its full generality) cannot be fully automated, since we

generalize existing undecidable calculi, expressing both termination and reachability properties for

a Turing-complete computational model—both of which are known to be undecidable [Rice 1953;

Turing 1936].

For this reason, we have proposed a fully theoretical framework, providing a holistic view of

different program logics and serving as a foundation for future tools to automate quantitative

proofs. This approach is common in foundational program logic research such as Hoare Logic,

Probabilistic PDL, Incorrectness Logic, Hyper Hoare Logic, and Outcome Logic.

Nevertheless, we believe that our calculi are at least syntactically mechanizable. Accordingly, we

plan to investigate an expressive “assertion” language for hyperquantities, such as the one proposed

by Batz et al. [2021] for quantitative reasoning about probabilistic programs. This would allow

us to prove relative completeness in the sense of Cook [1978], i.e., decidability modulo checking

whether 𝑔𝑔 ⪯ 𝑓𝑓 holds, where 𝑔𝑔, 𝑓𝑓 may contain suprema and infima. A similar result (decidability

modulo checking a logical implication) is well known for classical predicate transformer and Hoare

Logic [Cook 1978]. Once such a relatively complete language is found, we expect it will be possible

to fully automate whp reasoning for syntactic fragments of the programming and the assertion

language.
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8 Related Work
Relational program logics. Relational Hoare Logics were initially introduced by Benton [2004].

Subsequently, several extensions emerged, including to reason about probabilistic programs via

couplings [Barthe et al. 2009]. Later, Maillard et al. [2019b], proposed a general framework for devel-

oping relational program logics with effects based on Dijkstra Monads [Maillard et al. 2019a]. While

effective, this framework is limited to 2-properties and thus does not apply to, e.g., monotonicity

and transitivity, which are properties of more than two executions.

D’Osualdo et al. [2022]; Sousa and Dillig [2016] introduced logics for 𝑘-safety properties, but

they cannot prove liveness. Dickerson et al. [2022] introduced the first logic tailored for ∀∗∃∗
-

hyperproperties, enabling, among others, proof and disproof of 𝑘-safety properties. Nonetheless, it

has limited under-approximation capabilities: e.g., it does not suport incorrectness à la O’Hearn

[2020], and cannot disprove triples within the same logic. For instance, it cannot disprove GNI, a

task which can only be completed by—to the best of our knowledge—HHL, OL, and our framework.

Unified Program Logics. Similar to Outcome Logic (OL) [Zilberstein et al. 2023, 2024] and Weighted

Programming [Batz et al. 2022], our calculus utilizes semirings to capture branch weights. This

approach enables the development of a weakest-pre style calculus for Outcome Logic. While OL is

relatively complete [Zilberstein 2024], the derivations are not always straightforward. Weakest

Hyper-pre can be used to mechanically derive OL triples with the weakest precondition for a given

postcondition. Weakest Hyper-pre also subsumes Hyper Hoare Logic [Dardinier and Müller 2024],

which is similar to OL, but specialized to nondeterministic programs.

Our approach surpasses Weighted Programming by facilitating reasoning about multiple out-

comes. Our calculus also supports quantitative reasoning, demonstrating its versatility by encom-

passing various existing quantitative wp instances through the adaptation of hyperquantities.

Predicate Transformers. These were first introduced by Dijkstra [1976]; Dijkstra and Scholten [1990],

who created propositional weakest pre- and strongest postcondition calculi. Kozen [1985]; McIver

and Morgan [2005] lifted these to a quantitative setting, introducing Probabilistic Propositional

Dynamic Logic and weakest preexpectations for computing expected values over probabilistic

programs. Many variants of weakest preexpectation now exist [Batz et al. 2018; Kaminski 2019].

We build on this line of work by extending these predicate transformers to hyperproperties. This

gives us the flexibility to express a broader range of quantitative properties, as shown in Section 7.

9 Conclusion
Recent years have seen a focus on logics for proving properties other than classical partial correct-

ness. E.g., program security is a hyperproperty, and incorrectness must witness a faulty execution.
Recent work on Outcome Logic [Zilberstein 2024; Zilberstein et al. 2023, 2024] and Hyper Hoare

Logic [Dardinier and Müller 2024] has shown that all of these properties can be captured via a

single proof system. In this paper, we build upon those logics, but approach the problem using

quantitative predicate transformers. This has allowed us to create a single calculus that can be used

to prove, but also disprove, a variety of correctness properties. In addition, it can be used to derive

advanced quantitative properties for programs too, such as variance in probabilistic programs.

The predicate transformer approach has two key benefits. First, it provides a calculus to mechan-

ically derive specifications. Second, it finds the most precise pre, so as to remove guesswork around

obtaining a precondition in the aforementioned logics. As we have demonstrated, this brings about

new ways of proving—and disproving—hyperproperties for a variety of program types.
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A Quantitative Strongest Post and Weakest Pre
A.1 Proof of Soundness for sp, Thereom 4.2
Theorem 4.2 (Characterization of sp). For all programs 𝐶 ∈ wReg and final states 𝜏 ∈ Σ,

sp J𝐶K (𝜇) (𝜏) =
⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙ J𝐶K(𝜎, 𝜏) .

Proof. We prove Theorem 4.2 by induction on the structure of 𝐶 . For the induction base, we have

the atomic statements:

The assignment 𝑥 B 𝑒 : We have

sp J𝑥 B 𝑒K (𝑓 ) (𝜏) =
(⊕

𝛼

𝑓 [𝑥/𝛼] ⊙ [𝑥 = 𝑒 [𝑥/𝛼]]
)
(𝜏)

=
⊕

𝛼 : 𝜏 (𝑥)=𝜏 (𝑒 [𝑥/𝛼 ])
𝑓 [𝑥/𝛼] (𝜏)

=
⊕

𝛼 : 𝜏 (𝑥)=𝜏 (𝑒 [𝑥/𝛼 ])
𝑓 (𝜏 [𝑥/𝛼])

=
⊕

𝛼 : 𝜏 [𝑥/𝛼 ] [𝑥/𝜏 (𝑒 [𝑥/𝛼 ]) ]=𝜏
𝑓 (𝜏 [𝑥/𝛼])

=
⊕

𝛼 : 𝜏 [𝑥/𝛼 ] [𝑥/𝜏 [𝑥/𝛼 ] (𝑒) ]=𝜏
𝑓 (𝜏 [𝑥/𝛼])

=
⊕

𝜎 ∈Σ,𝜎 [𝑥/𝜎 (𝑒) ]=𝜏
𝑓 (𝜎) (by taking 𝜎 = 𝜏 [𝑥/𝛼])

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ [𝜎 [𝑥/𝜎 (𝑒)] = 𝜏]

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J𝑥 B 𝑒K(𝜎, 𝜏) .

The nondeterministic assignment 𝑥 B nondet(): We have

sp J𝑥 B nondet()K (𝑓 ) (𝜏) =
(⊕

𝛼

𝑓 [𝑥/𝛼]
)
(𝜏)

=
⊕
𝛼

𝑓 (𝜏 [𝑥/𝛼])

=
⊕

𝜎 ∈Σ,∃𝛼. 𝜏 [𝑥/𝛼 ]=𝜎
𝑓 (𝜎) (by taking 𝜎 = 𝜏 [𝑥/𝛼])

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙
⊕
𝛼 ∈N

[𝜎 [𝑥/𝛼] = 𝜏]

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J𝑥 B nondet()K(𝜎, 𝜏) .

The weighting ⊙𝑤 : We have

sp J⊙𝑤K (𝑓 ) (𝜏) = (𝑓 ⊙𝑤) (𝜏)
= 𝑓 (𝜏) ⊙𝑤 (𝜏)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙𝑤 (𝜏) ⊙ [𝜎 = 𝜏]
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=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙𝑤 (𝜎) ⊙ [𝜎 = 𝜏]

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J⊙𝑤K(𝜎, 𝜏) .

This concludes the proof for the atomic statement.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

sp J𝐶1 # 𝐶2K (𝑓 ) (𝜏) = sp J𝐶2K
(
sp J𝐶1K (𝑓 )

)
(𝜏)

=
⊕
𝜎′∈Σ

sp J𝐶1K (𝑓 ) (𝜎 ′) ⊙ J𝐶2K(𝜎 ′, 𝜏) (by I.H. on 𝐶2)

=
⊕
𝜎′∈Σ

⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J𝐶1K(𝜎, 𝜎 ′) ⊙ J𝐶2K(𝜎 ′, 𝜏) (by I.H. on 𝐶1)

=
⊕
𝜎 ∈Σ

⊕
𝜎′∈Σ

𝑓 (𝜎) ⊙ J𝐶1K(𝜎, 𝜎 ′) ⊙ J𝐶2K(𝜎 ′, 𝜏) (by commutativity of ⊕)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙
⊕
𝜎′∈Σ

J𝐶1K(𝜎, 𝜎 ′) ⊙ J𝐶2K(𝜎 ′, 𝜏) (by distributivity of ⊙)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J𝐶1 # 𝐶2K(𝜎, 𝜏) .

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

sp J{𝐶1 } □ {𝐶2 }K (𝑓 ) (𝜏) = sp J𝐶1K (𝑓 ) ⊕ sp J𝐶2K (𝑓 )

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J𝐶1K(𝜎, 𝜏) ⊕
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J𝐶2K(𝜎, 𝜏) (by I.H. on 𝐶1,𝐶2)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ (J𝐶1K(𝜎, 𝜏) ⊕ J𝐶2K(𝜎, 𝜏)) (by distributivity of ⊙)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J{𝐶1 } □ {𝐶2 }K(𝜎, 𝜏) .

The Iteration 𝐶 ⟨𝑒,𝑒′⟩ : Let
Ψ𝑓 (𝑋 ) = 𝑓 ⊕ sp J𝐶K

(
𝑋 ⊙ J𝑒K

)
,

be the sp-characteristic function of the iteration 𝐶 ⟨𝑒,𝑒′⟩
with respect to any preanticipation 𝑓 and

𝐹 (𝑋 ) (𝜎, 𝜏) = 𝜎 (𝑒) ⊙
(⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝑋 (𝜎 ′, 𝜏)
)
⊕ 𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏] ,

be the denotational semantics characteristic function of the loop 𝐶 ⟨𝑒,𝑒′⟩
for any input 𝜎, 𝜏 ∈ Σ. We

first prove by induction on𝑚 that, for all 𝜏 ∈ Σ, 𝑓 ∈ A we have:⊕
𝜎 ∈Σ

Ψ𝑚
𝑓
(0) (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) =

⊕
𝜎 ∈Σ

Ψ𝑚
𝜆𝜎′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′) (0) (𝜏) . (1)

For the induction base𝑚 = 0, consider the following:⊕
𝜎 ∈Σ

Ψ0

𝑓
(0) (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) = 0
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=
⊕
𝜎 ∈Σ

Ψ0

𝜆𝜎′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′) (0) (𝜏) .

As induction hypothesis, we have for arbitrary but fixed𝑚 and all 𝜏 ∈ Σ, 𝑓 ∈ A⊕
𝜎 ∈Σ

Ψ𝑚
𝑓
(0) (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) =

⊕
𝜎 ∈Σ

Ψ𝑚
𝜆𝜎′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′) (0) (𝜏) .

For the induction step𝑚 −→𝑚 + 1, consider the following:⊕
𝜎 ∈Σ

Ψ𝑚+1
𝑓

(0) (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏)

=
⊕
𝜎 ∈Σ

(
𝑓 ⊕ sp J𝐶K

(
Ψ𝑚
𝑓
(0) ⊙ J𝑒K

) )
(𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) ⊕ sp J𝐶K
(
Ψ𝑚
𝑓
(0) ⊙ J𝑒K

)
(𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏)

(by distributivity of ⊙)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) ⊕
(⊕
𝜎′∈Σ

Ψ𝑚
𝑓
(0) (𝜎 ′) ⊙ 𝜎 ′(𝑒) ⊙ J𝐶K(𝜎 ′, 𝜎)

)
⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏)

(by I.H. on 𝐶)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) ⊕
(⊕
𝜎′∈Σ

Ψ𝑚
𝜆𝜎′′.𝑓 (𝜎′) ⊙𝜎′ (𝑒) ⊙J𝐶K(𝜎′,𝜎′′) (0) (𝜎)

)
⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏)

(by I.H. on𝑚)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏)

⊕
⊕
𝜎 ∈Σ

(⊕
𝜎′∈Σ

Ψ𝑚
𝜆𝜎′′.𝑓 (𝜎′) ⊙𝜎′ (𝑒) ⊙J𝐶K(𝜎′,𝜎′′) (0) (𝜎)

)
⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) (by associativity of ⊕)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏)

⊕
⊕
𝜎 ∈Σ

⊕
𝜎′∈Σ

Ψ𝑚
𝜆𝜎′′.𝑓 (𝜎′) ⊙𝜎′ (𝑒) ⊙J𝐶K(𝜎′,𝜎′′) (0) (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) (by distributivity of ⊙)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) ⊕
⊕
𝜎 ∈Σ

⊕
𝜎′∈Σ

Ψ𝑚
𝜆𝜎′′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′′) (0) (𝜎

′) ⊙ 𝜎 ′(𝑒) ⊙ J𝐶K(𝜎 ′, 𝜏)

(by commutativity of ⊕)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) ⊕ sp J𝐶K
(
Ψ𝑚
𝜆𝜎′′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′′) (0) ⊙ J𝑒K

)
(𝜏)

(by I.H. on 𝐶 and associativity of ⊕)

=
⊕
𝜎 ∈Σ

Ψ𝑚+1
𝜆𝜎′′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′′) (0) (𝜏)

=
⊕
𝜎 ∈Σ

Ψ𝑚+1
𝜆𝜎′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′) (0) (𝜏)

This concludes the induction on𝑚. We now prove by induction on 𝑛 that, for all 𝜏 ∈ Σ, 𝑓 ∈ A
Ψ𝑛
𝑓
(0) (𝜏) ⊙ 𝜏 (𝑒 ′) =

⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝐹𝑛 (0) (𝜎, 𝜏) . (2)

For the induction base 𝑛 = 0, consider the following:

Ψ0
𝑓
(0) (𝜏) ⊙ 𝜏 (𝑒 ′) = 0
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=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝐹 0 (0) (𝜎, 𝜏) .

As induction hypothesis, we have for arbitrary but fixed 𝑛 and all 𝜏 ∈ Σ, 𝑓 ∈ A
Ψ𝑛
𝑓
(0) (𝜏) ⊙ 𝜏 (𝑒 ′) =

⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝐹𝑛 (0) (𝜎, 𝜏) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Ψ𝑛+1
𝑓

(0) (𝜏) ⊙ 𝜏 (𝑒 ′)

=

(
𝑓 ⊕ sp J𝐶K

(
Ψ𝑛
𝑓
(0) ⊙ J𝑒K

))
(𝜏) ⊙ 𝜏 (𝑒 ′)

= 𝑓 (𝜏) ⊙ 𝜏 (𝑒 ′) ⊕ sp J𝐶K
(
Ψ𝑛
𝑓
(0) ⊙ J𝑒K

)
(𝜏) ⊙ 𝜏 (𝑒 ′)

= 𝑓 (𝜏) ⊙ 𝜏 (𝑒 ′) ⊕
⊕
𝜎 ∈Σ

Ψ𝑛
𝑓
(0) (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜏) ⊙ 𝜏 (𝑒 ′) (by I.H. on 𝐶)

= 𝑓 (𝜏) ⊙ 𝜏 (𝑒 ′) ⊕
⊕
𝜎 ∈Σ

Ψ𝑛
𝜆𝜎′.𝑓 (𝜎) ⊙𝜎 (𝑒) ⊙J𝐶K(𝜎,𝜎′) (0) (𝜏) ⊙ 𝜏 (𝑒 ′) (by Equation 1)

= 𝑓 (𝜏) ⊙ 𝜏 (𝑒 ′) ⊕
⊕
𝜎 ∈Σ

⊕
𝜎′∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙ J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏) (by I.H. on 𝑛)

= 𝑓 (𝜏) ⊙ 𝜏 (𝑒 ′) ⊕
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙
⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏) (by distributivity of ⊙)

=
(⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏]
)
⊕

(⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙
⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏)
)

=
(⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒) ⊙
⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏)
)
⊕

(⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏]
)

(by commutativity of ⊕)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙
((
𝜎 (𝑒) ⊙

⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏)
)
⊕ 𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏]

)
(by associativity of ⊕ and distributivity of ⊙)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝐹𝑛+1 (0) (𝜎, 𝜏) .

This concludes the induction on 𝑛. Now we have:

sp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓 ) (𝜏) =
(
lfp 𝑋 . 𝑓 ⊕ sp J𝐶K

(
𝑋 ⊙ J𝑒K

) )
(𝜏) ⊙ J𝑒 ′K(𝜏)

=
(
sup

𝑛∈N
Ψ𝑛
𝑓
(0) (𝜏)

)
⊙ 𝜏 (𝑒 ′) (by Kleene’s fixpoint theorem)

= sup

𝑛∈N
Ψ𝑛
𝑓
(0) (𝜏) ⊙ 𝜏 (𝑒 ′)

= sup

𝑛∈N

⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ 𝐹𝑛 (0) (𝜎, 𝜏) (by Equation 2)

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ sup

𝑛∈N
𝐹𝑛 (0) (𝜎, 𝜏) (by continuity of 𝜆𝑋 .

⊕
𝜎 𝑓 (𝜎) ⊙ 𝑋 (𝜎, 𝜏))

=
⊕
𝜎 ∈Σ

𝑓 (𝜎) ⊙ J𝐶 ⟨𝑒,𝑒′⟩K(𝜎, 𝜏) . (by Kleene’s fixpoint theorem)

and this concludes the proof. □
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𝑪 wp J𝑪K (𝒇 )

𝑥 B 𝑒 𝑓 [𝑥/𝑒]

𝑥 B nondet()
⊕

𝛼 𝑓 [𝑥/𝛼]

⊙𝑤 𝑤 ⊙ 𝑓

𝐶1 # 𝐶2 wp J𝐶1K
(
wp J𝐶2K (𝑓 )

)
{𝐶1 } □ {𝐶2 } wp J𝐶1K (𝑓 ) ⊕ wp J𝐶2K (𝑓 )

𝐶 ⟨𝑒,𝑒′⟩
lfp 𝑋 . J𝑒 ′K ⊙ 𝑓 ⊕ J𝑒K ⊙ wp J𝐶K (𝑋 )

Table 8. Rules for the weakest pre transformer.

A.2 A Weakest Pre Calculus for wReg
Theorem 4.4 (Extended Kozen Duality For Weighted Programming). For all programs 𝐶 ∈
wReg and final states 𝜏 ∈ Σ, the following equality holds:

wp J𝐶K (𝑓 ) (𝜎) =
⊕
𝜏 ∈Σ

J𝐶K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

Proof. We define our weighted wp in Table 8. We prove Theorem 4.4 by induction on the structure

of 𝐶 . For the induction base, we have the atomic statements:

The assignment 𝑥 B 𝑒 : We have

wp J𝑥 B 𝑒K (𝑓 ) (𝜎) = 𝑓 [𝑥/𝑒] (𝜎)
= 𝑓 (𝜎 [𝑥/𝜎 (𝑒)])

=
⊕
𝜏 ∈Σ

[𝜎 [𝑥/𝜎 (𝑒)] = 𝜏] ⊙ 𝑓 (𝜏)

=
⊕
𝜏 ∈Σ

J𝑥 B 𝑒K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

The nondeterministic assignment 𝑥 B nondet(): We have

wp J𝑥 B nondet()K (𝑓 ) (𝜎) =
(⊕

𝛼

𝑓 [𝑥/𝛼]
)
(𝜎)

=
⊕
𝛼

𝑓 (𝜎 [𝑥/𝛼])

=
⊕

𝜏 ∈Σ,∃𝛼. 𝜎 [𝑥/𝛼 ]=𝜏
𝑓 (𝜏) (by taking 𝜏 = 𝜎 [𝑥/𝛼])

=
⊕
𝜏 ∈Σ

⊕
𝛼 ∈N

[𝜎 [𝑥/𝛼] = 𝜏] ⊙ 𝑓 (𝜏)

=
⊕
𝜏 ∈Σ

J𝑥 B nondet()K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

The weighting ⊙𝑤 : We have

wp J⊙𝑤K (𝑓 ) (𝜎) = (𝑤 ⊙ 𝑓 ) (𝜎)
= 𝑤 (𝜎) ⊙ 𝑓 (𝜎)

=
⊕
𝜏 ∈Σ

𝑤 (𝜎) ⊙ [𝜎 = 𝜏] ⊙ 𝑓 (𝜎)
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=
⊕
𝜏 ∈Σ

𝑤 (𝜎) ⊙ [𝜎 = 𝜏] ⊙ 𝑓 (𝜏)

=
⊕
𝜏 ∈Σ

J⊙𝑤K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

This concludes the proof for the atomic statement.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

wp J𝐶1 # 𝐶2K (𝑓 ) (𝜎) = wp J𝐶1K
(
wp J𝐶2K (𝑓 )

)
(𝜎)

=
⊕
𝜎′∈Σ

J𝐶1K(𝜎, 𝜎 ′) ⊙ wp J𝐶2K (𝑓 ) (𝜎 ′) (by I.H. on 𝐶1)

=
⊕
𝜎′∈Σ

J𝐶1K(𝜎, 𝜎 ′) ⊙
⊕
𝜏 ∈Σ

J𝐶2K(𝜎 ′, 𝜏) ⊙ 𝑓 (𝜏) (by I.H. on 𝐶2)

=
⊕
𝜎′∈Σ

⊕
𝜏 ∈Σ

J𝐶1K(𝜎, 𝜎 ′) ⊙ J𝐶2K(𝜎 ′, 𝜏) ⊙ 𝑓 (𝜏) (by distributivity of ⊙)

=
⊕
𝜏 ∈Σ

(⊕
𝜎′∈Σ

J𝐶1K(𝜎, 𝜎 ′) ⊙ J𝐶2K(𝜎 ′, 𝜏)
)
⊙ 𝑓 (𝜏) (by commutativity of ⊕)

=
⊕
𝜏 ∈Σ

J𝐶1 # 𝐶2K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

wp J{𝐶1 } □ {𝐶2 }K (𝑓 ) (𝜎) = wp J𝐶1K (𝑓 ) ⊕ wp J𝐶2K (𝑓 )

=
⊕
𝜏 ∈Σ

J𝐶1K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) ⊕
⊕
𝜏 ∈Σ

J𝐶2K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) (by I.H. on 𝐶1,𝐶2)

=
⊕
𝜏 ∈Σ

(J𝐶1K(𝜎, 𝜏) ⊕ J𝐶2K(𝜎, 𝜏)) ⊙ 𝑓 (𝜏) (by distributivity of ⊙)

=
⊕
𝜏 ∈Σ

J{𝐶1 } □ {𝐶2 }K(𝜎, 𝜏) ⊙ 𝑓 (𝜎) .

The Iteration 𝐶 ⟨𝑒,𝑒′⟩ : Let
Φ𝑓 (𝑋 ) = J𝑒 ′K ⊙ 𝑓 ⊕ J𝑒K ⊙ wp J𝐶K (𝑋 ) ,

be the wp-characteristic function of the iteration 𝐶 ⟨𝑒,𝑒′⟩
with respect to any preanticipation 𝑓 and

𝐹 (𝑋 ) (𝜎, 𝜏) = 𝜎 (𝑒) ⊙
(⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝑋 (𝜎 ′, 𝜏)
)
⊕ 𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏] ,

be the denotational semantics characteristic function of the loop 𝐶 ⟨𝑒,𝑒′⟩
for any input 𝜎, 𝜏 ∈ Σ. We

first prove by induction on 𝑛 that, for all 𝜎 ∈ Σ, 𝑓 ∈ A
Φ𝑛
𝑓
(0) (𝜎) =

⊕
𝜏 ∈Σ

𝐹𝑛 (0) (𝜎, 𝜏) ⊙ 𝑓 (𝜏) . (3)

For the induction base 𝑛 = 0, consider the following:

Φ𝑛
𝑓
(0) (𝜎) = 0

=
⊕
𝜏 ∈Σ

𝐹 0 (0) (𝜎, 𝜏) ⊙ 𝑓 (𝜏) .
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As induction hypothesis, we have for arbitrary but fixed 𝑛 and all 𝜏 ∈ Σ, 𝑓 ∈ A
Φ𝑛
𝑓
(0) (𝜎) =

⊕
𝜏 ∈Σ

𝐹𝑛 (0) (𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Φ𝑛+1
𝑓

(0) (𝜎)

=

(
J𝑒 ′K ⊙ 𝑓 ⊕ J𝑒K ⊙ wp J𝐶K

(
Φ𝑛
𝑓
(0)

))
(𝜎)

= J𝑒 ′K(𝜎) ⊙ 𝑓 (𝜎) ⊕ J𝑒K(𝜎) ⊙ wp J𝐶K
(
Φ𝑛
𝑓
(0)

)
(𝜎)

= 𝜎 (𝑒 ′) ⊙ 𝑓 (𝜎) ⊕ 𝜎 (𝑒) ⊙
⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ Φ𝑛
𝑓
(0) (𝜎 ′) (by I.H. on 𝐶)

= 𝜎 (𝑒 ′) ⊙ 𝑓 (𝜎) ⊕ 𝜎 (𝑒) ⊙
⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙
⊕
𝜏 ∈Σ

𝐹𝑛 (0) (𝜎 ′, 𝜏) ⊙ 𝑓 (𝜏) (by I.H. on 𝑛)

= 𝜎 (𝑒 ′) ⊙ 𝑓 (𝜎) ⊕
⊕
𝜏 ∈Σ

(
𝜎 (𝑒) ⊙

⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏)
)
⊙ 𝑓 (𝜏)

(by distributivity of ⊙, commutativity and associativity of ⊕)

=
(⊕
𝜏 ∈Σ

𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏] ⊙ 𝑓 (𝜏)
)
⊕

⊕
𝜏 ∈Σ

(
𝜎 (𝑒) ⊙

⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏)
)
⊙ 𝑓 (𝜏)

=
⊕
𝜏 ∈Σ

(
𝜎 (𝑒) ⊙

⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏)
)
⊙ 𝑓 (𝜏) ⊕

(⊕
𝜏 ∈Σ

𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏] ⊙ 𝑓 (𝜏)
)

(by commutativity of ⊕)

=
⊕
𝜏 ∈Σ

(
𝜎 (𝑒) ⊙

⊕
𝜎′∈Σ

J𝐶K(𝜎, 𝜎 ′) ⊙ 𝐹𝑛 (0) (𝜎 ′, 𝜏) ⊕ 𝜎 (𝑒 ′) ⊙ [𝜎 = 𝜏]
)
⊙ 𝑓 (𝜏)

(by associativity of ⊕ and distributivity of ⊙)

=
⊕
𝜏 ∈Σ

𝐹𝑛+1 (0) (𝜎, 𝜏) ⊙ 𝑓 (𝜏) .

This concludes the induction on 𝑛. Now we have:

wp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓 ) (𝜎) =
(
lfp 𝑋 . J𝑒 ′K ⊙ 𝑓 ⊕ J𝑒K ⊙ wp J𝐶K (𝑋 )

)
(𝜎)

= sup

𝑛∈N
Φ𝑛
𝑓
(0) (𝜎) (by Kleene’s fixpoint theorem)

= sup

𝑛∈N

⊕
𝜏 ∈Σ

𝐹𝑛 (0) (𝜎, 𝜏) ⊙ 𝑓 (𝜏) (by Equation 3)

=
⊕
𝜏 ∈Σ

sup

𝑛∈N
𝐹𝑛 (0) (𝜎, 𝜏) ⊙ 𝑓 (𝜏) (by continuity of 𝜆𝑋 .

⊕
𝜏 𝑋 (𝜎, 𝜏) ⊙ 𝑓 (𝜏))

=
⊕
𝜏 ∈Σ

J𝐶 ⟨𝑒,𝑒′⟩K(𝜎, 𝜏) ⊙ 𝑓 (𝜏) . (by Kleene’s fixpoint theorem)

and this concludes the proof. □

A.3 Proof of sp-wp Duality for probabilistic programs, Thereom 4.5
Theorem 4.5 (Weighted sp-wp Duality). For all programs 𝐶 and all functions 𝜇, 𝑔 ∈ A, we have⊕

𝜏 ∈Σ
sp J𝐶K (𝜇) (𝜏) ⊙ 𝑔(𝜏) =

⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙ wp J𝐶K (𝑔) (𝜎) .
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Proof. ⊕
𝜏 ∈Σ

sp J𝐶K (𝜇) (𝜏) ⊙ 𝑔(𝜏) =
⊕
𝜏 ∈Σ

⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙ J𝐶K(𝜎, 𝜏) ⊙ 𝑔(𝜏) (by Theorem 4.2)

=
⊕
𝜎 ∈Σ

⊕
𝜏 ∈Σ

𝜇 (𝜎) ⊙ J𝐶K(𝜎, 𝜏) ⊙ 𝑔(𝜏)

=
⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙
⊕
𝜏 ∈Σ

J𝐶K(𝜎, 𝜏) ⊙ 𝑔(𝜏)

=
⊕
𝜎 ∈Σ

𝜇 (𝜎) ⊙ wp J𝐶K (𝑔) (𝜎) . (by Theorem 4.4)

□

B Quantitative Weakest Hyper Pre
Theorem 4.12 (Characterization of whp). For all programs 𝐶 , hyperquantities 𝑓𝑓 ∈ AA and
quantities 𝑓 ∈ A: whp J𝐶K (𝑓𝑓 ) (𝑓 ) = 𝑓𝑓 (sp J𝐶K (𝑓 )).

Proof. We prove Theorem 4.12 by induction on the structure of𝐶 . For the induction base, we have

the atomic statement:

The assignment 𝑥 B 𝑒 : We have

whp J𝑥 B 𝑒K (𝑓𝑓 ) (𝜇) = 𝑓𝑓 (
⊕
𝛼

[𝑥 = 𝑒 [𝑥/𝛼]] ⊙ 𝜇 [𝑥/𝛼])

= 𝑓𝑓 (sp J𝑥 B 𝑒K (𝜇)) .

The nondeterministic assignment 𝑥 B nondet(): We have

whp J𝑥 B nondet()K (𝑓𝑓 ) (𝜇) = 𝑓𝑓 (
⊕
𝛼

𝜇 [𝑥/𝛼])

= 𝑓𝑓 (sp J𝑥 B nondet()K (𝜇)) .

The weighting ⊙𝑤 : We have

whp J⊙𝑤K (𝑓𝑓 ) (𝜇) = (𝑓𝑓 ⊙𝑤) (𝜇)
= 𝑓𝑓 (𝜇 ⊙𝑤)
= 𝑓𝑓 (sp J⊙𝑤K (𝜇)) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

whp J𝐶1 # 𝐶2K (𝑓𝑓 ) (𝜇) = whp J𝐶1K
(
whp J𝐶2K (𝑓𝑓 )

)
(𝜇)

= whp J𝐶2K (𝑓𝑓 ) (sp J𝐶1K (𝜇)) (by I.H. on 𝐶1)

= 𝑓𝑓 (sp J𝐶2K
(
sp J𝐶1K (𝜇)

)
) (by I.H. on 𝐶2)

= 𝑓𝑓 (sp J𝐶1 # 𝐶2K (𝜇))

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

whp J{𝐶1 } □ {𝐶2 }K (𝑓𝑓 ) (𝜇) =
⊕
𝜈1,𝜈2

𝑓𝑓 (𝜈1 ⊕ 𝜈2) ⊙ whp J𝐶1K ( [𝜈1]) (𝜇) ⊙ whp J𝐶2K ( [𝜈2]) (𝜇)
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=
⊕
𝜈1,𝜈2

𝑓𝑓 (𝜈1 ⊕ 𝜈2) ⊙ [𝜈1] (sp J𝐶1K (𝜇)) ⊙ [𝜈2] (sp J𝐶2K (𝜇))

(by I.H. on 𝐶1,𝐶2)

= 𝑓𝑓 (sp J𝐶1K (𝜇) ⊕ sp J𝐶2K (𝜇))
= 𝑓𝑓 (sp J{𝐶1 } □ {𝐶2 }K (𝜇)) .

The Iteration 𝐶 ⟨𝑒,𝑒′⟩ :
whp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓𝑓 ) (𝜇) = 𝑓𝑓

( (
lfp 𝑋 . 𝜇 ⊕ sp J𝐶K

(
𝑋 ⊙ J𝑒K

) )
⊙ J𝑒 ′K

)
= 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇)) .

and this concludes the proof. □

B.1 Proof of Consistency of iteration rule, Theorem 4.5
Proposition 4.10 (Consistency of iteration rule). Let

Φ(trnsf) = 𝜆ℎℎ 𝜆𝑓 .
⊕
𝜈

ℎℎ(𝜈 ⊕ 𝑓 ⊙ J𝑒 ′K) ⊙ whp J𝐶K (trnsf( [𝜈])) (𝑓 ⊙ J𝑒K)

Then, whpJ𝐶 ⟨𝑒,𝑒′⟩K is a fixpoint of the higher order function Φ(trnsf), that is:
Φ(𝜆𝑓𝑓 𝜆𝜇. 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇))) = 𝜆𝑓𝑓 𝜆𝜇. 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇))

Proof.

Φ(𝜆𝑓𝑓 𝜆𝜇. 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇)))

= 𝜆ℎℎ 𝜆𝑓 .
⊕
𝜈

ℎℎ(𝜈 ⊕ 𝑓 ⊙ J𝑒 ′K) ⊙ whp J𝐶K
(
𝜆𝜇. [𝜈] (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇))

)
(𝑓 ⊙ J𝑒K)

= 𝜆ℎℎ 𝜆𝑓 .
⊕
𝜈

ℎℎ(𝜈 ⊕ 𝑓 ⊙ J𝑒 ′K) ⊙ [𝜈] (sp J𝐶 ⟨𝑒,𝑒′⟩K
(
sp J𝐶K

(
𝑓 ⊙ J𝑒K

) )
) (by I.H. on 𝐶)

= 𝜆ℎℎ 𝜆𝑓 . ℎℎ(sp J𝐶 ⟨𝑒,𝑒′⟩K
(
sp J𝐶K

(
𝑓 ⊙ J𝑒K

) )
⊕ 𝑓 ⊙ J𝑒 ′K)

= 𝜆ℎℎ 𝜆𝑓 . ℎℎ(sp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓 ))
(spJ𝐶 ⟨𝑒,𝑒′⟩K is a fixpoint of Ψ(𝑋 ) = 𝜆𝑓 . 𝑋 (sp J𝐶K

(
𝑓 ⊙ J𝑒K

)
⊕ 𝑓 ⊙ J𝑒 ′K))

= 𝜆𝑓𝑓 𝜆𝜇. 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇)) .
□

B.2 Properties
Theorem 5.1 (Subsumption of HHL). For hyperpredicates𝜓𝜓, 𝜙𝜙 and non-probabilistic program 𝐶 :

|=
hh

{𝜓𝜓 } 𝐶 {𝜙𝜙 } iff supp ( [𝜓𝜓 ]) ⊆ supp

(
whp J𝐶K ( [𝜙𝜙])

)
Proof.

|=hh {𝜓𝜓 } 𝐶 {𝜙𝜙 } iff ∀𝑆 ∈ P(Σ). 𝑆 ∈ 𝜓𝜓 =⇒ J𝐶K(𝑆) ∈ 𝜙𝜙

iff ∀𝑆 ∈ P(Σ). 𝑆 ∈ 𝜓𝜓 =⇒ supp

(
sp J𝐶K ( [𝑆])

)
∈ 𝜙𝜙

iff ∀𝑆 ∈ P(Σ). [𝜓𝜓 ] ( [𝑆]) ≤ [𝜙𝜙] (sp J𝐶K ( [𝑆]))
iff ∀𝑆 ∈ P(Σ). [𝜓𝜓 ] ( [𝑆]) ≤ whp J𝐶K ( [𝜙𝜙]) ( [𝑆])
iff ∀𝜇 ∈ A. [𝜓𝜓 ] (𝜇) ≤ whp J𝐶K ( [𝜙𝜙]) (𝜇)
iff supp ( [𝜓𝜓 ]) =⇒ supp

(
whp J𝐶K ( [𝜙𝜙])

)
□
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Theorem 5.2 (Falsifying correctness triples via correctness triples).

|=pc { 𝑃 } 𝐶 {𝑄 } iff ∀𝜎 ∈ 𝑃 . ̸ |=atc { {𝜎} } 𝐶 { ¬𝑄 }
|=atc { 𝑃 } 𝐶 {𝑄 } iff ∀𝜎 ∈ 𝑃 . ̸ |=pc { {𝜎} } 𝐶 { ¬𝑄 }
|=pi [ 𝑃 ] 𝐶 [𝑄 ] iff ∀𝜎 ∈ 𝑄. ̸ |=ti [ ¬𝑃 ] 𝐶 [ {𝜎} ]
|=ti [ 𝑃 ] 𝐶 [𝑄 ] iff ∀𝜎 ∈ 𝑄. ̸ |=pi [ ¬𝑃 ] 𝐶 [ {𝜎} ]

Proof. First, let us observe that

𝐴 ⊆ 𝐵 iff ∀𝑥 ∈ 𝐴. {𝑥} ∩ 𝐵 ≠ ∅
Now, we have:

(1)

|=pc { 𝑃 } 𝐶 {𝑄 } iff 𝑃 ⊆ wlpJ𝐶K (𝑄)
iff ∀𝜎 ∈ 𝑃 . {𝜎} ∩ wlpJ𝐶K (𝑄) ≠ ∅
iff ∀𝜎 ∈ 𝑃 . ̸ |=atc { {𝜎} } 𝐶 { ¬𝑄 }

(2)

|=atc { 𝑃 } 𝐶 {𝑄 } iff 𝑃 ⊆ wp J𝐶K (𝑄)
iff ∀𝜎 ∈ 𝑃 . {𝜎} ∩ wp J𝐶K (𝑄) ≠ ∅
iff ∀𝜎 ∈ 𝑃 . ̸ |=pc { {𝜎} } 𝐶 { ¬𝑄 }

(3)

|=pi [ 𝑃 ] 𝐶 [𝑄 ] iff 𝑄 ⊆ slpJ𝐶K (𝑃)
iff ∀𝜎 ∈ 𝑄. {𝜎} ∩ slpJ𝐶K (𝑃) ≠ ∅
iff ∀𝜎 ∈ 𝑄 ̸ |=ti [ ¬𝑃 ] 𝐶 [ {𝜎} ]

(4)

|=ti [ 𝑃 ] 𝐶 [𝑄 ] iff 𝑄 ⊆ sp J𝐶K (𝑃)
iff ∀𝜎 ∈ 𝑄. {𝜎} ∩ sp J𝐶K (𝑃) ≠ ∅
iff ∀𝜎 ∈ 𝑄 ̸ |=pi [ ¬𝑃 ] 𝐶 [ {𝜎} ]

□

Theorem 5.7 (Subsumption ofQuantitativewp,wlp for Nondeterministic Programs [Zhang

and Kaminski 2022]). Let A = ⟨R±∞,max,min, 0, 1⟩. For any quantities 𝑔, 𝑓 and any program 𝐶

satisfying the syntax of [Zhang and Kaminski 2022, Section 2]:

whp J𝐶K
(k

[𝑓 ]
)
(1𝜎 ) = wlpJ𝐶K (𝑓 ) (𝜎) and whp J𝐶K

(j
[𝑓 ]

)
(1𝜎 ) = wp J𝐶K (𝑓 ) (𝜎)

Proof.

whp J𝐶K
(j

[𝑓 ]
)
(1𝜎 ) =

j
[𝑓 ] (sp J𝐶K (1𝜎 ))

=
j

𝜏 : sp J𝐶K(1𝜎 ) (𝜏)>0
𝑓 (𝜏)

= wp J𝐶K (𝑓 ) (𝜎)

whp J𝐶K
(k

[𝑓 ]
)
(1𝜎 ) =

k
[𝑓 ] (sp J𝐶K (1𝜎 ))

=
k

𝜏 : sp J𝐶K(1𝜎 ) (𝜏)>0
𝑓 (𝜏)
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= wlpJ𝐶K (𝑓 ) (𝜎)
□

Theorem 5.8 (Subsumption of Quantitative wp, wlp for probabilistic programs [Kaminski

2019]). Let Prob = ⟨[0, 1], +, ·, 0, 1⟩. For any quantities 𝑔, 𝑓 and any non-nondeterministic program 𝐶 :
whp J𝐶K (E[𝑓 ]) (1𝜎 ) = wp J𝐶K (𝑓 ) (𝜎) and whp J𝐶K (E[𝑓 ] + 1 − E[1]) (1𝜎 ) = wlpJ𝐶K (𝑓 ) (𝜎).

Proof.

whp J𝐶K (E[𝑓 ]) (1𝜎 ) = E[𝑓 ] (sp J𝐶K (1𝜎 ))
= wp J𝐶K (𝑓 ) (𝜎)

whp J𝐶K (E[𝑓 ] + 1 − E[1]) (1𝜎 ) = (E[𝑓 ] + 1 − E[1]) (sp J𝐶K (1𝜎 ))
= wp J𝐶K (𝑓 ) (𝜎) + 1 − wp J𝐶K (1) (𝜎)
= wlpJ𝐶K (𝑓 ) (𝜎)

□

C Proofs of Section 6
C.1 Proof of Healthiness Properties ofQuantitative Transformers, Theorem 6.1
Each of the properties is proven individually below.

• Quantitative universal conjunctiveness: Theorem C.1;

• Quantitative universal disjunctiveness: Theorem C.2;

• Strictness: Corollary C.3;

• Costrictness: Corollary C.4;

• Monotonicity: Corollary C.5.

Theorem C.1 (Quantitative universal conjunctiveness of whp). For any set of quantities
𝑆 ⊆ AA,

whp J𝐶K
(∏

𝑆

)
=

∏
𝑓𝑓 ∈𝑆

whp J𝐶K (𝑓𝑓 ) .

Proof.

whp J𝐶K
(∏

𝑆

)
= 𝜆𝜇. (

∏
𝑆) (sp J𝐶K (𝜇)) (by Theorem 4.12)

= 𝜆𝜇.
∏
𝑓𝑓 ∈𝑆

𝑓𝑓 (sp J𝐶K (𝜇))

=
∏
𝑓𝑓 ∈𝑆

whp J𝐶K (𝑓𝑓 ) . (by Theorem 4.12)

□

Theorem C.2 (Quantitative universal disjunctiveness of whp). For any set of quantities
𝑆 ⊆ AA,

whp J𝐶K
(∑︁

𝑆

)
=

∑︁
𝑓𝑓 ∈𝑆

whp J𝐶K (𝑓𝑓 ) .

Proof.

whp J𝐶K
(∑︁

𝑆

)
= 𝜆𝜇. (

∑︁
𝑆) (sp J𝐶K (𝜇)) (by Theorem 4.12)
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= 𝜆𝜇.
∑︁
𝑓𝑓 ∈𝑆

𝑓𝑓 (sp J𝐶K (𝜇))

=
∑︁
𝑓𝑓 ∈𝑆

whp J𝐶K (𝑓𝑓 ) . (by Theorem 4.12)

□

Corollary C.3 (Strictness of whp). For all programs 𝐶 , whpJ𝐶K is strict, i.e.
whp J𝐶K (0) = 0 .

Proof.

whp J𝐶K (0) = 𝜆𝜇. (0) (sp J𝐶K (𝜇)) (by Theorem 4.12)

= 0 .

□

Corollary C.4 (Co-strictness of whp). For all programs 𝐶 , wpJ𝐶K is co-strict, i.e.
whp J𝐶K (+∞) = +∞ .

Proof.

whp J𝐶K (+∞) = 𝜆𝜇. (+∞)(sp J𝐶K (𝜇)) (by Theorem 4.12)

= +∞ .

□

Corollary C.5 (Monotonicity ofQuantitative Transformers). For all programs 𝐶 , 𝑓𝑓 , 𝑔𝑔 ∈ ,
we have

𝑓𝑓 ⪯ 𝑔𝑔 implies whp J𝐶K (𝑓𝑓 ) ⪯ whp J𝐶K (𝑔𝑔)

Proof.

whp J𝐶K (𝑓𝑓 ) = 𝜆𝜇. 𝑓𝑓 (sp J𝐶K (𝜇)) (by Theorem 4.12)

⪯ 𝜆𝜇. 𝑔𝑔(sp J𝐶K (𝜇)) (𝑓𝑓 ⪯ 𝑔𝑔)

= whp J𝐶K (𝑔𝑔) (by Theorem 4.12)

□

C.2 Proof of Linearity, Theorem 6.2
Theorem 6.2 (Linearity). For all programs 𝐶 , whpJ𝐶K is linear, i.e. for all 𝑓𝑓 , 𝑔𝑔 ∈ AA and non-

negative constants 𝑟 ∈ R≥0, whp J𝐶K (𝑟 · 𝑓𝑓 + 𝑔𝑔) = 𝑟 · whp J𝐶K (𝑓𝑓 ) + whp J𝐶K (𝑔𝑔) .

Proof.

whp J𝐶K (𝑟 · 𝑓𝑓 + 𝑔𝑔)
= 𝜆𝜇. (𝑟 · 𝑓𝑓 + 𝑔𝑔) (sp J𝐶K (𝜇)) (by Theorem 4.12)

= 𝜆𝜇. (𝑟 · 𝑓𝑓 ) (sp J𝐶K (𝜇)) + 𝑔𝑔(sp J𝐶K (𝜇))
= 𝜆𝜇. 𝑟 · 𝑓𝑓 (sp J𝐶K (𝜇)) + 𝑔𝑔(sp J𝐶K (𝜇))
= 𝑟 · whp J𝐶K (𝑓𝑓 ) + whp J𝐶K (𝑔𝑔) . (by Theorem 4.12)

□
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C.3 Proof of Multiplicativity, Theorem 6.3
Theorem 6.3 (Multiplicativity). For all programs𝐶 ,whpJ𝐶K is multiplicative, i.e. for all 𝑓𝑓 , 𝑔𝑔 ∈ AA
and non-negative constants 𝑟 ∈ R≥0, whp J𝐶K (𝑟 · 𝑓𝑓 · 𝑔𝑔) = 𝑟 · whp J𝐶K (𝑓𝑓 ) · whp J𝐶K (𝑔𝑔) .

Proof.

whp J𝐶K (𝑟 · 𝑓𝑓 · 𝑔𝑔)
= 𝜆𝜇. (𝑟 · 𝑓𝑓 · 𝑔𝑔) (sp J𝐶K (𝜇)) (by Theorem 4.12)

= 𝜆𝜇. 𝑟 · 𝑓𝑓 (sp J𝐶K (𝜇)) · 𝑔𝑔(sp J𝐶K (𝜇))
= 𝑟 · whp J𝐶K (𝑓𝑓 ) · whp J𝐶K (𝑔𝑔) . (by Theorem 4.12)

□

C.4 Proof of Liberal-Non-liberal Duality, Theorem 6.4
Theorem 6.4 (Liberal–Non-liberal Duality). For any program𝐶 and any 𝑘−bounded hyperquan-
tity 𝑓𝑓 , we have whp J𝐶K (𝑓𝑓 ) = 𝑘 − whp J𝐶K (𝑘 − 𝑓𝑓 ).

Proof.

whp J𝐶K (𝑓𝑓 ) = 𝜆𝜇. 𝑓𝑓 (sp J𝐶K (𝜇)) 𝑓 (𝜏) (by Theorem 4.12)

= 𝑘 − 𝜆𝜇. 𝑘 − 𝑓𝑓 (sp J𝐶K (𝜇))
= 𝑘 − whp J𝐶K (𝑘 − 𝑓𝑓 ) .

□

Proof of rules for linear hyperquantities, Theorem 6.6
Theorem 6.6 (Weakest Hyper Pre for Linear Hyperqantities). For linear hyperquantities
𝑓𝑓 ∈ AA, the simpler rules in Table 7 are valid.

Proof. We prove Theorem 4.12 by induction on the structure of𝐶 . For the induction base, we have

the atomic statement:

The assignment 𝑥 B 𝑒 : We have

whp J𝑥 B 𝑒K (𝑓𝑓 ) (𝜇) =
⊕
𝛼

𝑓𝑓 ( [𝑥 = 𝑒 [𝑥/𝛼]] ⊙ 𝜇 [𝑥/𝛼])

= 𝑓𝑓 (
⊕
𝛼

[𝑥 = 𝑒 [𝑥/𝛼]] ⊙ 𝜇 [𝑥/𝛼])

= 𝑓𝑓 (sp J𝑥 B 𝑒K (𝜇)) .

The nondeterministic assignment 𝑥 B nondet(): We have

whp J𝑥 B nondet()K (𝑓𝑓 ) (𝜇) = 𝑓𝑓 (
⊕
𝛼

𝜇 [𝑥/𝛼])

= 𝑓𝑓 (sp J𝑥 B nondet()K (𝜇)) .

The weighting ⊙ 𝑎: We have

whp J⊙𝑤K (𝑓𝑓 ) (𝜇) = (𝑓𝑓 ⊙𝑤) (𝜇)
= 𝑓𝑓 (𝜇 ⊙𝑤)
= 𝑓𝑓 (sp J⊙𝑤K (𝜇)) .

This concludes the proof for the atomic statements.
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Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

whp J𝐶1 # 𝐶2K (𝑓𝑓 ) (𝜇) = whp J𝐶1K
(
whp J𝐶2K (𝑓𝑓 )

)
(𝜇)

= whp J𝐶2K (𝑓𝑓 ) (sp J𝐶1K (𝜇)) (by I.H. on 𝐶1)

= 𝑓𝑓 (sp J𝐶2K
(
sp J𝐶1K (𝜇)

)
) (by I.H. on 𝐶2)

= 𝑓𝑓 (sp J𝐶1 # 𝐶2K (𝜇))

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

whp J{𝐶1 } □ {𝐶2 }K (𝑓𝑓 ) (𝜇) = whp J𝐶1K (𝑓𝑓 ) (𝜇) ⊕ whp J𝐶2K (𝑓𝑓 ) (𝜇)
= 𝑓𝑓 (sp J𝐶1K (𝜇)) ⊕ 𝑓𝑓 (sp J𝐶2K (𝜇)) (by I.H. on 𝐶1,𝐶2)

= 𝑓𝑓 (sp J𝐶1K (𝜇) ⊕ sp J𝐶2K (𝜇)) (by Definition 6.5)

=
⊕
𝜈1,𝜈2

𝑓𝑓 (𝜈1 ⊕ 𝜈2) ⊙ [𝜈1] (sp J𝐶1K (𝜇)) ⊙ [𝜈2] (sp J𝐶2K (𝜇))

= 𝑓𝑓 (sp J𝐶1K (𝜇) ⊕ sp J𝐶2K (𝜇))
= 𝑓𝑓 (sp J{𝐶1 } □ {𝐶2 }K (𝜇)) .

The Iteration𝐶 ⟨𝑒,𝑒′⟩ : Let𝑊𝑒 (𝑋 ) = whp J𝐶K (𝑋 ) ⊙ J𝑒K and 𝑆 (𝑋 ) = sp J𝐶K
(
𝑋 ⊙ J𝑒K

)
. We first prove

by induction on 𝑛 that:

𝑊 𝑛
𝑒 (𝑓𝑓 ⊙ J𝑒 ′K) (𝜇) = 𝑓𝑓 (𝑆𝑛 (𝜇) ⊙ J𝑒 ′K)

For the induction base 𝑛 = 0, consider the following:

𝑊 𝑛
𝑒 (𝑓𝑓 ⊙ J𝑒 ′K) (𝜇) = (𝑓𝑓 ⊙ J𝑒 ′K) (𝜇)

= 𝑓𝑓 (𝜇 ⊙ J𝑒 ′K)
= 𝑓𝑓 (𝑆𝑛 (𝜇) ⊙ J𝑒 ′K) .

As induction hypothesis, we have for arbitrary but fixed 𝑛 and all 𝜇

𝑊 𝑛
𝑒 (𝑓𝑓 ⊙ J𝑒 ′K) (𝜇) = 𝑓𝑓 (𝑆𝑛 (𝜇) ⊙ J𝑒 ′K)

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

𝑊 𝑛+1
𝑒 (𝑓𝑓 ⊙ J𝑒 ′K) (𝜇) =

(
𝑊𝑒 (𝑊 𝑛

𝑒 (𝑓𝑓 ⊙ J𝑒 ′K))
)
(𝜇)

=
(
whp J𝐶K

(
𝑊 𝑛 (𝑓𝑓 ⊙ J𝑒 ′K)

)
⊙ J𝑒K

)
(𝜇)

=
(
whp J𝐶K

(
𝑊 𝑛 (𝑓𝑓 ⊙ J𝑒 ′K)

) )
(𝜇 ⊙ J𝑒K)

= 𝑊 𝑛
𝑒 (𝑓𝑓 ⊙ J𝑒 ′K) (sp J𝐶K

(
𝜇 ⊙ J𝑒K

)
) (by I.H. on 𝐶)

= 𝑓𝑓 (𝑆𝑛 (sp J𝐶K
(
𝜇 ⊙ J𝑒K

)
) ⊙ J𝑒 ′K) (by I.H. on 𝑛)

= 𝑓𝑓 (𝑆𝑛 (𝑆 (𝜇)) ⊙ J𝑒 ′K)
= 𝑓𝑓 (𝑆𝑛+1 (𝜇) ⊙ J𝑒 ′K)

This concludes the induction on 𝑛. Now we have:

whp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓𝑓 ) (𝜇) =
⊕
𝑛∈N

𝑊 𝑛
𝑒 (𝑓𝑓 ⊙ J𝑒 ′K) (𝜇)

=
⊕
𝑛∈N

𝑓𝑓 (𝑆𝑛 (𝜇) ⊙ J𝑒 ′K)
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= 𝑓𝑓
( (⊕
𝑛∈N

𝑆𝑛 (𝜇)
)
⊙ J𝑒 ′K

)
(by Definition 6.5)

= 𝑓𝑓
( (
lfp 𝑋 . 𝜇 ⊕ sp J𝐶K

(
𝑋 ⊙ J𝑒K

) )
⊙ J𝑒 ′K

)
= 𝑓𝑓 (sp J𝐶 ⟨𝑒,𝑒′⟩K (𝜇)) .

□

Proof ofQuantitative Inductive Reasoning for whp, Theorem 6.9
Theorem 6.9 (Quantitative Inductive Reasoning for whp). For any program 𝐶 and any linear
hyperquantity 𝑓𝑓 , we have:

Φ𝑓𝑓 (𝑖𝑖) ⪯ 𝑖𝑖 =⇒ whp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓𝑓 ) ⪯ 𝑖𝑖,

where Φ𝑓𝑓 (𝑋 ) = 𝑓𝑓 ⊙ J𝑒 ′K ⊕ whp J𝐶K (𝑋 ) ⊙ J𝑒K is the characteristic function of 𝐶 ⟨𝑒,𝑒′⟩ w.r.t. 𝑓𝑓 .

Proof.

Φ𝑓𝑓 (𝑖𝑖) ⪯ 𝑖𝑖 (Premise of the implication)

=⇒ lfp 𝑋 . Φ𝑓𝑓 (𝑋 ) ⪯ 𝑖𝑖

(by Park’s Induction [Park 1969], since Φ𝑓𝑓 is continuous (⊕, ⊙ and whp are continuous))

=⇒ whp J𝐶 ⟨𝑒,𝑒′⟩K (𝑓𝑓 ) ⪯ 𝑖𝑖 (𝑓𝑓 is linear)

□

Proof ofQuantitative Inductive Rule for while, Corollary 6.10
Corollary 6.10 (Quantitative Inductive Rule for while).

𝑓𝑓 ⊙ [¬𝜑] ⊕ whp J𝐶K (𝑖𝑖) ⊙ [𝜑] ⪯ 𝑖𝑖 ⪯ 𝑔𝑔 𝑓𝑓 is linear
whp Jwhile ( 𝜑 ) {𝐶 }K (𝑓𝑓 ) ⪯ 𝑔𝑔

while−whp

Proof.

𝑓𝑓 ⊙ [¬𝜑] ⊕ whp J𝐶K (𝑖𝑖) ⊙ [𝜑] ⪯ 𝑖𝑖 (Premise of the rule)

=⇒ lfp 𝑋 . 𝑓𝑓 ⊙ [¬𝜑] ⊕ whp J𝐶K (𝑋 ) ⊙ [𝜑] ⪯ 𝑖𝑖 (by Park’s Induction [Park 1969])

=⇒ whp Jwhile ( 𝜑 ) {𝐶 }K (𝑓𝑓 ) ⪯ 𝑖𝑖

=⇒ whp Jwhile ( 𝜑 ) {𝐶 }K (𝑓𝑓 ) ⪯ 𝑔𝑔 (𝑖𝑖 ⪯ 𝑔𝑔 and transitivity of ⪯ )

□

D Well-definedness of the semantics
In this section we prove that the denotational semantics of Section 3 is a total function.

D.1 Additional definitions omitted from the main text
We assume that the operations ⊕, ⊙ belong to a complete, Scott continuous, naturally ordered,

partial semiring with a top element.

Definition D.1 (Complete semirings [Golan 2003]). A (partial) semiring ⟨𝑈 , ⊕, ⊙, 0, 1⟩ is complete if

there is a sum operator

⊕
𝑖∈𝐼 with the following properties:

(1) If 𝐼 = {𝑖1, . . . , 𝑖𝑛} is finite, then
⊕

𝑖∈𝐼 𝑢𝑖 = 𝑢𝑖1 + · · · + 𝑢𝑖𝑛 .
(2) If

⊕
𝑖∈𝐼 𝑥𝑖 is defined, then 𝑣 ⊙

⊕
𝑖∈𝐼 𝑢𝑖 =

⊕
𝑖∈𝐼 𝑣 ⊙ 𝑢𝑖 and (

⊕
𝑖∈𝐼 𝑢𝑖 ) ⊙ 𝑣 =

⊕
𝑖∈𝐼 𝑢𝑖 ⊙ 𝑣 .

(3) Let (𝐽𝑘 )𝑘∈𝐾 be a family of nonempty disjoint subsets of 𝐼 (𝐼 =
⋃
𝑘∈𝐾 𝐽𝑘 and 𝐽𝑘 ∩ 𝐽𝑙 = ∅ if 𝑘 ≠ 𝑙 ),

then

⊕
𝑘∈𝐾

⊕
𝑗 ∈𝐽𝑘 𝑢 𝑗 =

⊕
𝑖∈𝐼 𝑢𝑖 .
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Definition D.2 (Scott Continuity [Karner 2004]). A (partial) semiring with order ≤ is Scott Continuous

if for any directed set 𝐷 ⊆ 𝑋 (where all pairs of elements in 𝐷 have a supremum), the following

hold:

sup

𝑥 ∈𝐷
(𝑥 ⊕ 𝑦) = (sup𝐷) ⊕ 𝑦

sup

𝑥 ∈𝐷
(𝑥 ⊙ 𝑦) = (sup𝐷) ⊙ 𝑦

sup

𝑥 ∈𝐷
(𝑦 ⊙ 𝑥) = 𝑦 ⊙ sup𝐷

D.2 Fixed point existence

Proposition D.3. Let Φ𝐶,𝑒,𝑒′ (𝑋 ) (𝜎, 𝜏) = J𝑒K(𝜎) ⊙
(⊕

𝜄 : J𝐶K(𝜎,𝜄)≠0 J𝐶K(𝜎, 𝜄) ⊙ 𝑋 (𝜄, 𝜏)
)

⊕ J𝑒 ′K(𝜎) ⊙
[𝜎 = 𝜏]. If Φ𝐶,𝑒,𝑒′ is a total function, the semantics of loops:

J𝐶 ⟨𝑒,𝑒′⟩K(𝜎, 𝜏) = (lfp 𝑋 . Φ𝐶,𝑒,𝑒′ (𝑋 )) (𝜎, 𝜏)
is well-defined, i.e., the least fixed point of Φ𝐶,𝑒,𝑒′ exists.

Proof. It is sufficient to show that Φ𝐶,𝑒,𝑒′ is Scott-continuous and rely on Kleene’s fixpoint theorem

to conclude that the fixpoint exists. For all directed sets 𝐷 ⊆ (Σ × Σ →𝑊 (Σ)) we have:
sup

𝑓 ∈𝐷
Φ𝐶,𝑒,𝑒′ (𝑓 ) (𝜎, 𝜏)

= sup

𝑓 ∈𝐷
J𝑒K(𝜎) ⊙

(⊕
𝜄∈Σ

J𝐶K(𝜎, 𝜄) ⊙ 𝑓 (𝜄, 𝜏)
)
⊕ J𝑒 ′K(𝜎) ⊙ [𝜎 = 𝜏]

= J𝑒K(𝜎) ⊙
(
sup

𝑓 ∈𝐷

⊕
𝜄∈Σ

J𝐶K(𝜎, 𝜄) ⊙ 𝑓 (𝜄, 𝜏)
)
⊕ J𝑒 ′K(𝜎) ⊙ [𝜎 = 𝜏] (by continuity of ⊕ and ⊙)

= J𝑒K(𝜎) ⊙
(⊕
𝜄∈Σ

J𝐶K(𝜎, 𝜄) ⊙ sup 𝐷 (𝜄, 𝜏)
)
⊕ J𝑒 ′K(𝜎) ⊙ [𝜎 = 𝜏]

(by [Zilberstein 2024, Lemma A.4] with 𝑓𝜄 (𝑋 ) = J𝐶K(𝜎, 𝜄) ⊙ 𝑋 (𝜄, 𝜏) for 𝜄 ∈ Σ)

= Φ𝐶,𝑒,𝑒′ (sup 𝐷) (𝜎, 𝜏)
And hence we conclude by Kleene’s fixpoint theorem. □

D.3 Syntactic restrictions for partial semirings
Proposition D.3 ensures the well-definedness of the iteration rule, provided that Φ𝐶,𝑒,𝑒′ is total.
In this section, we investigate syntactic constraints to ensure the totality of Φ𝐶,𝑒,𝑒′ (and all other

statements). Notably, challenges arise in partial semirings only, where ⊕ might be undefined. The

constraints and results above are adapted from [Zilberstein 2024, Appendix A.3] to our framework.

Definition D.4 (Compatibility [Zilberstein 2024]). The expressions 𝑒1 and 𝑒2 are compatible in semir-

ing 𝐴 = ⟨𝑈 , ⊕, ⊙, 0, 1⟩ if J𝑒1K(𝜎) ⊕ J𝑒2K(𝜎) is defined for any 𝜎 ∈ Σ.

Proposition D.5. If 𝑒1, 𝑒2 are compatible and J𝐶1K, J𝐶2K are total functions, then
J{ ⊙ 𝑒1 # 𝐶1 } □ { ⊙ 𝑒2 # 𝐶2 }K

is a total function.

Proof.

J{ ⊙ 𝑒1 # 𝐶1 } □ { ⊙ 𝑒2 # 𝐶2 }K(𝜎)
= J⊙ 𝑒1 # 𝐶1K(𝜎, 𝜏) ⊕ J⊙ 𝑒2 # 𝐶2K(𝜎, 𝜏)
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=
⊕

𝜄 : J⊙ 𝑒1K(𝜎,𝜄)≠0
J⊙ 𝑒1K(𝜎, 𝜄) ⊙ J𝐶1K(𝜄, 𝜏)

⊕
⊕

𝜄 : J⊙ 𝑒2K(𝜎,𝜄)≠0
J⊙ 𝑒2K(𝜎, 𝜄) ⊙ J𝐶2K(𝜄, 𝜏)

=
⊕

𝜄 : J𝑒1K(𝜎) ⊙[𝜎=𝜄 ]≠0
J𝑒1K(𝜎) ⊙ [𝜎 = 𝜄] ⊙ J𝐶1K(𝜄, 𝜏)

⊕
⊕

𝜄 : J𝑒2K(𝜎) ⊙[𝜎=𝜄 ]≠0
J𝑒2K(𝜎) ⊙ [𝜎 = 𝜄] ⊙ J𝐶2K(𝜄, 𝜏)

= J𝑒1K(𝜎) ⊙ J𝐶1K(𝜎, 𝜏) ⊕ J𝑒2K(𝜎) ⊙ J𝐶2K(𝜎, 𝜏)
which is well-defined by [Zilberstein 2024, Lemma A.5] (since J𝑒1K(𝜎) ⊕ J𝑒2K(𝜎) is well-defined). □

Proposition D.6 (Well-definedness of 𝐶 ⟨𝑒,𝑒′⟩
). If 𝑒, 𝑒 ′ are compatible and J𝐶K is a total function,

then J𝐶 ⟨𝑒,𝑒′⟩K is a total function.

Proof. Let Φ𝐶,𝑒,𝑒′ (𝑋 ) (𝜎, 𝜏) = J𝑒K(𝜎) ⊙
(⊕

𝜄∈Σ J𝐶K(𝜎, 𝜄) ⊙ 𝑋 (𝜄, 𝜏)
)
⊕ J𝑒 ′K(𝜎) ⊙ [𝜎 = 𝜏]. By [Zilber-

stein 2024, Lemma A.5], Φ𝐶,𝑒,𝑒′ (𝑋 ) (𝜎, 𝜏) is well-defined, ensuring the well-definedness of J𝐶 ⟨𝑒,𝑒′⟩K
as well (as per Proposition D.3). □

E Nontermination and Unreachability
However, we can represent these situations using "angelic partial correctness" and "demonic total

correctness" triples, respectively.

Triple Property
|=apc { 𝑃 } 𝐶 { false } May-Nontermination

|=
dtc

{ 𝑃 } 𝐶 { true } Must-Termination

̸ |=apc { 𝑃 } 𝐶 { false } Must-Termination

̸ |=
dtc

{ 𝑃 } 𝐶 { true } May-Nontermination

Table 9. Nontermination and unreachability.

for a reasonable definition of J𝐶★K(𝜎) may diverge which we omit as this is not the main focus

of the paper.

As angelic total correctness triples can be expressed by whp, our calculus also subsume nonter-

mination proving, i.e., the following holds:

(𝜆𝜌. 𝑃 ∩ 𝜌 ≠ ∅) ⊆ whp J𝐶K (𝜆𝜌. 𝑃 ∩ 𝜌 ≠ ∅) =⇒ ∀𝜎 ∈ 𝑃 . J𝐶★K(𝜎) may diverge

Whilst [Raad et al. 2024, Section 1, "Formal Interpretation of Divergent Triples"] focuses on a

stronger interpretation of triples where |=atc { 𝑃 } 𝐶 { ∞ } means every state 𝜎 ∈ 𝑃 have at least a
diverging trace, our framework allows to express three novel interpretation as well. We start with

the weaker interpretation that mandates the existence of at least one state in the precondition that

may diverge.

{𝑃} ⊆ whp J𝐶K (𝜆𝜌.𝑃 ∩ 𝜌 ≠ ∅) =⇒ ∃𝜎 ∈ 𝑃 . J𝐶★K(𝜎) may diverge

which can be rewritten as a program logics, using Table 5

̸ |=pc { 𝑃 } 𝐶 { ¬𝑃 }
∃𝜎 ∈ 𝑃 . J𝐶★K(𝜎) may diverge

It’s not surprising that the premise involves the falsification of a triple since the objective is to

establish an ∃ property. It’s worth noting that we can always convert it back to a valid triple in
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some other logics through Corollary 5.3. However, we choose not to do so, as it would introduce an

additional quantifier.

For the remaining two interpretations, wewill focus onwhat we termmust divergence. Unlikemay
divergence, must divergence asserts that all traces originating from a given initial state must diverge.

We highlight the inadequacy of 𝐶★
due to its semantics implicitly assuming that divergence should

never be necessary. Consequently, our subsequent exploration will revolve around while ( 𝜑 ) {𝐶 },
and we will present rules for all four interpretations.

First all, we show the nontermination rules for while ( 𝜑 ) {𝐶 } via whp.
𝑃 ⊆ 𝜑 and (𝜆𝜌. 𝑃 ∩ 𝜌 ≠ ∅) ⊆ whp J𝐶K (𝜆𝜌. 𝑃 ∩ 𝜌 ≠ ∅) =⇒ ∀𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) may diverge

𝑃 ⊆ 𝜑 and {𝑃} ⊆ whp J𝐶K (𝜆𝜌.𝑃 ∩ 𝜌 ≠ ∅) =⇒ ∃𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) may diverge

𝑃 ⊆ 𝜑 and {𝑃} ⊆ whp J𝐶K (𝜆𝜌. 𝜌 ⊆ 𝑃) =⇒ ∀𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) must diverge

𝑃 ⊆ 𝜑 and ∃𝜎 ∈ 𝑃 . {{𝜎}} ⊆ whp J𝐶K (𝜆𝜌. 𝜌 ⊆ 𝑃) =⇒ ∃𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) must diverge

These can be straightforwardly converted into rules for program logics.

|=atc { 𝑃 } 𝐶 { 𝑃 } 𝑃 ⊆ 𝜑

∀𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) may diverge

̸ |=pc { 𝑃 } 𝐶 { ¬𝑃 } 𝑃 ⊆ 𝜑

∃𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) may diverge

|=pc { 𝑃 } 𝐶 { 𝑃 } 𝑃 ⊆ 𝜑

∀𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) must diverge

̸ |=atc { 𝑃 } 𝐶 { ¬𝑃 } 𝑃 ⊆ 𝜑

∃𝜎 ∈ 𝑃 . Jwhile ( 𝜑 ) {𝐶 }K(𝜎) must diverge

The duality in this context is twofold: moving from left to right, total correctness aligns with the

falsification of partial correctness (by Corollary 5.3, essentially capturing the duality between ∀
and ∃). On the other hand, from top to bottom, the duality is determined by the choices made in

our interpretation of nondeterminism and bears resemblance to the one highlighted in [Zhang and

Kaminski 2022].

As pointed in Table 9, angelic partial correctness and demonic total correctness have a key role

in proving may-nontermination and must-termination. It is thus surprising that [Raad et al. 2024]

chose to combine (angelic) total correctness and total incorrectness logics for their sound and

complete proof system that allows to prove may-nontermination.

In this section, we show how a standard angelic partial correctness proof system relates with the

rules in [Raad et al. 2024]. We consider guarded imperative languages with nondeterministic choices

(i.e., with while constructs instead of Kleene star), and the rules for angelic partial correctness as

analogous to those for standard partial correctness, except for the nondeterministic choice [Kaminski

2019, Definition 4.5]. In particular, it is well known that by coinduction, the following rule holds:

|=apc { 𝑃 ∧ 𝜑 } 𝐶 { 𝑃 }
|=apc { 𝑃 } while ( 𝜑 ) {𝐶 } { ¬𝜑 ∧ 𝑃 }

We shall observe that angelic partial correctness is a complete proof system (for guarded im-

perative languages), and this already means that every may-nontermination triple can be proved.

However, let us show how we can derive simpler rules (analogous to those in [Raad et al. 2024])

without the need to add explicit rules for may-nontermination.

Theorem E.1. The following rules are valid in angelic partial correctness logic:
|=apc { 𝑃 } 𝐶1 { false }

|=apc { 𝑃 } 𝐶1 # 𝐶2 { false }
|=apc { 𝑃 } 𝐶1 {𝑄 } |=apc {𝑄 } 𝐶2 { false }

|=apc { 𝑃 } 𝐶1 # 𝐶2 { false }
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|=apc { 𝑃 } 𝐶𝑖 { false } for some 𝑖 ∈ {1, 2}
|=apc { 𝑃 } {𝐶1 } □ {𝐶2 } { false }

|=apc { 𝑃 ∧ 𝜑 } 𝐶 { 𝑃 ∧ 𝜑 }
|=apc { 𝑃 ∧ 𝜑 } while ( 𝜑 ) {𝐶 } { false }

The rules above resemble to those in [Raad et al. 2024], but again we stress that here we are not

developing a new complex logic. It is also easy to show that the loop rule for while loops in [Raad

et al. 2024] can be very easily proved:

|=atc { 𝑃 ∧ 𝜑 } 𝐶 { 𝑃 ∧ 𝜑 }
|=apc { 𝑃 ∧ 𝜑 } 𝐶 { 𝑃 ∧ 𝜑 }

|=apc { 𝑃 ∧ 𝜑 } while ( 𝜑 ) {𝐶 } { false }

E.1 Nontermination and Unreachability
It’s worth noting that in all four rules, we are concerned with correctness triples rather than

incorrectness ones. This emphasis is due to our focus on the termination of the forward seman-

tics. Analogous rules for partial incorrectness and total incorrectness triples would facilitate the

identification of nonterminating states in the backward semantics. For instance, we can establish:

|=ti [ 𝑃 ] 𝐶 [ 𝑃 ]
∀𝜎 ∈ 𝑃 . J𝐶★K−1 (𝜎) may diverge

̸ |=pi [ ¬𝑃 ] 𝐶 [ 𝑃 ]
∃𝜎 ∈ 𝑃 . J𝐶★K−1 (𝜎) may diverge

The rules can be used in the context of program inversion to assess whether one could compute

the pre-image by simply executing the inverted program.

The correlation between nontermination and unreachability, as highlighted in [Zhang and

Kaminski 2022], may lead one to question whether proving states as unreachable is related to

demonstrating nontermination. However, when considering backward semantics, a single non-

terminating trace doesn’t provide enough information to establish unreachability. It is essential

for all backward traces to be nonterminating, aligning with the concept of must-termination in

backward semantics, precisely corresponding to what is conventionally meant by unreachability.

This insight strengthens the connection described in [Zhang and Kaminski 2022], where their

dualities between nontermination and unreachability arise from the resolution of nondeterministic

choices. In other words, when [Zhang and Kaminski 2022] refers to nontermination, they essentially

mean must-nontermination.

Backward Must-Nontermination. Again, when reasoning about must-nontermination on 𝐶★
, it is

trivially false for the backward semantics as well. To make it worse, we argue that it is trivial for

while ( 𝜑 ) {𝐶 } as well: if our final state 𝜏 |= 𝜑 , then it is clearly unreachable and otherwise it is

reachable (in 0 iterations).

F Full calculations and examples omitted from the main text
F.1 Full calculations of Section 7.3.2
To compute whp J𝑥 B 𝑥 + 1

⟨ 1
2
, 1
2
⟩K

(
E[𝑥2]

)
, we compute subsequent Kleene’s iterates obtaining:

𝑊 0

0.5 (E[𝑥2] ⊙ 0.5) = E[𝑥2] ⊙ 0.5

𝑊 1

0.5 (E[𝑥2] ⊙ 0.5) = whp J𝑥 B 𝑥 + 1K
(
E[𝑥2] ⊙ 0.5

)
⊙ 0.5 = E[(𝑥 + 1)2] ⊙ 0.52

𝑊 2

0.5 (E[𝑥2] ⊙ 0.5) = E[(𝑥 + 2)2] ⊙ 0.53

...

𝑊 𝑛
0.5 (E[𝑥2] ⊙ 0.5) = E[(𝑥 + 𝑛)2] ⊙ 0.5𝑛+1
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This leads to:

whp J𝑥 B 𝑥 + 1
⟨ 1
2
, 1
2
⟩K

(
E[𝑥2]

)
=

⊕
𝑛∈N

𝑊 𝑛
0.5 (E[𝑥2] ⊙ 0.5)

=
⊕
𝑛∈N
E[(𝑥 + 𝑛)2] ⊙ 0.5𝑛+1

To compute whp J𝑥 B 𝑥 + 1
⟨ 1
2
, 1
2
⟩K (E[𝑥]), we compute subsequent Kleene’s iterates obtaining:

𝑊 0

0.5 (E[𝑥] ⊙ 0.5) = E[𝑥] ⊙ 0.5

𝑊 1

0.5 (E[𝑥] ⊙ 0.5) = whp J𝑥 B 𝑥 + 1K (E[𝑥] ⊙ 0.5) ⊙ 0.5 = E[𝑥 + 1] ⊙ 0.52

𝑊 2

0.5 (E[𝑥] ⊙ 0.5) = E[𝑥 + 2] ⊙ 0.53

...

𝑊 𝑛
0.5 (E[𝑥] ⊙ 0.5) = E[𝑥 + 𝑛] ⊙ 0.5𝑛+1

This leads to:

whp J𝑥 B 𝑥 + 1
⟨ 1
2
, 1
2
⟩K

(
E[𝑥]2

)
=

(⊕
𝑛∈N

𝑊 𝑛
0.5 (E[𝑥] ⊙ 0.5)

)
2

=
(⊕
𝑛∈N
E[𝑥 + 𝑛] ⊙ 0.5𝑛+1

)
2

F.2 Conditional expected values
You decide to play a coin-toss game where winning yields 1, and losing results in a loss of 5. You

plan ahead by adding specially crafted fake coins to your pocket that guarantee a win when tossed.

In addition, you ensure you have some genuine fair coins to display to your opponent. How many

coins must be in your pocket (at least) to have a non-negative expected return?

(( [𝒄 = 0] · E[1] + [𝒄 ≠ 0] · (
1
2
E[−5] +

1
2
E[1])

if ( c = 0 ) {
(( E[1]
𝑥 B 1

(( E[𝒙]
} else {

((
1
2
E[−5] +

1
2
E[1]

{ 𝑥 B −5 }
[
1

2

]
{ 𝑥 B 1 }

(( E[𝒙]
}
(( E[𝒙]
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With an input boolean variable 𝑐 we represent whether we have a fair or a fake coin. We represent

the game with the simple program𝐶 above and compute whp J𝐶K (E[𝑥]) which yields the expected

return for a given input distribution. We observe that the shape of the input distribution must be

𝜇 = 𝑛−1
𝑛

· 1𝑐=0 + 1

𝑛
· 1𝑐=1 and solve: whp J𝐶K (E[𝑥]) (𝜇) ≥ 0, leading to:

whp J𝐶K (E[𝑥]) (𝑛 − 1

𝑛
· 1𝑐=0 +

1

𝑛
· 1𝑐=1) ≥ 0(

[𝑐 = 0] · E[1] + [𝑐 ≠ 0] · ( 1
2

E[−5] + 1

2

E[1])
) (𝑛 − 1

𝑛
· 1𝑐=0 +

1

𝑛
· 1𝑐=1

)
≥ 0(

[𝑐 = 0] · E[1]
) (𝑛 − 1

𝑛
· 1𝑐=0 +

1

𝑛
· 1𝑐=1

)
+

(
[𝑐 ≠ 0] · ( 1

2

E[−5] + 1

2

E[1])
) (𝑛 − 1

𝑛
· 1𝑐=0 +

1

𝑛
· 1𝑐=1

)
≥ 0

𝑛 − 1

𝑛
− 2

𝑛
≥ 0

𝑛 − 3

𝑛
≥ 0

𝑛 ≥ 3

The result obtained, implies that you need at least 3 coins in your pocket (at least two fake coins

and one fair coin) to guarantee a non-negative expected return in this coin-toss game.
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