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ABSTRACT

Starting with Hoare Logic over 50 years ago, numerous sound and

relatively complete program logics have been devised to reason

about the diverse programs encountered in the real world. This

includes reasoning about computational effects, particularly those

effects that cause the program execution to branch into multiple

paths due to, e.g., nondeterministic or probabilistic choice.

The recently introduced Outcome Logic reimagines Hoare Logic

with effects at its core, using an algebraic representation of choice

to capture a variety of effects. In this paper, we give the first rela-

tively complete proof system for Outcome Logic, handling general

purpose looping for the first time. We also show that this proof sys-

tem applies to programs with various effects and that it facilitates

the reuse of proof fragments across different kinds of specifications.

1 INTRODUCTION

The seminal work of Floyd [26] and Hoare [29] on program logics

in the 1960s has paved the way towards modern program analysis.

The resulting Hoare Logic—still ubiquitous today—defines triples

{𝑃} 𝐶 {𝑄} to specify the behavior of a program 𝐶 in terms of a

precondition 𝑃 and a postcondition 𝑄 . In the ensuing years, many

variants of Hoare Logic have emerged, in part to handle the numer-

ous computational effects found in real-world programs.

Such effects include nontermination, arising from while loops;

nondeterminism, useful for modeling opaque aspects of program

evaluation such as user input or concurrent scheduling; and random-

ization, required for security and machine learning applications.

These effects have historically warranted specialized program

logics with distinct inference rules. For example, partial correct-

ness [26, 29] vs total correctness [43] can be used to specify that

the postcondition holds if the program terminates vs that it holds

and the programs terminates, respectively. While Hoare Logic has

classically taken a demonic view of nondeterminism (the postcon-

dition must apply to all possible outcomes), recent work on formal

methods for incorrectness [45, 47] has motivated the need for new

program logics based on angelic nondeterminism (the postcondition

applies to some reachable outcome). Further, probabilistic Hoare

Logics are quantitative, allowing one to specify the likelihood of

each outcome, not just that they may occur [3, 19, 20, 53].

Despite these apparent differences, all of the aforementioned

program logics share common reasoning principles. For instance,

sequences of commands 𝐶1 #𝐶2 are analyzed compositionally and

the precondition (resp., postcondition) can be strengthened (resp.,

weakened) using logical consequences, as shown below.

{𝑃} 𝐶1 {𝑄} {𝑄} 𝐶2 {𝑅}
{𝑃} 𝐶1 #𝐶2 {𝑅}

𝑃 ′ ⇒ 𝑃 {𝑃} 𝐶 {𝑄} 𝑄 ⇒ 𝑄 ′

{𝑃 ′} 𝐶 {𝑄 ′}
As we show in this paper, those common reasoning principles are

no mere coincidence. We give a uniform metatheoretic treatment to

program logics with a variety of computational effects—including

nondeterminism and randomization—culminating in a single rel-

atively complete proof system for all of them. We also show how

specialized reasoning principles (e.g., loop invariants for partial cor-

rectness) are derived from our more general rules and how proof

fragments can be shared between programs with different effects.

This work is not only of value to theoreticians. Recent interest

in static analysis for incorrectness [39, 45, 47, 50, 51] has prompted

the development of new program logics, distinct from Hoare Logic.

Subsequently—and largely with the goal of consolidating static anal-

ysis tools—more logics were proposed to capture both correctness

(i.e., Hoare Logic) and incorrectness [9, 10, 17, 41, 57, 58].

One such effort, which we build upon in this paper, is Outcome

Logic (OL). Outcome Logic was first proposed as a unified basis

for correctness and incorrectness reasoning in nondeterministic

and probabilistic programs, with semantics parametric on a monad

and a monoid [57]. The semantics was later refined such that each

trace is weighted using an element of a semiring [58]. For example,

Boolean weights specify which states are in the set of outcomes for

a nondeterministic program whereas real-valued weights quantify

the probabilities of outcomes in a probabilistic program. Exposing

these weights in pre- and postconditions means that a single pro-

gram logic can express multiple termination criteria, angelic and

demonic nondeterminism, probabilistic properties, and more.

The previous work on Outcome Logic has investigated its seman-

tics and connection to separation logic, leaving the proof theory

largely unexplored. Most notably, prior work only supports rea-

soning about loops via bounded unrolling, which is not suitable

for loops that iterate an indeterminate number of times. In this

paper, we give a full account of the Outcome Logic proof theory

and explore more instances than have been investigated previously.

More precisely, our contributions are as follows:

⊲ We define the Outcome Logic semantics and give five models

(Sections 2 and 3), including a multiset model (Example 2.6) not

supported by previous formalizations due tomore restrictive alge-

braic constraints. Our new looping construct naturally supports

deterministic (while loops), nondeterministic, and probabilistic

iteration—whereas previous OL versions supported fewer kinds

of iteration [58] or used a non-unified, ad-hoc semantics [57].

⊲ We provide a proof system and prove that it is sound and rela-

tively complete (Section 4). It is the first OL proof system that

handles loops that iterate an indeterminate number of times. Our

Iter rule is sufficient for analyzing any iterative command, and

from it we derive the typical rules for loop invariants (for partial

correctness), loop variants (with termination guarantees), as well

as more complex probabilistic while loops (Section 5).

⊲ We prove that OL subsumes Hoare Logic (Section 3.3) and de-

rive the entire Hoare Logic proof system (e.g., loop invariants)

in Outcome Logic (Section 5). Inspired by Dynamic Logic [49],
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our encoding of Hoare Logic uses modalities to extend partial

correctness beyond just nondeterministic programs.

⊲ We demonstrate the reusability of proofs across different effects

(e.g., nondeterminism or randomization) and properties (e.g., an-

gelic or demonic nondeterminism) (Section 7). Whereas choices

about how to handle loops typically require selecting a specific

program logic (e.g., partial vs total correctness), loop analysis

strategies can be mixed within a single OL derivation, meaning

that static analysis algorithms can avoid recomputing specifica-

tions when analyzing codebases with many procedures.

⊲ We perform combinatorial analysis of graph algorithms based

on alternative computation models (Section 8).

⊲ We contextualize the paper in terms of related work and discuss

the outlooks (Section 9).

2 WEIGHTED PROGRAM SEMANTICS

We begin the technical development by defining a basic program-

ming language and describing its semantics based on various inter-

pretations of choice. The syntax for the language is shown below.

𝐶 F skip | 𝐶1 #𝐶2 | 𝐶1 +𝐶2 | assume 𝑒 | 𝐶 ⟨𝑒,𝑒′⟩ | 𝑎 ∈ Act

𝑒 F 𝑏 | 𝑢 ∈ 𝑈

𝑏 F true | false | 𝑏1 ∨ 𝑏2 | 𝑏1 ∧ 𝑏2 | ¬𝑏 | 𝑡 ∈ Test

At first glance, this language appears similar to imperative lan-

guages such as Dijkstra’s Guarded Command Language (GCL)

[21], with familiar constructs such as skip, sequential composition

(𝐶1 #𝐶2), choice (𝐶1 +𝐶2), and primitive actions 𝑎 ∈ Act. The differ-
ences arise from the generalized assume operation, which weights

the current computation branch using an expression 𝑒 (either a test

𝑏 or a weight 𝑢 ∈ 𝑈 , which will be described in Section 2.1).

Weighting is also used in the iteration command 𝐶 ⟨𝑒,𝑒′⟩
, which

iterates 𝐶 with weight 𝑒 and exits with weight 𝑒 ′. It is a general-
ization of the Kleene star 𝐶★

, and is also more general than the

iteration constructs found in previous Outcome Logic work [57, 58].

In Section 2.3, we will show how to encode while loops, Kleene star,

and probabilistic loops using𝐶 ⟨𝑒,𝑒′⟩
. Although the latter constructs

can be encoded using while loops and auxiliary variables, capturing

this behavior without state opens up the possibility for complete

equational theories over uninterpreted atomic commands [37, 54].

Tests 𝑏 contain the typical operations of Boolean algebras as

well as primitive tests 𝑡 ∈ Test, assertions about a program state.

Primitive tests are represented semantically, so Test ⊆ 2Σ where Σ
is the set of program states (each primitive test 𝑡 ⊆ Σ is the set of

states that it describes). Tests evaluate to 0 or 1, which are abstract

Booleans representing false and true, respectively.

The values 0 and 1 are two examples of weights from the set

{0, 1} ⊆ 𝑈 . These weights have particular algebraic properties that

will be described fully in Section 2.1. The command assume 𝑏 can

be thought of as choosing whether or not to continue evaluating the

current branch of computation, whereas assume 𝑢 more generally

picks a weight for the branch, which may be a Boolean (0 or 1), but

may also be some other type of weight such as a probability. In the

remainder of this section, we will define the semantics formally.

2.1 Algebraic Preliminaries

We begin by reviewing some algebraic structures. First, we define

the properties of the weights for each computation branch.

Definition 2.1 (Monoid). A monoid ⟨𝑈 , +, 0⟩ consists of a carrier set
𝑈 , an associative binary operation + : 𝑈 ×𝑈 → 𝑈 , and an identity

element 0 ∈ 𝑈 (𝑢 + 0 = 0 +𝑢 = 𝑢). If + : 𝑈 ×𝑈 ⇀ 𝑈 is partial, then

the monoid is partial. If + is commutative (𝑢 + 𝑣 = 𝑣 + 𝑢), then the

monoid is commutative.

As an example, ⟨{0, 1},∨, 0⟩ is a monoid on Booleans.

Definition 2.2 (Semiring). A semiring ⟨𝑈 , +, ·, 0, 1⟩ is an algebraic

structure such that ⟨𝑈 , +, 0⟩ is a commutative monoid, ⟨𝑈 , ·, 1⟩ is a
monoid, and the following additional properties hold:

(1) Distributivity:𝑢 · (𝑣+𝑤) = 𝑢 ·𝑣+𝑢 ·𝑤 and (𝑢+𝑣) ·𝑤 = 𝑢 ·𝑤+𝑣 ·𝑤
(2) Annihilation: 0 · 𝑢 = 𝑢 · 0 = 0

The semiring is partial if ⟨𝑈 , +, 0⟩ is a partial monoid (but · is total).

Semirings elements will act as the weights for traces in our se-

mantics. That is, the interpretation of a program at a state 𝜎 ∈ Σwill

map each end state to a semiring element J𝐶K (𝜎) : Σ → 𝑈 . Varying

the semiring will give us different kinds of effects. For example, a

Boolean semiring where 𝑈 = {0, 1} corresponds to nondeterminis-

tic computation; J𝐶K (𝜎) : Σ → {0, 1} � 2Σ tells us which states are

in the set of nondeterministic outcomes. A probabilistic semiring

where 𝑈 = [0, 1] (the unit interval of real numbers) gives us a

map from states to probabilities—a distribution of outcomes. More

formally, the result is a weighting function, defined below.

Definition 2.3 (Weighting Function). Given a set 𝑋 and a partial

semiring A = ⟨𝑈 , +, ·, 0, 1⟩, the set of weighting functions is:

WA (𝑋 ) ≜
{
𝑚 : 𝑋 → 𝑈

��� |𝑚 | is defined and supp(𝑚) is countable
}

Where supp(𝑚) ≜ {𝜎 | 𝑚(𝜎) ≠ 0}, |𝑚 | ≜ ∑
𝜎 ∈supp(𝑚)𝑚(𝜎), and ∑

is an operation based on + described in Appendix A.

Weighting functions can encode the following types of computation.

Example 2.4 (Nondeterminism). Nondeterministic computation is

based on the Boolean semiring Bool = ⟨B,∨,∧, 0, 1⟩, where weights
are drawn from B = {0, 1} and conjunction ∧ and disjunction ∨
are the usual logical operations. This gives us WBool (𝑋 ) � 2𝑋—

weighting functions on Bool are isomorphic to sets.

Example 2.5 (Determinism). Deterministic computation also uses

Boolean weights, but with a different interpretation of the semiring

+; that is, 0 + 𝑥 = 𝑥 + 0 = 𝑥 , but 1 + 1 is undefined. The semir-

ing is therefore Bool′ = ⟨B, +,∧, 0, 1⟩. With this definition of +,
the requirement of Definition 2.3 that |𝑚 | is defined means that

|supp(𝑚) | ≤ 1, so we get that WBool′ (𝑋 ) � 𝑋 + 1—it is either a

single value 𝑥 ∈ 𝑋 , or ★ ∈ 1, indicating that the program diverged.

Example 2.6 (Multiset Nondeterminism). Rather than indicating

which outcomes are possible using Booleans, we use natural num-

bers (extended with ∞) 𝑛 ∈ N∞ to count the traces leading to each

outcome. This gives us the semiring Nat = ⟨N∞, +, ·, 0, 1⟩ where
+ and · are the standard arithmetic operations, and we get that

WNat (𝑋 ) �M(𝑋 ) whereM(𝑋 ) is a multiset.
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Example 2.7 (Randomization). Probabilities 𝑝 ∈ [0, 1] ⊂ R form

a partial semiring Prob = ⟨[0, 1], +, ·, 0, 1⟩ where + and · are real-
valued arithmetic operations, but + is undefined if 𝑥+𝑦 > 1 (just like

in Example 2.5). This gives us WProb (𝑋 ) � D(𝑋 ), where D(𝑋 ) is
a probability sub-distribution (meaning that the mass can be less

than 1 if some traces diverge).

Example 2.8 (Tropical Computation). The tropical semiring Tropical =
⟨[0,∞],min, +,∞, 0⟩ uses real-valued weights, but + is minimum

and · is addition. Computations in WTropical (𝑋 ) therefore corre-
spond to programs that choose the cheapest path for each outcome.

We will occasionally writeW(𝑋 ) instead ofWA (𝑋 ) whenA is

obvious. The semiring operations for addition, scalar multiplication,

and zero are lifted pointwise to weighting functions as follows

(𝑚1 +𝑚2) (𝑥) ≜ 𝑚1 (𝑥) +𝑚2 (𝑥) (𝑢 ·𝑚) (𝑥) ≜ 𝑢 ·𝑚(𝑥) 0(𝑥) ≜ 0

These lifted semiring operations give us a way to interpret branch-

ing, but we also need an interpretation for sequential composition.

As is standard in program semantics with effects, we use a monad,

which we define as a Klesli triple [42, 44].

Definition 2.9 (Kleisli Triple). A Kleisli triple ⟨𝑇, 𝜂, (−)†⟩ in Set con-
sists of a functor𝑇 : Set → Set, and two morphisms 𝜂 : Id ⇒ 𝑇 and

(−)† : (𝑋 → 𝑇 (𝑌 )) → 𝑇 (𝑋 ) → 𝑇 (𝑌 ) such that:

𝜂† = id 𝑓 † ◦ 𝜂 = 𝑓 𝑓 † ◦ 𝑔† = (𝑓 † ◦ 𝑔)†

For any semiring A, ⟨WA , 𝜂, (−)†⟩ is a Kleisli triple where the
operations 𝜂 and (−)† are defined below.

𝜂 (𝑥) (𝑦) ≜
{
1 if 𝑥 = 𝑦

0 if 𝑥 ≠ 𝑦
𝑓 † (𝑚) (𝑦) ≜

∑︁
𝑥 ∈supp(𝑚)

𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

2.2 Denotational Semantics

We interpret the semantics of our language using the five-tuple

⟨A, Σ,Act, Test, J·KAct⟩, where the components are:

(1) A = ⟨𝑈 , +, ·, 0, 1⟩ is a naturally ordered, complete, Scott con-

tinuous
1
, partial semiring with a top element ⊤ ∈ 𝑈 such that

⊤ ≥ 𝑢 for all 𝑢 ∈ 𝑈 .

(2) Σ is the set of concrete program states.

(3) Act is the set of atomic actions.

(4) Test ⊆ 2Σ is the set of primitive tests.

(5) J−KAct : Act → Σ → WA (Σ) is the semantic interpretation

of atomic actions.

This definition is a generalized version of the one used in Out-

come Separation Logic [58]. For example, we have dropped the

requirement that ⊤ = 1, meaning that we can capture more types

of computation, such as the multiset model (Example 2.6).

Commands are interpreted as maps from states 𝜎 ∈ Σ to weight-

ing functions on states J𝐶K : Σ → WA (Σ), as shown in Figure 1.

The first three commands are defined in terms of the monad and

semiring operations (Definitions 2.2 and 2.3): skip uses 𝜂, sequential
composition𝐶1 #𝐶2 uses (−)†, and𝐶1 +𝐶2 uses the (lifted) semiring

+. Since + is partial, the semantics of 𝐶1 +𝐶2 may be undefined. In

Section 2.3, we discuss simple syntactic checks to ensure that the

semantics is total. Atomic actions are interpreted using J·KAct.

1
These concepts are defined formally in Appendix A.

JskipK (𝜎) ≜ 𝜂 (𝜎)

J𝐶1 #𝐶2K (𝜎) ≜ J𝐶2K† (J𝐶1K (𝜎))
J𝐶1 +𝐶2K (𝜎) ≜ J𝐶1K (𝜎) + J𝐶2K (𝜎)

J𝑎K (𝜎) ≜ J𝑎KAct (𝜎)
Jassume 𝑒K (𝜎) ≜ J𝑒K (𝜎) · 𝜂 (𝜎)

r
𝐶 ⟨𝑒,𝑒′⟩

z
(𝜎) ≜

(
𝜇𝑓 .Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 )

)
(𝜎)

where

Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) = J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

Figure 1: Denotational semantics for commands J𝐶K : Σ ⇀

WA (Σ), given a partial semiring A = ⟨𝑋, +, ·, 0, 1⟩, a set of

program states Σ, atomic actions Act, primitive tests Test, and
an interpretation of atomic actions J𝑎KAct : Σ → WA (Σ).

The interpretation of assume relies on the ability to interpret

expressions and tests. We first describe the interpretation of tests,

which maps tests𝑏 to the weights 0 or 1, that is J𝑏KTest : Σ → {0, 1},
with 0 representing false and 1 representing true, so JfalseK (𝜎) = 0

and JtrueK (𝜎) = 1. The operators ∧, ∨, and ¬ are interpreted in the

obvious ways, and for primitive tests J𝑡K (𝜎) = 1 if 𝜎 ∈ 𝑡 otherwise

J𝑡K (𝜎) = 0. The full semantics of tests is given in Appendix A.1.

Since an expression is either a test or a weight, it remains only

to describe the interpretation of weights, which is J𝑢K (𝜎) = 𝑢 for

any 𝑢 ∈ 𝑈 . So, assume 𝑒 uses J𝑒K : Σ → 𝑈 to obtain a program

weight, and then scales the current state by it. If a test evaluates

to false, then the weight of the branch is 0, so it is eliminated. If

it evaluates to true, then the weight is scaled by 1—the identity of

multiplication—so the weight is unchanged.

The iteration command continues with weight 𝑒 and terminates

with weight 𝑒 ′. We can attempt to define it recursively as follows.

r
𝐶 ⟨𝑒,𝑒′⟩

z
(𝜎) =

r
assume 𝑒 #𝐶 #𝐶 ⟨𝑒,𝑒′⟩ + assume 𝑒 ′

z
(𝜎)

= J𝑒K (𝜎) ·
r
𝐶 ⟨𝑒,𝑒′⟩

z†
(J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

In reality, we define the loop semantics as a least fixed point (de-

noted by the 𝜇 operator). Some additional requirements on the

partial semiring (completeness and Scott continuity) ensure that

this fixed point exists. For the full details, see Appendix A.

2.3 Syntactic Sugar for Total Programs

As mentioned in the previous section, the semantics of𝐶1 +𝐶2 and

𝐶 ⟨𝑒,𝑒′⟩
are not always defined given the partiality of the semiring +.

The ways that + can be used in programs depends on the particular

semiring. However, regardless of the semiring, guarded choice (i.e.,

if statements) are always valid, which we define as syntactic sugar.

if 𝑏 then 𝐶1 else 𝐶2 ≜ (assume 𝑏 #𝐶1) + (assume ¬𝑏 #𝐶2)
Since Bool, Nat, and Tropical are total semirings, unguarded choice

is always valid in those execution models. In the probabilistic case,

choice can be used as long as the sum of the weights of both

branches is at most 1. One way to achieve this is to weight one

branch by a probability 𝑝 ∈ [0, 1] and the other branch by 1 − 𝑝 , a
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biased coin-flip. We provide syntactic sugar for that operation:

𝐶1 +𝑝 𝐶2 ≜ (assume 𝑝 #𝐶1) + (assume 1 − 𝑝 #𝐶2)

We also provide syntactic sugar for iterating constructs below.

while 𝑏 do 𝐶 ≜ 𝐶 ⟨𝑏,¬𝑏 ⟩ 𝐶★ ≜ 𝐶 ⟨1,1⟩ 𝐶 ⟨𝑝 ⟩ ≜ 𝐶 ⟨𝑝,1−𝑝 ⟩

While loops use a test to determine whether iteration should con-

tinue, making them deterministic. The Kleene star 𝐶★
is defined

for interpretations based on total semirings only; it iterates 𝐶 non-

deterministically many times.
2

Finally, the probabilistic iterator 𝐶 ⟨𝑝 ⟩
continues to execute with

probability 𝑝 and exits with probability 1 − 𝑝 . This behavior can be

replicated using a while loop and auxiliary variables, but adding

state complicates reasoning about the programs and precludes, e.g.,

devising equational theories over uninterpreted atomic commands

[54]. This construct—which was not included in previous Outcome

Logic work—is therefore advantageous.

In Appendix A, we prove that programs constructed using ap-

propriate syntax have total semantics. For the remainder of the

paper, we assume that programs are constructed in this way, and

are thus always well-defined.

3 OUTCOME LOGIC

In this section, we define Outcome Logic, and show how it relates

to Hoare Logic and Dynamic Logic [49].

3.1 Outcome Assertions

Outcome assertions are the basis for expressing pre- and postcon-

ditions in Outcome Logic. Unlike pre- and postconditions of Hoare

Logic—which can only describe individual program states—outcome

assertions expose the program weights from Section 2.1 to enable

reasoning about branching and the weights of reachable outcomes.

We represent these assertions semantically; outcome assertions

𝜑,𝜓 ∈ 2WA (Σ)
are the sets of weighted collections of program

states representing their true assignments. For any𝑚 ∈ WA (Σ),
we write𝑚 ⊨ 𝜑 (𝑚 satisfies 𝜑) to mean that𝑚 ∈ 𝜑 .

The use of semantic assertions allows us to focus on the rules of

inference pertaining to the structure of programs, showing that the

proof system is sufficient for all practical purposes. No program

logic is truly complete, as analyzing loops inevitably reduces to

the (undecidable) halting problem [1, 15]. It is well known that

in order to express intermediate assertions and loop invariants,

the assertion language must at least contain Peano arithmetic [40],

making the details of this language somewhat uninteresting. As

a result, many modern developments such as Separation Logic

[11, 55], Incorrectness Logic [47], Iris [31, 32], probabilistic Hoare-

style logics [3, 33], and others [2, 16, 17, 52] use semantic assertions.

Wewill now define useful notation for common assertions, which

are also repeated in Figure 2. For example ⊤ (always true) is the set

of all weighted collections, ⊥ (always false) is the empty set, and

logical negation is the set complement.

⊤ ≜WA (Σ) ⊥ ≜ ∅ ¬𝜑 ≜WA (Σ) \ 𝜑

2
In nondeterministic languages, while 𝑏 do 𝐶 ≡ (assume 𝑏 # 𝐶)★ # assume ¬𝑏,

however this encoding does not work in general since (assume 𝑏 # 𝐶)★ is not a

well-defined program when using a partial semiring (e.g., Examples 2.5 and 2.7).

⊤ ≜WA (Σ) ¬𝜑 ≜WA (Σ) \ 𝜑
⊥ ≜ ∅ 𝜑 ⇒ 𝜓 ≜ (WA (Σ) \ 𝜑) ∪𝜓

𝜑 ∨𝜓 ≜ 𝜑 ∪𝜓 1𝑚 ≜ {𝑚}

𝜑 ∧𝜓 ≜ 𝜑 ∩𝜓 ∃𝑥 : 𝑇 .𝜙 (𝑥) ≜
⋃
𝑡 ∈𝑇

𝜙 (𝑡)

𝜑 ⊕𝜓 ≜ {𝑚1 +𝑚2 | 𝑚1 ∈ 𝜑,𝑚2 ∈ 𝜓 }

𝜑 (𝑢) ≜ {𝑢 ·𝑚 | 𝑚 ∈ 𝜑} ∪ {0 | 𝑢 = 0}
⌜𝑃 ⌝ ≜ {𝑚 ∈ WA (Σ) | |𝑚 | = 1, supp(𝑚) ⊆ 𝑃}

Figure 2: Outcome assertion semantics, given a partial semir-

ing A = ⟨𝑈 , +, ·, 0, 1⟩ where 𝑢 ∈ 𝑈 , 𝜙 : 𝑇 → 2WA (Σ)
, and 𝑃 ∈ 2Σ.

Disjunction, conjunction, and implication are defined as usual:

𝜑 ∨𝜓 ≜ 𝜑 ∪𝜓 𝜑 ∧𝜓 ≜ 𝜑 ∩𝜓 𝜑 ⇒ 𝜓 ≜ (WA (Σ) \𝜑) ∪𝜓

Given a predicate 𝜙 : 𝑇 → 2WA (Σ)
on some (possibly infinite) set

𝑇 , existential quantification over𝑇 is the union of 𝜙 (𝑡) for all 𝑡 ∈ 𝑇 ,

meaning it is true iff there is some 𝑡 ∈ 𝑇 that makes 𝜙 (𝑡) true.

∃𝑥 : 𝑇 . 𝜙 (𝑥) ≜
⋃
𝑡 ∈𝑇

𝜙 (𝑡)

Next, we define assertions based on the operations of the semiring

A = ⟨𝑈 , +, ·, 0, 1⟩. The outcome conjunction 𝜑 ⊕ 𝜓 asserts that the

collection of outcomes𝑚 can be split into two parts𝑚 =𝑚1 +𝑚2

such that 𝜑 holds in𝑚1 and𝜓 holds in𝑚2

3
.

𝜑 ⊕𝜓 ≜ {𝑚1 +𝑚2 | 𝑚1 ∈ 𝜑,𝑚2 ∈ 𝜓 }

For example, in the nondeterministic interpretation, we can view

𝑚1 and𝑚2 as sets (not necessarily disjoint), such that𝑚 =𝑚1 ∪𝑚2,

so 𝜑 and𝜓 each describe subsets of the reachable states.

The weighting operation 𝜑 (𝑢)
means that 𝜑 occurs with weight

𝑢, where 𝑢 ∈ 𝑈 is a literal weight. We also ensure that 0 ∈ 𝜑 (0)
so

that 𝜑 ⊕𝜓 (0) ⇔ 𝜑 even if𝜓 is unsatisfiable.

𝜑 (𝑢) ≜ {𝑢 ·𝑚 | 𝑚 ∈ 𝜑} ∪ {0 | 𝑢 = 0}

Finally, we provide a way to lift atomic assertions 𝑃 ⊆ Σ describing

some subset of the program states. When lifted to be an outcome

assertion,
⌜𝑃 ⌝ must cover all the reachable states (supp(𝑚) ⊆ 𝑃 ).

We also require that |𝑚 | = 1. In the nondeterministic case (Exam-

ple 2.4), this simply means that𝑚 ≠ ∅, and so 𝑃 is non-vacuously

satisfied. In the probabilistic case (Example 2.7), this means that the

probability of 𝑃 occurring is exactly 1. It also means that in
⌜𝑃 ⌝

(𝑝)
,

the probability of 𝑃 occurring is exactly 𝑝 and that 𝜂 (𝜎) ⊨ ⌜𝑃 ⌝ for
any 𝜎 ∈ 𝑃 .

⌜𝑃 ⌝ ≜ {𝑚 | |𝑚 | = 1, supp(𝑚) ⊆ 𝑃}
Wewill often omit the lifting brackets

⌜−⌝ and simplywrite ⟨𝑃⟩𝐶 ⟨𝑄⟩.
We also permit the use of tests 𝑏 in triples. For instance, the precon-

dition of ⟨𝑃 ∧ 𝑏⟩ 𝐶 ⟨𝑄⟩ is the set:

{𝑚 ∈ W(Σ) | |𝑚 | = 1,∀𝜎 ∈ supp(𝑚) . 𝜎 ∈ 𝑃 ∧ J𝑏KTest (𝜎) = 1}

3
We remark that ⊕ is semantically equivalent to the separating conjunction (∗) from
the logic of Bunched Implications (BI) [48], but a deeper exploration is out of scope.
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There is a close connection between the ⊕ of outcome assertions

and the choice operator 𝐶1 +𝐶2 for programs. If 𝑃 is an assertion

describing the outcome of 𝐶1 and 𝑄 describes the outcome of 𝐶2,

then 𝑃 ⊕ 𝑄 describes the outcome of 𝐶1 +𝐶2 by stating that both

𝑃 and 𝑄 are reachable outcomes via a non-vacuous program trace.

This is more expressive than using the disjunction 𝑃 ∨𝑄 , since the

disjunction does not guarantee that both 𝑃 and 𝑄 are reachable.

Suppose 𝑃 describes a desirable program outcome whereas 𝑄 de-

scribes an erroneous one; then 𝑃 ⊕𝑄 tells us that the program has a

bug (it can reach an error state) whereas 𝑃 ∨𝑄 is not strong enough

to make this determination [57].

Similar to the syntactic sugar for probabilistic programs in Sec-

tion 2.3, we let 𝜑 ⊕𝑝 𝜓 ≜ 𝜑 (𝑝) ⊕𝜓 (1−𝑝)
. If 𝑃 and 𝑄 are the results

of running 𝐶1 and 𝐶2, then 𝑃 ⊕𝑝 𝑄—meaning that 𝑃 occurs with

probability 𝑝 and 𝑄 occurs with probability 1 − 𝑝—is the result of

running 𝐶1 +𝑝 𝐶2.

3.2 Outcome Triples

Inspired by Hoare Logic, Outcome Triples ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ specify pro-

gram behavior in terms of pre- and postconditions [57]. The differ-

ence is that Outcome Logic describes weighted collections of states

as opposed to Hoare Logic, which can only describe individual

states. We write ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ to mean that a triple is semantically

valid, as defined below.

Definition 3.1 (Outcome Triples). Given ⟨A, Σ,Act, Test, J·KAct⟩, the
semantics of outcome triples is defined as follows:

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ iff ∀𝑚 ∈ WA (Σ). 𝑚 ⊨ 𝜑 =⇒ J𝐶K† (𝑚) ⊨ 𝜓

Informally, ⟨𝜑⟩𝐶 ⟨𝜓 ⟩ is valid if the result of running the program
𝐶 on a weighted collection of states satisfying 𝜑 satisfies 𝜓 . The

power to describe the collection of states in the postconditionmeans

that Outcome Logic can express many types of properties including

reachability (𝑃 ⊕ 𝑄), probabilities (𝑃 ⊕𝑝 𝑄), and nontermination

(the lack of outcomes, ⊤(0)
). Next, we will see how Outcome Logic

can be used to encode familiar program logics.

3.3 Dynamic Logic and Hoare Logic

Outcome Logic, in its full generality, allows one to quantify the

precise weights of each outcome. Nevertheless, many common

program logics do not provide this much power, which can be

advantageous as they offer simplified reasoning principles—Hoare

Logic’s loop Invariant rule (Section 5.3) is considerably simpler

than theWhile rule needed for general Outcome Logic (Section 5.2).

In this section, we devise an assertion syntax in order to show

the connections between Outcome Logic and Hoare Logic. We take

inspiration from modal logic and Dynamic Logic [49], using the

modalities □ and ^ to express that assertions always or sometimes

occur, respectively.We encode thesemodalities using the operations

from Section 3.1, where𝑈 is the set of semiring weights.

□𝑃 ≜ ∃𝑢 : 𝑈 .𝑃 (𝑢) = {𝑚 | supp(𝑚) ⊆ 𝑃}
^𝑃 ≜ ∃𝑢 : (𝑈 \ {0}) .𝑃 (𝑢) ⊕ ⊤ = {𝑚 | supp(𝑚) ∩ 𝑃 ≠ ∅}

We define □𝑃 to mean that 𝑃 occurs with some weight, so𝑚 ⊨ □𝑃
exactly when supp(𝑚) ⊆ 𝑃 . Dually, ^𝑃 requires that 𝑃 has nonzero

weight and the − ⊕ ⊤ allows there to be other elements in the

support too. So, 𝑚 ⊨ ^𝑃 when 𝜎 ⊨ 𝑃 for some 𝜎 ∈ supp(𝑚). It

is relatively easy to see that these two modalities are De Morgan

duals, that is □𝑃 ⇔ ¬^¬𝑃 and ^𝑃 ⇔ ¬□¬𝑃 .
For Boolean-valued semirings (Examples 2.4 and 2.5), we get that

□𝑃 = 𝑃 (0) ∨ 𝑃 (1)
. Only 0 satisfies 𝑃 (0)

, indicating that the program

diverged (let us call this assertion div), and 𝑃 (1)
is equivalent to 𝑃 .

So, □𝑃 = 𝑃 ∨ div, meaning that either 𝑃 covers all the reachable

outcomes, or the program diverged (□ will be useful for expressing
partial correctness). Similarly, ^𝑃 = 𝑃 ⊕ ⊤, meaning that 𝑃 is one

of the (possibly many) reachable outcomes.

Now, we are going to use these modalities to show that Outcome

Logic subsumes other program logics. We start with nondeterminis-

tic, partial correctness Hoare Logic, where the meaning of the triple

{𝑃} 𝐶 {𝑄} is that any state resulting from running the program 𝐶

on a state satisfying 𝑃 must satisfy 𝑄 . There are many equivalent

ways to formally define the semantics of Hoare Logic; we will use

a characterization based on Dynamic Logic [49], which is inspired

by modal logic in that it defines modalities similar to □ and ^.

[𝐶]𝑄 = {𝜎 | J𝐶K (𝜎) ⊆ 𝑄} ⟨𝐶⟩𝑄 = {𝜎 | J𝐶K (𝜎) ∩𝑄 ≠ ∅}
That is, [𝐶]𝑄 is an assertion stating that𝑄 must hold after running

the program 𝐶 (if it terminates). In the predicate transformer litera-

ture, [𝐶]𝑄 is called the weakest liberal precondition [21, 22]. The

dual modality ⟨𝐶⟩𝑄 states that𝑄 might hold after running𝐶 (some-

times referred to as the weakest possible precondition [30, 45]).

A Hoare Triple {𝑃} 𝐶 {𝑄} is valid iff 𝑃 ⊆ [𝐶]𝑄 , so to show that

Outcome Logic subsumes Hoare Logic, it suffices to prove that we

can express 𝑃 ⊆ [𝐶]𝑄 . We do so using the □ modality defined

previously. More precisely, we capture Hoare Triples as follows.

Theorem 3.2 (Subsumption of Hoare Logic).

⊨ ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩ iff 𝑃 ⊆ [𝐶]𝑄 iff ⊨ {𝑃} 𝐶 {𝑄}

While it has already been shown that Outcome Logic subsumes

Hoare Logic [57], our characterization is not tied to nondetermin-

ism; the triple ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩ does not necessarily have to be inter-

preted in a nondeterministic way, but can rather be taken to mean

that running 𝐶 in a state satisfying 𝑃 results in 𝑄 covering all

the terminating traces with some weight. When we later develop

rules for reasoning about loops using invariants (Section 5), those

techniques will be applicable to any instance of Outcome Logic.

Given that the formula 𝑃 ⊆ [𝐶]𝑄 gives rise to a meaningful

program logic, it is natural to ask whether the same is true for

𝑃 ⊆ ⟨𝐶⟩𝑄 . In fact, this formula is colloquially known as Lisbon

Logic (it was proposed during a meeting in Lisbon as a possible

foundation for incorrectness reasoning [45, 47, 57]). The semantics

of Lisbon triples, denoted {|𝑃 |} 𝐶 {|𝑄 |}, is that for any start state

satisfying 𝑃 , there exists a state resulting from running 𝐶 that

satisfies 𝑄 . Given that 𝑄 only covers a subset of the outcomes, it

is not typically suitable for correctness, however it is useful for

incorrectness as some bugs only occur some of the time.

Theorem 3.3 (Subsumption of Lisbon Logic).

⊨ ⟨𝑃⟩ 𝐶 ⟨^𝑄⟩ iff 𝑃 ⊆ ⟨𝐶⟩𝑄 iff ⊨ {|𝑃 |} 𝐶 {|𝑄 |}

In the following section, we will see a complete proof system for

Outcome Logic and, given that we have just shown that Outcome

Logic subsumes Hoare and Lisbon Logic, it will allow us to derive

any specification in those two logics as well. However, given the
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Commands

⟨𝜑⟩ skip ⟨𝜑⟩
Skip

⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ ⟨𝜗⟩ 𝐶2 ⟨𝜓 ⟩
⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓 ⟩

Seq

⟨𝜑⟩ 𝐶1 ⟨𝜓1⟩ ⟨𝜑⟩ 𝐶2 ⟨𝜓2⟩
⟨𝜑⟩ 𝐶1 +𝐶2 ⟨𝜓1 ⊕𝜓2⟩

Plus

𝜑 ⊨ 𝑒 = 𝑢

⟨𝜑⟩ assume 𝑒 ⟨𝜑 (𝑢) ⟩
Assume

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞ ∀𝑛 ∈ N. ⟨𝜑𝑛⟩ assume 𝑒 #𝐶 ⟨𝜑𝑛+1⟩ ⟨𝜑𝑛⟩ assume 𝑒 ′ ⟨𝜓𝑛⟩
⟨𝜑0⟩ 𝐶 ⟨𝑒,𝑒′⟩ ⟨𝜓∞⟩

Iter

Structural Rules

⟨⊥⟩ 𝐶 ⟨𝜑⟩
False

⟨𝜑⟩ 𝐶 ⟨⊤⟩
True

⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩
⟨𝜑 (𝑢) ⟩ 𝐶 ⟨𝜓 (𝑢) ⟩

Scale

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩
⟨𝜑1 ∨ 𝜑2⟩ 𝐶 ⟨𝜓1 ∨𝜓2⟩

Disj

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩
⟨𝜑1 ∧ 𝜑2⟩ 𝐶 ⟨𝜓1 ∧𝜓2⟩

Conj

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩
⟨𝜑1 ⊕ 𝜑2⟩ 𝐶 ⟨𝜓1 ⊕𝜓2⟩

Choice

∀𝑡 ∈ 𝑇 . ⟨𝜙 (𝑡)⟩ 𝐶 ⟨𝜙 ′(𝑡)⟩
⟨∃𝑥 : 𝑇 . 𝜙 (𝑥)⟩ 𝐶 ⟨∃𝑥 : 𝑇 . 𝜙 ′(𝑥)⟩

Exists

𝜑 ′ ⇒ 𝜑 ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ 𝜓 ⇒ 𝜓 ′

⟨𝜑 ′⟩ 𝐶 ⟨𝜓 ′⟩
Conseqence

Figure 3: Rules of inference for Outcome Logic

generality of Outcome Logic, some of the proof rules are not er-

gonomic for use in less expressive variants. Later, in Section 5, we

show how we can derive simpler rules, for example, to analyze

loops using invariants (Hoare Logic) or variants (Lisbon Logic).

4 PROOF THEORY

We now describe the Outcome Logic rules of inference, which are

shown in Figure 3. The rules are split into three categories.

Standard Commands. The rules for standard (non-looping) com-

mands mostly resemble those of Hoare Logic. The Skip rule stipu-

lates that the precondition is preserved after running a no-op. Seq

derives a specification for a sequential composition from two sub-

derivations for each command. Similarly, Plus joins the derivations

of two program branches using an outcome conjunction.

Assume has a side condition that 𝜑 ⊨ 𝑒 = 𝑢, where 𝑢 ∈ 𝑈 is a

semiring element. Informally, this means that the precondition en-

tails that the expression 𝑒 is some concrete weight𝑢. More formally,

it is defined as follows:

𝜑 ⊨ 𝑒 = 𝑢 iff ∀𝑚 ∈ 𝜑. ∀𝜎 ∈ supp(𝑚) . J𝑒K (𝜎) = 𝑢

If 𝑒 is a weight literal, then 𝜑 ⊨ 𝑢 = 𝑢 vacuously holds, so the rule

can be simplified to ⊢ ⟨𝜑⟩ assume 𝑢 ⟨𝜑 (𝑢) ⟩, but if it is a test 𝑏, then
𝜑 must contain enough information to conclude that 𝑏 is true or

false. Additional rules to decide 𝜑 ⊨ 𝑒 = 𝑢 are given in Appendix C.

Iteration. The Iter rule uses two families of predicates: 𝜑𝑛 repre-

sents the result of 𝑛 iterations of assume 𝑒 #𝐶 and𝜓𝑛 is the result of

iterating 𝑛 times and then weighting the result by 𝑒 ′, so
⊕

𝑛∈N𝜓𝑛
represents all the terminating traces. To avoid the infinitary out-

come conjunction, we instead use the assertion 𝜓∞, which must

have the following property.

Definition 4.1 (Converging Assertions). A family (𝜓𝑛)𝑛∈N converges

(written (𝜓𝑛)𝑛∈N ⇝ 𝜓∞) iff for any collection (𝑚𝑛)𝑛∈N, if𝑚𝑛 ⊨ 𝜓𝑛
for each 𝑛 ∈ N, then ∑

𝑛∈N𝑚𝑛 ⊨ 𝜓∞.

Structural Rules.We also give additional rules that are not depen-

dent on the program command. This includes rules for trivial pre-

and postconditions (True and False), scaling by a weight (Scale),

combining subderivations using logical connectives (Disj, Conj,

and Choice), introducing existential quantification (Exists), and

weakening (Conseqence). Note that the implications in the rule

of Conseqence are semantic ones: 𝜑 ′ ⇒ 𝜑 iff 𝜑 ′ ⊆ 𝜑 . We do not

explore the proof theory for outcome assertions, although it has

been done for similar logics [25, 48].

4.1 Soundness and Relative Completeness

Soundness of the Outcome Logic proof system means that any

derivable triple (using the inference rules in Figure 3 and axioms

about atomic actions) is semantically valid. We write Γ ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩
to mean that ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ is derivable given a collection of axioms

Γ = ⟨𝜑1⟩ 𝑎1 ⟨𝜓1⟩, . . . , ⟨𝜑𝑛⟩ 𝑎𝑛 ⟨𝜓𝑛⟩. Let Ω consist of all triples

⟨𝜑⟩ 𝑎 ⟨𝜓 ⟩ such that 𝑎 ∈ Act, and ⊨ ⟨𝜑⟩ 𝑎 ⟨𝜓 ⟩ (all the true statements

about atomic actions). We also presume that the program 𝐶 is well-

formed as described in Section 2.3. The soundness theorem is stated

formally below.

Theorem 4.2 (Soundness). Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ =⇒ ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩
The full proof is shown in Appendix C and proceeds by induction on

the structure of the derivation Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩, with cases in which

each rule is the last inference. Most of the cases are straightforward,

but the following lemma is needed to justify the soundness of the

Iter case, where 𝐶0 = skip and 𝐶𝑛+1 = 𝐶𝑛 #𝐶 .

Lemma 4.3. The following equation holds:

r
𝐶 ⟨𝑒,𝑒′⟩

z
(𝜎) =

∑︁
𝑛∈N

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K (𝜎)

Completeness—the converse of soundness—tells us that our in-

ference rules are sufficient to deduce any true statement about a

program. As is typical, Outcome Logic is relatively complete, mean-

ing that proving any valid triple can be reduced to implications
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𝜑 ⇒ 𝜓 in the assertion language. For OL instances involving state

(and Hoare Logic), those implications are undecidable since they

must, at the very least, encode Peano arithmetic [1, 15, 40].

The first step is to show that given any program𝐶 and precondi-

tion 𝜑 , we can derive the triple ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩, where𝜓 is the strongest

postcondition [23], i.e., the strongest assertion making that triple

true. As defined below,𝜓 is exactly the set resulting from evaluating

𝐶 on each𝑚 ∈ 𝜑 . The proceeding lemma shows that the triple with

the strongest postcondition is derivable.

Definition 4.4 (Strongest Postcondition).

post(𝐶,𝜑) ≜ {J𝐶K† (𝑚) | 𝑚 ∈ 𝜑}

Lemma 4.5. Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨post(𝐶,𝜑)⟩

The proof is by induction on the structure of the program, and

is shown in its entirety in Appendix C. The cases for skip and

𝐶1 #𝐶2 are straightforward, but the other cases are more challenging

and involve existential quantification. To give an intuition as to

why existentials are needed, let us examine an example involving

branching. We use a concrete instance of Outcome Logic with

variable assignment (formalized in Section 6).

Consider the program skip + (𝑥 B 𝑥 + 1) and the precondition

𝑥 ≥ 0. It is tempting to say that post is obtained compositionally

by joining the post of the two branches using ⊕:

post(skip + (𝑥 B 𝑥 + 1), 𝑥 ≥ 0)
= post(skip, 𝑥 ≥ 0) ⊕ post(𝑥 := 𝑥 + 1, 𝑥 ≥ 0)
= (𝑥 ≥ 0) ⊕ (𝑥 ≥ 1)

However, that is incorrect. While it is a valid postcondition, it is not

the strongest one because it does not account for the relationship

between the values of 𝑥 in the two branches; if 𝑥 = 𝑛 in the first

branch, then it must be 𝑛+1 in the second branch. A second attempt

could use existential quantification to dictate that relationship.

∃𝑛 : N. (𝑥 = 𝑛) ⊕ (𝑥 = 𝑛 + 1)

Unfortunately, that is also incorrect; it does not properly account

for the fact that that precondition 𝑥 ≥ 0 may be satisfied by a

set of states in which 𝑥 has many different values—the existential

quantifier requires that 𝑥 takes on a single value in all the initial

outcomes. The solution is to quantify over the collections𝑚 ∈ 𝜑

satisfying the precondition, and then to take the post of 1𝑚 = {𝑚}.

post(𝐶1 +𝐶2, 𝜑) = ∃𝑚 : 𝜑. post(𝐶1, 1𝑚) ⊕ post(𝐶2, 1𝑚)

While it may seem unwieldy that the strongest post is hard to

characterize even in this seemingly innocuous example, the same

problem arises in logics for probabilistic [3, 19] and hyper-property

[17] reasoning, both of which are instances of OL. Although the

strongest postcondition is quite complicated, something weaker

suffices in most cases. We will later see how rules for those simpler

cases are derived (Section 5) and used (Sections 7 and 8).

The main result is now a straightforward corollary of Lemma 4.5

using the rule of Conseqence, since any valid postcondition is

implied by the strongest one.

Theorem 4.6 (Relative Completeness).

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ =⇒ Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩

Proof. We first establish that post(𝐶,𝜑) ⇒ 𝜓 . Suppose that

𝑚 ∈ post(𝐶,𝜑). That means that there must be some𝑚′ ∈ 𝜑 such

that𝑚 = J𝐶K† (𝑚′). Using ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩, we get that𝑚 ⊨ 𝜓 . Now, we
complete the derivation as follows:

Ω

⟨𝜑⟩ 𝐶 ⟨post(𝐶,𝜑)⟩
Lemma 4.5

post(𝐶,𝜑) ⇒ 𝜓

⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩
Conseqence

□

5 DERIVED RULES

We now present derived rules for simplified reasoning involving

if statements, while loops, and the encodings of Hoare and Lisbon

Logic from Section 3.3. Recall that Hoare triples {𝑃} 𝐶 {𝑄} are

semantically equivalent to ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩ in Outcome Logic (Theo-

rem 3.2) and Lisbon triples {|𝑃 |}𝐶 {|𝑄 |} are equivalent to ⟨𝑃⟩𝐶 ⟨^𝑄⟩
(Theorem 3.3). For the full derivations, refer to Appendix D.

5.1 Sequencing in Hoare and Lisbon Logic

The Seq rule requires that the postcondition of the first command

exactly matches the precondition of the next. This is at odds with

our encodings of Hoare and Lisbon Logic, which have asymmetry

between the modalities used in the pre- and postconditions. Still,

sequencing is possible using derived rules.

⟨𝑃⟩ 𝐶1 ⟨□𝑄⟩ ⟨𝑄⟩ 𝐶2 ⟨□𝑅⟩
⟨𝑃⟩ 𝐶1 #𝐶2 ⟨□𝑅⟩

Seq (Hoare)

⟨𝑃⟩ 𝐶1 ⟨^𝑄⟩ ⟨𝑄⟩ 𝐶2 ⟨^𝑅⟩
⟨𝑃⟩ 𝐶1 #𝐶2 ⟨^𝑅⟩

Seq (Lisbon)

Since both □ and ^ are encoded using existential quantifiers, the

derivations (Appendix D.1) use Scale and Exists to conclude:

⟨𝑄⟩ 𝐶2 ⟨□𝑅⟩ ⊢ ⟨𝑄 (𝑣) ⟩ 𝐶2 ⟨∃𝑢 : 𝑈 .𝑅 (𝑢 ·𝑣) ⟩

⊢ ⟨∃𝑣 : 𝑈 .𝑄 (𝑣) ⟩ 𝐶2 ⟨∃𝑣,𝑢 : 𝑈 .𝑅 (𝑢 ·𝑣) ⟩
⊢ ⟨□𝑄⟩ 𝐶2 ⟨□𝑅⟩

The case for ^ is similar, also making use of the fact that − ⊕ ⊤ is

idempotent ((𝑅 ⊕⊤) ⊕⊤ ⇔ 𝑅 ⊕⊤). Lisbon Logic adds an additional

requirement on the semiring; 0 must be the unique annihilator of

multiplication (𝑢 · 𝑣 = 0 iff 𝑢 = 0 or 𝑣 = 0), which ensures that a

finite sequence of commands does not eventually cause a branch

to have zero weight. Examples 2.4 to 2.8 all obey this property.

5.2 If Statements and While Loops

Recall from Section 2.3 that we encode if statements and while

loops using the choice and iteration constructs. We now derive

convenient inference rules for those cases. If statements are defined

as (assume 𝑏 # 𝐶1) + (assume ¬𝑏 # 𝐶2). Reasoning about them

generally requires the precondition to be separated into two parts,

𝜑1 and 𝜑2, representing the collections of states in which 𝑏 is true

and false, respectively. This may require—e.g., in the probabilistic

case—that 𝜑1 and 𝜑2 quantify the weight (likelihood) of the guard.

If it is possible to separate the precondition in that way, then 𝜑1
and 𝜑2 act as the preconditions for 𝐶1 and𝐶2, respectively, and the
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overall postcondition is an outcome conjunction of the results of

both branches.

𝜑1 ⊨ 𝑏 ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ 𝜑2 ⊨ ¬𝑏 ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩
⟨𝜑1 ⊕ 𝜑2⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓2 ⊕𝜓2⟩

If

From If, we derive the familiar rules for Hoare and Lisbon Logic.

⟨𝑃 ∧ 𝑏⟩ 𝐶1 ⟨□𝑄⟩ ⟨𝑃 ∧ ¬𝑏⟩ 𝐶2 ⟨□𝑄⟩
⟨𝑃⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨□𝑄⟩

If (Hoare)

⟨𝑃 ∧ 𝑏⟩ 𝐶1 ⟨^𝑄⟩ ⟨𝑃 ∧ ¬𝑏⟩ 𝐶2 ⟨^𝑄⟩
⟨𝑃⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩

If (Lisbon)

The derivations rely on the fact that if 𝑃 holds, then there exist

𝑢 and 𝑣 such that 𝑢 + 𝑣 = 1 and (𝑃 ∧ 𝑏) (𝑢) ⊕ (𝑃 ∧ ¬𝑏) (𝑣) holds.
We complete the proof using Scale and Split, and existentially

quantify the new weights using □ and ^.
The rule for while loops is slightly simplified compared to Iter,

as it only generates a proof obligation for a single triple instead of

two. There are still two families of assertions, but𝜑𝑛 now represents

the portion of the program configuration where the guard 𝑏 is true,

and𝜓𝑛 represents the portion where it is false. So, on each iteration,

𝜑𝑛 continues to evaluate and𝜓𝑛 exits; the final postcondition𝜓∞
is an aggregation of all the terminating traces.

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞ ⟨𝜑𝑛⟩ 𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩ 𝜑𝑛 ⊨ 𝑏 𝜓𝑛 ⊨ ¬𝑏
⟨𝜑0 ⊕𝜓0⟩ while 𝑏 do 𝐶 ⟨𝜓∞⟩

While

This While rule is similar to those found in probabilistic Hoare

Logics [3, 20].

5.3 Loop Invariants

Loop invariants are a popular analysis technique in partial correct-

ness logics. The idea is to find an invariant 𝑃 that is preserved by

the loop body and therefore must remain true when—and if—the

loop terminates. Because loop invariants are unable to guarantee

termination, the Outcome Logic rule must indicate that the program

may diverge. We achieve this using the □modality from Section 3.3.

The rule for Outcome Logic loop invariants is as follows:

⟨𝑃 ∧ 𝑏⟩ 𝐶 ⟨□𝑃⟩
⟨𝑃⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩

Invariant

This rule states that if the program starts in a state described by 𝑃 ,

which is also preserved by each execution of the loop, then 𝑃∧¬𝑏 is

true of every reachable end state. If the program diverges and there

are no reachable end states, then □(𝑃 ∧ ¬𝑏) is vacuously satisfied,

just like in Hoare Logic.

Invariant is derived using the While rule with 𝜑𝑛 = □(𝑃 ∧ 𝑏)
and 𝜓𝑛 = □(𝑃 ∧ ¬𝑏). To show (𝜓𝑛)𝑛∈N ⇝ 𝜓∞, first note that

𝑚𝑛 ⊨ □(𝑃 ∧ ¬𝑏) simply means that supp(𝑚𝑛) ⊆ (𝑃 ∧ ¬𝑏). Since
this is true for all 𝑛 ∈ N, then all the reachable states satisfy 𝑃 ∧¬𝑏.

In Section 3.3 we used ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩ to encode nondeterministic

Hoare Logic, but the Invariant rule applies to all instances of

Outcome Logic. For example, this rule can be used for probabilistic

programs to state that 𝑃 ∧ ¬𝑏 covers all the terminating outcomes,

and occurs with some probability.

It is well known that Skip, Seq (Hoare), If (Hoare), Invariant,

and Conseqence constitute a complete proof system for Hoare

Logic [15, 38]. It follows that these rules are also complete for de-

riving any Outcome Logic triples of the form ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩, avoiding
the more complex machinery of Lemma 4.5

4
.

5.4 Loop Variants

Loop variants are an alternative way to reason about loops when

termination guarantees are needed. They were first studied in the

context of total Hoare Logic [43], but are also used in other logics

that require termination guarantees such as Reverse Hoare Logic

[18], Incorrectness Logic [47], and Lisbon Logic [2, 45, 52].
5

Rather than using an invariant that is preserved by the loop body,

we now use a family of changing variants (𝜑𝑛)𝑛∈N such that 𝜑𝑛
implies that the loop guard 𝑏 is true for all 𝑛 > 0, and 𝜑0 implies

that it is false, guaranteeing that the loop exits. The inference rule

is shown below, and states that starting at some 𝜑𝑛 , the execution

will eventually count down to 𝜑0, at which point it terminates.

∀𝑛 ∈ N. 𝜑0 ⊨ ¬𝑏 𝜑𝑛+1 ⊨ 𝑏 ⟨𝜑𝑛+1⟩ 𝐶 ⟨𝜑𝑛⟩
⟨∃𝑛 : N.𝜑𝑛⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩

Variant

Since the premise guarantees termination after precisely 𝑛 steps, it

is easy to establish convergence—the postcondition only consists

of a single trace.

Although loop variants are valid in any Outcome Logic instance,

they require loops to be deterministic—the loop executes for the

same number of iterations regardless of any computational effects

that occur in the body. Examples of such scenarios include for loops,

where the number of iterations is fixed upfront.

We also present a more flexible loop variant rule geared towards

Lisbon triples. In this case, we use the ^ modality to only require

that some trace is moving towards termination.

∀𝑛 ∈ N. 𝑃0 ⊨ ¬𝑏 𝑃𝑛+1 ⊨ 𝑏 ⟨𝑃𝑛+1⟩ 𝐶 ⟨^𝑃𝑛⟩
⟨∃𝑛 : N.𝑃𝑛⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩

Lisbon Variant

In other words, Lisbon Variant witnesses a single terminating

trace. As such, it does not require the lockstep termination of all

outcomes like Variant does.

6 ADDING VARIABLES AND STATE

We now develop a concrete Outcome Logic instance with variable

assignment as atomic actions. Let Var be a countable set of variable
names and Val = Z be integer program values. Program stores

𝑠 ∈ S ≜ Var → Val are maps from variables to values and we write

𝑠 [𝑥 ↦→ 𝑣] to denote the store obtained by extending 𝑠 ∈ S such

that 𝑥 has value 𝑣 . Actions 𝑎 ∈ Act are variable assignments 𝑥 B 𝐸,

where 𝑥 ∈ Var and 𝐸 can be a variable 𝑥 ∈ Var, constant 𝑣 ∈ Val,
test 𝑏, or an arithmetic operation (+, −, ×).

𝑎 ∈ ActF 𝑥 B 𝐸

𝐸 F 𝑥 ∈ Var | 𝑣 ∈ Val | 𝑏 | 𝐸1 + 𝐸2 | 𝐸1 − 𝐸2 | 𝐸1 × 𝐸2

4
N.B., this only includes the deterministic program constructs—if statements and

while loops instead of𝐶1 +𝐶2 and𝐶
⟨𝑒,𝑒′⟩

. The inclusion of a few more derived rules

completes the proof system for nondeterministic programs

5
Outcome Logic guarantees the existence of terminating traces, but it is not a total

correctness logic in that it cannot ensure that all traces terminate. This stems from the

program semantics, which collects the finite traces, but does not preclude additional

nonterminating ones. For example, JskipK (𝜎) = Jskip + while true do skipK (𝜎) .
The exception is the probabilistic interpretation, where almost sure termination can be

established by proving that the weight of the postcondition is 1.
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In addition, we let the set of primitive tests Test = 2S be all subsets

of the program states S. We will often write these tests symbol-

ically, for example 𝑥 ≥ 5 represents the set {𝑠 ∈ S | 𝑠 (𝑥) ≥ 5}.
The interpretation of atomic actions is shown below, where the

interpretation of expressions J𝐸KExp : S → Val is in Appendix E.

J𝑥 B 𝐸KAct (𝑠) ≜ 𝜂 (𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)])

We define substitutions in the standard way [2, 3, 17, 33], as follows:

𝜑 [𝐸/𝑥] ≜ {𝑚 ∈ W(S) | (𝜆𝑠.𝜂 (𝑠 [𝑥 ↦→ J𝐸KExp (𝑠))])† (𝑚) ∈ 𝜑}

That is, 𝑚 ∈ 𝜑 [𝐸/𝑥] exactly when assigning 𝑥 to 𝐸 in 𝑚 satis-

fies 𝜑 . This behaves as expected in conjunction with symbolic

tests, for example (𝑥 ≥ 5) [𝑦 + 1/𝑥] = (𝑦 + 1 ≥ 5) = (𝑦 ≥ 4).
It also distributes over most of the operations in Figure 2, e.g.,

(𝜑 ⊕ 𝜓 ) [𝐸/𝑥] = 𝜑 [𝐸/𝑥] ⊕ 𝜓 [𝐸/𝑥]. Using substitution, we add

an inference rule for assignment, mirroring the typical weakest-

precondition style rule of Hoare Logic [29].

⟨𝜑 [𝐸/𝑥]⟩ 𝑥 B 𝐸 ⟨𝜑⟩
Assign

When used in combination with the rule of Conseqence, Assign

can be used to derive any semantically valid triple about variable

assignment. Though it is not needed for completeness, we also

include the rule of Constancy, which allows us to add information

about unmodified variables to a completed derivation. Here, free(𝑃)
is the set of free variables that are used by the assertion 𝑃 (e.g.,

free(𝑥 ≥ 5) = {𝑥}) and mod(𝐶) are the variables modified by 𝐶 ,

both defined in Appendix E. The □ modality guarantees that the

rule applies regardless of whether or not 𝐶 terminates.

⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ free(𝑃) ∩mod(𝐶) = ∅
⟨𝜑 ∧ □𝑃⟩ 𝐶 ⟨𝜓 ∧ □𝑃⟩

Constancy

In this particular Outcome Logic instance, all triples can be derived

without the axioms Ω from Theorem 4.6.

Theorem 6.1 (Soundness and Completeness).

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ ⇐⇒ ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩

7 CASE STUDY: REUSING PROOF FRAGMENTS

The following case study serves as a proof of concept for how

Outcome Logic’s unified reasoning principles can benefit large-

scale program analysis. The efficiency of such systems relies on

pre-computing procedure specifications, which can simply be in-

serted whenever those procedures are invoked rather than being

recomputed at every call-site. Present analysis systems operate over

homogenous effects. Moreover—when dealing with nondeterminis-

tic programs—they must also fix either a demonic interpretation

(for correctness) or an angelic interpretation (for bug-finding).

But many procedures do not have effects—they do not branch

into multiple outcomes and use only limited forms of looping

where termination is easily established (e.g., iterating over a data

structure)—suggesting that specifications for such procedures can

be reused across multiple types of programs (e.g., nondeterministic

or probabilistic) and specifications (e.g., partial or total correctness).

Indeed, this is the case for the program in Section 7.1. We then

show how a single proof about that program can be reused in both

a partial correctness specification (Section 7.2) and a probabilistic

program (Section 7.3). The full derivations are given in Appendix F.

7.1 Integer Division

In order to avoid undefined behavior related to division by zero,

our expression syntax from Section 6 does not include division.

However, we can write a simple procedure to divide two natural

numbers 𝑎 and 𝑏 using repeated subtraction.

DIV ≜


𝑞 B 0 # 𝑟 B 𝑎 #
while 𝑟 ≥ 𝑏 do
𝑟 B 𝑟 − 𝑏 #
𝑞 B 𝑞 + 1

At the end of the execution, 𝑞 holds the quotient and 𝑟 is the re-

mainder. Although the DIV program uses a while loop, it is quite

easy to establish that it terminates. To do so, we use the Variant

rule with the family of variants 𝜑𝑛 shown below.

𝜑𝑛 ≜

{
𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏 if 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋
false if 𝑛 > ⌊𝑎 ÷ 𝑏⌋

Executing the loop body in a state satisfying 𝜑𝑛 results in a state

satisfying 𝜑𝑛−1. At the end, 𝜑0 stipulates that 𝑞 = ⌊𝑎 ÷ 𝑏⌋ and

𝑟 = 𝑎 mod 𝑏, which immediately implies that 𝑟 < 𝑏, so the loop

must exit. This allows us to give the following specification for the

program.

⟨𝑎 ≥ 0 ∧ 𝑏 > 0⟩ DIV ⟨𝑞 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = 𝑎 mod 𝑏⟩

Note that the DIV program is fully deterministic; we did not make

any assumptions about which interpretation of choice is used. This

will allow us to reuse the proof of DIV in programs with different

kinds of effects in the remainder of the section.

7.2 The Collatz Conjecture

Consider the function 𝑓 defined below.

𝑓 (𝑛) ≜
{

𝑛 ÷ 2 if 𝑛 mod 2 = 0

3𝑛 + 1 if 𝑛 mod 2 = 1

The Collatz Conjecture—an elusive open problem in the field of

mathematics—postulates that for any positive 𝑛, repeated applica-

tions of 𝑓 will eventually yield the value 1. Let the stopping time

𝑆𝑛 be the minimum number of applications of 𝑓 to 𝑛 that it takes

to reach 1. For example, 𝑆1 = 0, 𝑆2 = 1, and 𝑆3 = 7. When run in

an initial state where 𝑎 = 𝑛, the following program computes 𝑆𝑛 ,

storing the result in 𝑖 . Note that this program makes use of DIV,
defined previously.

COLLATZ ≜


𝑖 B 0 #
while 𝑎 ≠ 1 do
𝑏 B 2 # DIV #
if 𝑟 = 0 then 𝑎 B 𝑞 else 𝑎 B 3 × 𝑎 + 1 #
𝑖 B 𝑖 + 1

Since some numbers may not have a finite stopping time—in which

case the program will not terminate—this is a perfect candidate

for a partial correctness proof. Assuming that 𝑎 initially holds the

value 𝑛, we can use a loop invariant stating that 𝑎 = 𝑓 𝑖 (𝑛) on each

iteration. If the program terminates, then 𝑎 = 𝑓 𝑖 (𝑛) = 1, and so
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𝑆𝑛 = 𝑖 . We capture this using the following triple, where the □
modality indicates that the program may diverge.

⟨𝑎 = 𝑛 ∧ 𝑛 > 0⟩ COLLATZ ⟨□(𝑖 = 𝑆𝑛)⟩

7.3 Embedding Division in a Probabilistic

Program

The following program loops for a random number of iterations,

deciding whether to continue by flipping a fair coin. It is interpreted

using the Prob semiring from Example 2.7.

𝑎 B 0 # 𝑟 B 0 # (𝑎 B 𝑎 + 1 # 𝑏 B 2 # DIV) ⟨
1

2
⟩

Suppose we want to know the probability that it terminates after

an even or odd number of iterations. The program makes use of

DIV to divide the current iteration number 𝑎 by 2, therefore the

remainder 𝑟 will indicate whether the program looped an even or

odd number of times. We can analyze the program with the Iter

rule, using the following two families of assertions.

𝜑𝑛 ≜ (𝑎 = 𝑛 ∧ 𝑟 = 𝑎 mod 2) (
1

2
𝑛 )

𝜓𝑛 ≜ (𝑎 = 𝑛 ∧ 𝑟 = 𝑎 mod 2) (
1

2
𝑛+1 )

According to Iter, the final postcondition can be obtained by taking

an outcome conjunction of all the 𝜓𝑛 for 𝑛 ∈ N. However, we do
not care about the precise value of 𝑎, only whether 𝑟 is 0 or 1. The

probability that 𝑟 = 0 is
1

2
+ 1

8
+ 1

32
+ · · · , a geometric series whose

sum converges to
2

3
. A similar calculation for the 𝑟 = 1 case gives us

the following specification, indicating that the program terminates

after an even or odd number of iterations with probability
2

3
and

1

3
,

respectively.

⟨true⟩
𝑎 B 0 # 𝑟 B 0 # (𝑎 B 𝑎 + 1 # 𝑏 B 2 # DIV) ⟨

1

2
⟩

⟨(𝑟 = 0) ⊕ 2

3

(𝑟 = 1)⟩

8 CASE STUDY: GRAPH PROBLEMS AND

QUANTITATIVE ANALYSIS

We now examine case studies using Outcome Logic to derive quan-

titative properties in alternative models of computation.

8.1 Counting RandomWalks

Suppose we wish to count the number of paths between the origin

and the point (𝑁,𝑀) on a two dimensional grid. To achieve this,

we first write a program that performs a random walk on the grid;

while the destination is not yet reached, it nondeterministically

chooses to take a step on either the 𝑥 or 𝑦-axis (or steps in a fixed

direction if the destination on one axis is already reached).

WALK ≜



while 𝑥 < 𝑁 ∨ 𝑦 < 𝑀 do
if 𝑥 < 𝑁 ∧ 𝑦 < 𝑀 then

(𝑥 B 𝑥 + 1) + (𝑦 B 𝑦 + 1)
else if 𝑥 ≥ 𝑁 then
𝑦 B 𝑦 + 1

else
𝑥 B 𝑥 + 1

Using a standard program logic, it is relatively easy to prove that

the program will always terminate in a state where 𝑥 = 𝑁 and

𝑦 = 𝑀 . However, we are going to interpret this program using the

Nat semiring (Example 2.6) in order to count how many traces (i.e.,

random walks) reach that outcome.

First of all, we know it will take exactly 𝑁 +𝑀 steps to reach

the destination, so we can analyze the program using the Variant

rule, where the loop variant 𝜑𝑛 records the state of the program 𝑛

steps away from reaching (𝑁,𝑀).
If we are 𝑛 steps away, then there are several outcomes ranging

from 𝑥 = 𝑁 − 𝑛 ∧ 𝑦 = 𝑀 to 𝑥 = 𝑁 ∧ 𝑦 = 𝑀 − 𝑛. More precisely, let

𝑘 be the distance to 𝑁 on the 𝑥-axis, meaning that the distance to

𝑀 on the 𝑦-axis must be 𝑛 − 𝑘 , so 𝑥 = 𝑁 − 𝑘 and 𝑦 = 𝑀 − (𝑛 − 𝑘).
At all times, it must be true that 0 ≤ 𝑥 ≤ 𝑁 and 0 ≤ 𝑦 ≤ 𝑀 , so it

must also be true that 0 ≤ 𝑁 − 𝑘 ≤ 𝑁 and 0 ≤ 𝑀 − (𝑛 − 𝑘) ≤ 𝑀 .

solving for 𝑘 , we get that 0 ≤ 𝑘 ≤ 𝑁 and 𝑛 −𝑀 ≤ 𝑘 ≤ 𝑛. So, 𝑘 can

range between max(0, 𝑛 −𝑀) and min(𝑁,𝑛).
In addition, the number of paths to (𝑥,𝑦) is

(𝑥+𝑦
𝑥

)
, i.e., the number

of ways to pick 𝑥 steps on the 𝑥-axis out of 𝑥 +𝑦 total steps. Putting

all of that together, we define our loop variant as follows:

𝜑𝑛 ≜

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛−𝑀)

(𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)) ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

The loop body moves the program state from 𝜑𝑛+1 to 𝜑𝑛 . The out-
comes of 𝜑𝑛+1 get divided among the three if branches. In the out-

come where 𝑥 = 𝑁 already, 𝑦 must step, so this goes to the second

branch. Similarly, if𝑦 = 𝑀 already, then 𝑥 must step, corresponding

to the third branch. All other outcomes go to the first branch, which

further splits into two outcomes due to the nondeterministic choice.

Since we start 𝑁 + 𝑀 steps from the destination, we get the

following precondition:

𝜑𝑁+𝑀 =

𝑁⊕
𝑘=𝑁

(𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑁 − 𝑘) ((
0

𝑁−𝑁 )) = (𝑥 = 0 ∧ 𝑦 = 0)

In addition, the postcondition is:

𝜑0 =

0⊕
𝑘=0

(𝑥 = 𝑁−𝑘∧𝑦 = 𝑀+𝑘) ((
𝑁 +𝑀
𝑁 )) = (𝑥 = 𝑁∧𝑦 = 𝑀) ((

𝑁 +𝑀
𝑁 ))

This gives us the final specification below, which tells us that there

are

(𝑁+𝑀
𝑁

)
paths to reach (𝑁,𝑀) from the origin. The full derivation

is given in Appendix G.1.

⟨𝑥 = 0 ∧ 𝑦 = 0⟩ WALK ⟨(𝑥 = 𝑁 ∧ 𝑦 = 𝑀) ((
𝑁 +𝑀
𝑁 )) ⟩

8.2 Shortest Paths

We will now use an alternative interpretation of computation to

analyze a program that nondeterministically finds the shortest path

from 𝑠 to 𝑡 in a directed graph. Let𝐺 be the𝑁×𝑁 Boolean adjacency

matrix of a directed graph, so that𝐺 [𝑖] [ 𝑗] = true if there is an edge

from 𝑖 to 𝑗 (or false if no such edge exists). We also add the following

expression syntax to read edge weights in a program, noting that

𝐺 [𝐸1] [𝐸2] ∈ Test since it is Boolean-valued.

𝐸 ::= · · · | 𝐺 [𝐸1] [𝐸2]

J𝐺 [𝐸1] [𝐸2]KExp (𝑠) ≜ 𝐺
[
J𝐸1KExp (𝑠)

] [
J𝐸2KExp (𝑠)

]
The following program loops until the current position 𝑝𝑜𝑠 reaches

the destination 𝑡 . At each step, it nondeterministically chooses
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which edge (𝑛𝑒𝑥𝑡) to traverse using an iterator; for all 𝑛𝑒𝑥𝑡 ≤ 𝑁 ,

each trace is selected if there is an edge from 𝑝𝑜𝑠 to 𝑛𝑒𝑥𝑡 , and a

weight of 1 is then added to the path, signifying that we took a step.

SP ≜


while 𝑝𝑜𝑠 ≠ 𝑡 do
𝑛𝑒𝑥𝑡 B 1 #
(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #
𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 #
assume 1

We will interpret this program using the Tropical semiring from

Example 2.8, in which addition corresponds to min and multipli-

cation corresponds to addition. So, path lengths get accumulated

via addition and nondeterministic choices correspond to taking

the path with minimal weight. That means that at the end of the

program execution, we should end up in a scenario where 𝑝𝑜𝑠 = 𝑡 ,

with weight equal to the shortest path length from 𝑠 to 𝑡 .

To prove this, we first formalize the notion of shortest paths

below: sp𝑡𝑛 (𝐺, 𝑠, 𝑠 ′) indicates whether there is a path of length 𝑛

from 𝑠 to 𝑠 ′ in 𝐺 in without passing through 𝑡 and sp(𝐺, 𝑠, 𝑡) is the
shortest path length from 𝑠 to 𝑡 . Let 𝐼 = {1, . . . , 𝑁 } \ {𝑡}.

sp𝑡
0
(𝐺, 𝑠, 𝑠 ′) ≜ (𝑠 = 𝑠 ′)

sp𝑡𝑛+1 (𝐺, 𝑠, 𝑠
′) ≜

∨
𝑖∈𝐼

sp𝑡𝑛 (𝐺, 𝑠, 𝑖) ∧𝐺 [𝑖] [𝑠 ′]

sp(𝐺, 𝑠, 𝑡) ≜ min {𝑛 ∈ N | sp𝑡𝑛 (𝐺, 𝑠, 𝑡)}
We analyze the while loop using the While rule, which requires

𝜑𝑛 and𝜓𝑛 to record the outcomes where the loop guard is true or

false, respectively, after 𝑛 iterations. We define these as follows:

𝜑𝑛 =
⊕
𝑖∈𝐼

(𝑝𝑜𝑠 = 𝑖) (sp
𝑡
𝑛 (𝐺,𝑠,𝑖)+𝑛)

𝜓𝑛 = (𝑝𝑜𝑠 = 𝑡) (sp
𝑡
𝑛 (𝐺,𝑠,𝑡 )+𝑛) 𝜓∞ = (𝑝𝑜𝑠 = 𝑡) (sp(𝐺,𝑠,𝑡 ))

Recall that in the tropical semiring false = ∞ and true = 0. So,

after 𝑛 iterations, the weight of the outcome 𝑝𝑜𝑠 = 𝑖 is equal to 𝑛

if there is an 𝑛-step path from 𝑠 to 𝑖 , and ∞ otherwise. The final

postcondition𝜓∞ is the shortest path length to 𝑡 , which is also the

minimum of sp𝑡𝑛 (𝐺, 𝑠, 𝑡) +𝑛 for all 𝑛. Using the Iter rule we get the

following derivation for the inner loop:〈⊕
𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 1) (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)

〉
(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #〈⊕𝑁
𝑗=1

⊕
𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗) ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)

〉
𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 # assume 1〈⊕𝑁
𝑗=1

⊕
𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑗) ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛+1)

〉
=⇒〈⊕𝑁

𝑗=1 (𝑝𝑜𝑠 = 𝑗) (sp𝑡𝑛+1 (𝐺,𝑠,𝑗)+𝑛+1)
〉

The outcome conjunction over 𝑖 ≠ 𝑡 (corresponding to theminimum

weight path) gives us 𝑝𝑜𝑠 = 𝑗 with weight sp𝑡
𝑛+1 (𝐺, 𝑠, 𝑗) + 𝑛 + 1—it

is 𝑛 + 1 if there is path of length 𝑛 to some 𝑖 and 𝐺 [𝑖] [ 𝑗].
The precondition is 𝜑0 ⊕𝜓0 = (𝑝𝑜𝑠 = 𝑠), since sp𝑡

0
(𝐺, 𝑠, 𝑖) = false

when 𝑖 ≠ 𝑠 and true when 𝑖 = 𝑠 . Putting this all together, we get the

following triple, stating that the final position is 𝑡 and the weight

is equal to the shortest path.

⟨𝑝𝑜𝑠 = 𝑠⟩ SP ⟨(𝑝𝑜𝑠 = 𝑡) (sp(𝐺,𝑠,𝑡 )) ⟩

Note that the program does not terminate if there is no path from

𝑠 to 𝑡 . In that case, since there are no reachable outcomes, the

interpretation of the program should be 0. Indeed, 0 = ∞ in the

tropical semiring, which is also the shortest path between two

disconnected nodes. The postcondition is therefore (𝑝𝑜𝑠 = 𝑡) (∞)
,

meaning that the program diverged.

9 DISCUSSION AND RELATEDWORK

Computational effects have traditionally beckoned disjoint pro-

gram logics across two dimensions: different kinds of effects (e.g.,

nondeterminism vs randomization) and different assertions about

those effects (e.g., angelic vs demonic nondeterminism). Outcome

Logic [57] captures all of those properties in a unified way, but until

now the proof theory has not been thoroughly explored.

This paper provides a relatively complete proof system for Out-

come Logic, showing that programs with effects are not only se-

mantically similar, but also share common reasoning principles.

In addition, specialized techniques (i.e., analyzing loops with vari-

ants or invariants) are particular modes of use of our more general

framework, and are compatible with each other rather than re-

quiring semantically distinct program logics. This new perspective

invites increased sharing across formal methods for diverse types

of programs, and properties about those programs.

Correctness, Incorrectness, and Unified Program Logics. While

formal verification has long been the aspiration for automated

static analysis, bug-finding tools are often more practical in real

engineering settings. This partly comes down to efficiency—bugs

can be found without considering all the program traces—and partly

due to the fact that most real world software just is not correct [24].

However, standard logical foundations of program analysis such

as Hoare Logic are prone to false positives when used for bug-

finding—they cannot witness the existence of erroneous traces. In

response, O’Hearn developed Incorrectness Logic, which under-

approximates the reachable states (as opposed to Hoare Logic’s

over-approximation) so as to only report bugs that truly occur [47].

Although Incorrectness Logic successfully serves as a logical

foundation for bug-finding tools [39, 50], it is semantically incom-

patible with correctness analysis, making sharing of toolchains

difficult. Attention has therefore turned to ways to unify the theo-

ries of correctness and incorrectness. This includes Exact Separation

Logic, which combines Hoare Logic and Incorrectness Logic to gen-

erate specifications that are valid for both, but that also preludes

under- or over-approximation via the rule of consequence [41].

Local Completeness Logic combines Incorrectness Logic with an

over-approximate abstract domain, to similar effect [9, 10].

Outcome Logic. Outcome Logic unifies correctness and incorrect-

ness reasoning without compromising the use of logical conse-

quences. This builds on an idea colloquially known as Lisbon Logic,

first proposed by Derek Dreyer and Ralf Jung in 2019, that has

similarities to the diamond modality of Dynamic Logic [49] and

Hoare’s calculus of possible correctness [30]. The idea was briefly

mentioned in the Incorrectness Logic literature [39, 45, 47], but us-

ing Lisbon Logic as a foundation of incorrectness analysis was not

fully explored until the introduction of Outcome Logic [57], which

generalizes both Lisbon Logic and Hoare Logic. The metatheory

of Lisbon Logic has subsequently been explored more deeply in
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a variety of unpublished manuscripts [2, 52]. Hyper Hoare Logic

also generalizes Hoare and Lisbon Logics [17], and is semantically

equivalent to the Boolean instance of OL (Example 2.4), but does

not support effects other than nondeterminism.

The initial Outcome Logic paper used a model based on both

a monad and a monoid, with looping defined via the Kleene star

𝐶★
[57]. The semantics of 𝐶★

had to be justified for each instance.

However, 𝐶★
is not compatible with probabilistic computation (see

Footnote 2), so an ad-hoc semantics was used in the probabilistic

case. Moreover, only the Induction rule was provided for reasoning

about 𝐶★
, which amounts to unrolling the loop one time. Some

loops can be analyzed by applying Induction repeatedly, but it

is inadequate if the number of iterations depends at all on the

program state. Our 𝐶 ⟨𝑒,𝑒′⟩
construct fixes this, defining iteration in

a way that supports both Kleene star (𝐶 ⟨1,1⟩
) and also probabilistic

computation. Our Iter rule can be used to reason about any loop,

even ones that iterate an unbounded number of times.

The next Outcome Logic paper focused on a particular instance

based on separation logic [58]. The model was refined to use semir-

ings, and the language included while loops instead of 𝐶★
so that a

single well-definedness proof could extend to all instances. How-

ever, the evaluation model included additional constraints (1 = ⊤
and normalization) that preclude, e.g., the multiset model (Exam-

ple 2.6) that we use in this paper. Rather than giving inference rules,

the paper provided a symbolic execution algorithm, which also only

supported loops via bounded unrolling.

This paper goes beyond prior work on Outcome Logic by giving

a more general model with more instances and better support for

iteration, providing a relatively complete proof system that is able

to handle any loops, and exploring case studies related to previously

unsupported types of computation and looping.

Computational Effects. Effects have been present since the early

years of program analysis. Even basic programming languages

with while loops introduce the possibility of nontermination. Partial

correctness was initially used to sidestep the termination question

[26, 29], but total correctness (requiring termination) was later

introduced too [43]. More recently, automated tools were developed

to prove (non)termination in real-world software [6, 7, 12–14, 52].

Nondeterminism also showed up in early variants of Hoare Logic,

stemming from Dijkstra’s Guarded Command Language (GCL) [21]

and Dynamic Logic [49]; it is useful for modeling backtracking

algorithms [27] and opaque aspects of program evaluation such

as user input and concurrent scheduling. While Hoare Logic has

traditionally used demonic nondeterminism [8], other program

logics have recently arisen to deal with nondeterminism in different

ways, particularly for incorrectness [2, 18, 45, 47, 52, 57].

Beginning with the seminal work of Kozen [35, 36], the study of

probabilistic programs has a rich history. This eventually led to the

development of probabilistic Hoare Logic variants [3, 19, 20, 53]

that enable reasoning about programs in terms of likelihoods and

expected values. Doing so requires pre- and postconditions to be

predicates on probability distributions rather than individual states.

Outcome Logic generalizes reasoning about all of those effects

using using a common set of inference rules. This opens up the pos-

sibility for static analysis tools that soundly share proof fragments

between different types of programs, as shown in Section 7.

Relative Completeness and Expressivity. Any sufficiently ex-

pressive program logic must necessarily be incomplete since, for

example, the Hoare triple {true} 𝐶 {false} states that the program
𝐶 never halts, which is not provable in an axiomatic deduction

system. In response, Cook devised the idea of relative completeness

to convey that a proof system is adequate for analyzing a program,

but not necessarily assertions about the program states [15].

Expressivity requires that the assertion language used in pre- and

postconditions can describe the intermediate program states needed

to, e.g., apply the Seq rule. In other words, the assertion syntax must

be able to express post(𝐶, 𝑃) from Definition 4.4. Implications for

an expressive language quickly become undecidable, as they must

encode Peano arithmetic [1, 40]. With this in mind, the best we can

hope for is a program logic that is complete relative to an oracle

that decides implications in the rule of Conseqence.

The question ofwhat an expressive (syntactic) assertion language

for Outcome Logic looks like remains open. In fact, the question

of expressive assertion languages for probabilistic Hoare Logics

(which are subsumed by Outcome Logic) is also open [3, 20]. A

complete probabilistic logic with syntactic assertions does exist, but

the programming language does not include loops and is therefore

considerably simplified [19]; it is unclear if this approach would

extend to looping programs. To avoid the question of expressivity,

modern program logics (including our own) typically use semantic

assertions [2, 3, 11, 16, 17, 31–33, 47, 52, 55]. This includes logics

that are mechanized within proof assistants [3, 17, 31, 32].

Our completeness proof (Theorem 4.6) has parallels to Proposi-

tional Hoare Logic, as we assume that axioms are available to prove

properties about atomic commands [38]. However, in Theorem 6.1,

we also show that a particular OL instance with variable assignment

is relatively complete without additional axioms.

Quantitative Reasoning andWeighted Programming.Whereas

Hoare Logic provides a foundation for propositional program analy-

sis, quantitative program analysis has been explored too. Probabilis-

tic Propositional Dynamic Logic [36] and weakest pre-expectation

calculi [5, 33, 46] are used to reason about randomized programs

in terms of expected values. This idea has been extended to non-

probabilistic quantitative properties too [4, 56].

Weighted programming [4] generalizes pre-expectation reason-

ing using semirings to model branch weights, much like the model

of Outcome Logic presented in this paper. Outcome Logic is a propo-

sitional analogue to weighted programming’s quantitative model,

but it is also more expressive in its ability to reason about quantities

over multiple outcomes. For example, in Section 7.3, we derive a sin-

gle OL triple that gives the probabilities of two outcomes, whereas

weighted programming (or weakest pre-expectations) would need

to compute each probability individually.

In the examples in Section 8 with only one outcome, OL is still

more informative—those triples not only indicate the weight of

the outcome, but also that it is the only possible outcome. That

is, we know that WALK cannot terminate in a position other than

(𝑁,𝑀) and that SP cannot terminate in a position other than 𝑡 .

With weighted programming, there is not a straightforward way

to determine the full set of outcomes.
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Finally, weighted programming cannot encode the □ and ^
modalities from Section 3.3 and therefore cannot embed the Hoare

and Lisbon Logic reasoning principles that we showed in Section 5.
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A Relatively Complete Program Logic for Effectful Branching

A TOTALITY OF LANGUAGE SEMANTICS

Before proving that the language semantics is total, we must first

introduce a few new concepts.

Definition A.1 (Natural Ordering). Given a (partial) semiring ⟨𝑈 , +, ·, 0, 1⟩,
the natural order is defined to be:

𝑢 ≤ 𝑣 iff ∃𝑤. 𝑢 +𝑤 = 𝑣

The semiring is naturally ordered if the natural order ≤ is a partial

order. Note that ≤ is trivially reflexive and transitive, but it remains

to show that it is anti-symmetric.

Natural orders extend to weighting functions too, where𝑚1 ⊑
𝑚2 iff there exists𝑚 such that𝑚1+𝑚 =𝑚2. This corresponds exactly

to the pointwise order as well, so𝑚1 ⊑𝑚2 iff𝑚1 (𝜎) ≤ 𝑚2 (𝜎) for
all 𝜎 ∈ supp(𝑚1).
Definition A.2 (Complete Semiring [28]). A (partial) semiring ⟨𝑈 , +, ·, 0, 1⟩
is complete if there is a sum operator

∑
𝑖∈𝐼 with the following prop-

erties:

(1) If 𝐼 = {𝑖1, . . . , 𝑖𝑛} is finite, then
∑
𝑖∈𝐼 𝑢𝑖 = 𝑢𝑖1 + · · · + 𝑢𝑖𝑛

(2) If

∑
𝑖∈𝐼 𝑥𝑖 is defined, then 𝑣 ·

∑
𝑖∈𝐼 𝑢𝑖 =

∑
𝑖∈𝐼 𝑣 ·𝑢𝑖 and (

∑
𝑖∈𝐼 𝑢𝑖 )·𝑣 =∑

𝑖∈𝐼 𝑢𝑖 · 𝑣
(3) Let (𝐽𝑘 )𝑘∈𝐾 be a family of nonempty disjoint subsets of 𝐼 (𝐼 =⋃

𝑘∈𝐾 𝐽𝑘 and 𝐽𝑘 ∩ 𝐽ℓ = ∅ if 𝑘 ≠ ℓ), then
∑
𝑘∈𝐾

∑
𝑗 ∈𝐽𝑘 𝑢 𝑗 =

∑
𝑖∈𝐼 𝑢𝑖

Definition A.3 (Scott Continuity [34]). A (partial) semiring with

order ≤ is Scott Continuous if for any directed set 𝐷 ⊆ 𝑋 (where

all pairs of elements in 𝐷 have a supremum), the following hold:

sup

𝑥 ∈𝐷
(𝑥 + 𝑦) = (sup𝐷) + 𝑦

sup

𝑥 ∈𝐷
(𝑥 · 𝑦) = (sup𝐷) · 𝑦

sup

𝑥 ∈𝐷
(𝑦 · 𝑥) = 𝑦 · sup𝐷

Lemma A.4. Let ⟨𝑈 , +, ·, 0, 1⟩ be a complete, continuous, naturally

ordered, partial semiring. For any family of Scott continuous functions

(𝑓𝑖 : 𝑋 → 𝑋 )𝑖∈𝐼 and directed set 𝐷 ⊆ 𝑋 :

sup

𝑥 ∈𝐷

∑︁
𝑖∈𝐼

𝑓𝑖 (𝑥) =
∑︁
𝑖∈𝐼

𝑓𝑖 (sup𝐷)

Proof. Since each 𝑓𝑖 is Scott continuous, then we know that

{𝑓𝑖 (𝑥) | 𝑥 ∈ 𝐷} is a directed set. The proof proceeds by transfinite

induction on 𝐼 .

⊲ Base case: 𝐼 = {𝑖1}, thenwe simply need to show that sup𝑥 ∈𝐷 𝑓𝑖1 (𝑥) =
𝑓𝑖1 (sup𝐷), which follows from the fact that 𝑓𝑖1 is Scott continu-

ous.

⊲ Limit case: suppose that the claim holds for all sets smaller than

𝐼 . It must be possible to divide 𝐼 into two disjoint parts 𝐼1 and 𝐼2
such that 𝐼 = 𝐼1 ∪ 𝐼2 and 𝐼1 ∩ 𝐼2 = ∅. Now, given the definition of

the sum operator:

sup

𝑥 ∈𝐷

∑︁
𝑖∈𝐼

𝑓𝑖 (𝑥) = sup

𝑥 ∈𝐷

©­«
∑︁
𝑖∈𝐼1

𝑓𝑖 (𝑥) +
∑︁
𝑖∈𝐼2

𝑓𝑖 (𝑥)
ª®¬

By the induction hypothesis, we know that 𝜆𝑥.
∑
𝑖∈𝐽 𝑓𝑖 (𝑥) is

Scott continuous for any 𝐽 ⊆ 𝐼 , so given that the semiring is

Scott continuous, we can move the supremum inside the outer +.

= ( sup
𝑥 ∈𝐷

∑︁
𝑖∈𝐼1

𝑓𝑖 (𝑥)) + ( sup
𝑥 ∈𝐷

∑︁
𝑖∈𝐼2

𝑓𝑖 (𝑥))

By the induction hypothesis again:

=
©­«
∑︁
𝑖∈𝐼1

𝑓𝑖 (sup𝐷)
ª®¬ + ©­«

∑︁
𝑖∈𝐼2

𝑓𝑖 (sup𝐷)
ª®¬

=
∑︁
𝑖∈𝐼

𝑓𝑖 (sup𝐷)

□

A.1 Semantics of Tests and Expressions

Given some semiring ⟨𝑈 , +, ·, 0, 1⟩, the definition of the semantics

of tests J𝑏KTest : Σ → {0, 1} is below.
JtrueKTest (𝜎) ≜ 1

JfalseKTest (𝜎) ≜ 0

J𝑏1 ∨ 𝑏2KTest (𝜎) ≜
{

1 if J𝑏1KTest (𝜎) = 1 or J𝑏2KTest (𝜎) = 1

0 otherwise

J𝑏1 ∧ 𝑏2KTest (𝜎) ≜
{

1 if J𝑏1KTest (𝜎) = 1 and J𝑏2KTest (𝜎) = 1

0 otherwise

J¬𝑏KTest (𝜎) ≜
{

1 if J𝑏KTest (𝜎) = 0

0 if J𝑏KTest (𝜎) = 1

J𝑡KTest (𝜎) ≜
{

1 if 𝜎 ∈ 𝑡

0 if 𝜎 ∉ 𝑡

Based on that, we define the semantics of expressions J𝑒K : Σ → 𝑈 .

J𝑏K (𝜎) ≜ J𝑏KTest (𝜎)
J𝑢K (𝜎) ≜ 𝑢

A.2 Fixed Point Existence

For all the proofs in this section, we assume that the operations +,
·, and ∑

belong to a complete, Scott continuous, naturally ordered,

partial semiring with a top element (as described in Section 2.2).

Lemma A.5. If

∑
𝑖∈𝐼 𝑢𝑖 is defined, then for any (𝑣𝑖 )𝑖∈𝐼 ,

∑
𝑖∈𝐼 𝑢𝑖 · 𝑣𝑖

is defined.

Proof. Let 𝑣 be the top element of 𝑈 , so 𝑣 ≥ 𝑣𝑖 for all 𝑖 ∈ 𝐼 .

That means that for each 𝑖 ∈ 𝐼 , there is a 𝑣 ′
𝑖
such that 𝑣𝑖 + 𝑣 ′

𝑖
= 𝑣 .

Now, since multiplication is total, then we know that (∑𝑖∈𝐼 𝑢𝑖 ) · 𝑣
is defined. This gives us:

(
∑︁
𝑖∈𝐼

𝑢𝑖 ) · 𝑣 =
∑︁
𝑖∈𝐼

𝑢𝑖 · (𝑣𝑖 + 𝑣 ′𝑖 ) =
∑︁
𝑖∈𝐼

𝑢𝑖 · 𝑣𝑖 +
∑︁
𝑖∈𝐼

𝑢𝑖 · 𝑣 ′𝑖

And since

∑
𝑖∈𝐼 𝑢𝑖 · 𝑣𝑖 is a subexpression of the above well-defined

term, then it must be well-defined. □

Lemma A.6. For any𝑚 ∈ W(𝑋 ) and 𝑓 : 𝑋 → W(𝑌 ), we know
that 𝑓 † : W(𝑋 ) → W(𝑌 ) is a total function.

Proof. First, recall the definition of (−)†:

𝑓 † (𝑚) (𝑦) =
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

To show that this is well, defined we need to show both that the

sum exists, and that the resulting weighting function has a well-

defined mass. First, we remark that since𝑚 ∈ W(𝐴), then |𝑚 | =∑
𝑥 ∈supp(𝑚)𝑚(𝑥) must be defined. By Lemma A.5, the sum in the
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definition of (−)† is therefore defined. Now, we need to show that

|𝑓 † (𝑚) | is defined:

|𝑓 † (𝑚) | =
∑︁

𝑦∈supp(𝑓 † (𝑚))
𝑓 † (𝑚) (𝑦)

=
∑︁

𝑦∈⋃𝑎∈supp(𝑚) supp(𝑓 (𝑎))

∑︁
𝑥 ∈supp(𝑚)

𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

By commutativity and associativity:

=
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) ·

∑︁
𝑦∈supp(𝑓 (𝑥))

𝑓 (𝑥) (𝑦) =
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) · |𝑓 (𝑥) |

Now, since 𝑓 (𝑥) ∈ W(𝑌 ) for all 𝑥 ∈ 𝑋 , we know that |𝑓 (𝑥) | must

be defined. The outer sum also must be defined by Lemma A.5. □

In the following, when comparing functions 𝑓 , 𝑔 : 𝑋 → W(𝑌 ),
we will use the pointwise order. That is, 𝑓 ⊑ 𝑔 iff 𝑓 (𝑥) ⊑ 𝑔(𝑥) for
all 𝑥 ∈ 𝑋 .

Lemma A.7. (−)† : (𝑋 → W(𝑌 )) → (W(𝑋 ) → W(𝑌 )) is
Scott continuous.

Proof. Let 𝐷 ⊆ (𝑋 → W(𝑌 )) be a directed set. First, we show

that for any 𝑥 ∈ 𝑋 , the function 𝑔(𝑓 ) = 𝑚(𝑥) · 𝑓 (𝑥) (𝑦) is Scott
continuous:

sup

𝑓 ∈𝐷
𝑔(𝑓 ) = sup

𝑓 ∈𝐷
𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

By Scott continuity of the · operator:
=𝑚(𝑥) · sup

𝑓 ∈𝐷
𝑓 (𝑥) (𝑦)

Since we are using the pointwise ordering:

=𝑚(𝑥) · (sup𝐷) (𝑥) (𝑦) = 𝑔(sup𝐷)

Now, we show that (−)† is Scott continuous:

sup

𝑓 ∈𝐷
𝑓 † = sup

𝑓 ∈𝐷
𝜆𝑚.

∑︁
𝑥 ∈supp(𝑚)

𝑚(𝑥) · 𝑓 (𝑥)

By Lemma A.4, using the property we just proved.

= 𝜆𝑚.
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) · (sup𝐷) (𝑥) = (sup𝐷)†

□

LemmaA.8. LetΦ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) = J𝑒K (𝜎)·𝑓 † (J𝐶K (𝜎))+J𝑒 ′K (𝜎)·
𝜂 (𝜎) and suppose that it is a total function, then Φ⟨𝐶,𝑒,𝑒′⟩ is Scott
continuous with respect to the pointwise order: 𝑓1 ⊑ 𝑓2 iff 𝑓1 (𝜎) ⊑
𝑓2 (𝜎) for all 𝜎 ∈ Σ.

Proof. For all directed sets 𝐷 ⊆ (Σ → W(Σ)) and 𝜎 ∈ Σ, we
have:

sup

𝑓 ∈𝐷
Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎)

= sup

𝑓 ∈𝐷

(
J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

)
By the continuity of + and ·, we can move the supremum up to the

bind, which is the only term that depends on 𝑓 .

= J𝑒K (𝜎) · ( sup
𝑓 ∈𝐷

𝑓 † (J𝐶K (𝜎))) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

By Lemma A.7.

= J𝑒K (𝜎) · (sup𝐷)† (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
= Φ⟨𝐶,𝑒,𝑒′⟩ (sup𝐷) (𝜎)

Since this is true for all 𝜎 ∈ Σ, Φ⟨𝐶,𝑒,𝑒′⟩ is Scott continuous. □

Now, given Lemma A.8 and the Kleene fixed point theorem, we

know that the least fixed point is defined and is equal to:

𝜇𝑓 .Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) = sup

𝑛∈N
Φ𝑛⟨𝐶,𝑒,𝑒′⟩ (𝜆𝜏 .0)

Therefore the semantics of iteration loops is well-defined, assuming

thatΦ⟨𝐶,𝑒,𝑒′⟩ is total. In the next section, wewill see simple syntactic

conditions to ensure this.

A.3 Syntactic Sugar

Depending onwhether a partial or total semiring is used to interpret

the language semantics, unrestricted use of the 𝐶1 +𝐶2 and 𝐶
⟨𝑒,𝑒′⟩

constructs may be undefined. In this section, we give some sufficient

conditions to ensure that program semantics is well-defined. This

is based on the notion of compatible expressions, introduced below.

Definition A.9 (Compatibility). The expressions 𝑒1 and 𝑒2 are com-

patible in semiringA = ⟨𝑈 , +, ·, 0, 1⟩ if J𝑒1K (𝜎) +J𝑒2K (𝜎) is defined
for any 𝜎 ∈ Σ.

The nondeterministic (Examples 2.4 and 2.6) and tropical (Ex-

ample 2.8) instances use total semirings, so any program has well-

defined semantics. In other interpretations, we must ensure that

programs are well-defined by ensuring that all uses of choice and

iteration use compatible expressions. We begin by showing that any

two collections can be combined if they are scaled by compatible

expressions.

Lemma A.10. If 𝑒1 and 𝑒2 are compatible, then J𝑒1K (𝜎) ·𝑚1 +
J𝑒2K (𝜎) ·𝑚2 is defined for any𝑚1 and𝑚2.

Proof. Since 𝑒1 and 𝑒2 are compatible, then J𝑒1K (𝜎) + J𝑒2K (𝜎)
is defined. By Lemma A.5, that also means that J𝑒1K (𝜎) · |𝑚1 | +
J𝑒2K (𝜎) · |𝑚2 | is defined too. Now, we have:

J𝑒1K (𝜎) · |𝑚1 | + J𝑒2K (𝜎) · |𝑚2 |

= J𝑒1K (𝜎) ·
∑︁

𝜏 ∈supp(𝑚1)
𝑚1 (𝜏) + J𝑒2K (𝜎) ·

∑︁
𝜏 ∈supp(𝑚2)

𝑚2 (𝜏)

=
∑︁

𝜏 ∈supp(𝑚1)
J𝑒1K (𝜎) ·𝑚1 (𝜏) +

∑︁
𝜏 ∈supp(𝑚2)

J𝑒2K (𝜎) ·𝑚2 (𝜏)

=
∑︁

𝜏 ∈supp(𝑚1)∪supp(𝑚2)
J𝑒1K (𝜎) ·𝑚1 (𝜏) + J𝑒2K (𝜎) ·𝑚2 (𝜏)

= | J𝑒1K (𝜎) ·𝑚1 + J𝑒2K (𝜎) ·𝑚2 |
Therefore J𝑒1K (𝜎) ·𝑚1 + J𝑒2K (𝜎) ·𝑚2 must be well-defined. □

Now, we show how this result relates to program semantics. We

begin with choice, by showing that guarding the two branches

using compatible expressions yields a program that is well-defined.

Lemma A.11. If 𝑒1 and 𝑒2 are compatible and J𝐶1K and J𝐶2K are
total functions, then J(assume 𝑒1 #𝐶1) + (assume 𝑒2 #𝐶2)K is a total
function.
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Proof. Take any 𝜎 ∈ Σ, then we have:

J(assume 𝑒1 #𝐶1) + (assume 𝑒2 #𝐶2)K (𝜎)

= J𝐶1K† (Jassume 𝑒1K (𝜎)) + J𝐶2K† (Jassume 𝑒2K (𝜎))

= J𝐶1K† (J𝑒1K (𝜎) · 𝜂 (𝜎)) + J𝐶2K† (J𝑒2K (𝜎) · 𝜂 (𝜎))

= J𝑒1K (𝜎) · J𝐶1K† (𝜂 (𝜎)) + J𝑒2K (𝜎) · J𝐶2K† (𝜂 (𝜎))
= J𝑒1K (𝜎) · J𝐶1K (𝜎) + J𝑒2K (𝜎) · J𝐶2K (𝜎)

By Lemma A.10, we know that this sum is defined, therefore the

semantics is valid. □

For iteration, we can similarly use compatibility to ensure well-

definedness.

Lemma A.12. If 𝑒 and 𝑒 ′ are compatible and J𝐶K is a total function,
then

r
𝐶 ⟨𝑒,𝑒′⟩

z
is a total function.

Proof. Let Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) = J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) ·
𝜂 (𝜎). Since 𝑒 and 𝑒 ′ are compatible, it follows from Lemma A.10

that Φ⟨𝐶,𝑒,𝑒′⟩ is a total function. By Lemma A.8, we therefore also

know that

r
𝐶 ⟨𝑒,𝑒′⟩

z
is total. □

To conclude, we will provide a few examples of compatible ex-

pressions. For any test 𝑏, it is easy to see that 𝑏 and ¬𝑏 are compat-

ible. This is because at any state 𝜎 , one of J𝑏K (𝜎) or J¬𝑏K (𝜎) must

be 0, and given the semiring laws, 0 + 𝑢 is defined for any 𝑢 ∈ 𝑈 .

Given this, our encodings of if statements and while loops from

Section 2.3 are well-defined in all interpretations.

In the probabilistic interpretation (Example 2.7), the weights 𝑝

and 1 − 𝑝 are compatible for any 𝑝 ∈ [0, 1]. That means that our

encoding of probabilistic choice𝐶1 +𝑝 𝐶2 and probabilistic iteration

𝐶 ⟨𝑝 ⟩
are both well-defined too.

B SUBSUMPTION OF PROGRAM LOGICS

In this section, we provide proofs for the theorems in Section 3.3.

Note that the following two theorems assume a nondeterministic

interpretation of Outcome Logic, using the semiring defined in

Example 2.4.

Theorem 3.2 (Subsumption of Hoare Logic).

⊨ ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩ iff 𝑃 ⊆ [𝐶]𝑄 iff ⊨ {𝑃} 𝐶 {𝑄}

Proof. We only prove that ⊨ ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩ iff 𝑃 ⊆ [𝐶]𝑄 , since
𝑃 ⊆ [𝐶]𝑄 iff ⊨ {𝑃} 𝐶 {𝑄} is a well-known result [49].

(⇒) Suppose 𝜎 ∈ 𝑃 , then 𝜂 (𝜎) ⊨ 𝑃 and since ⊨ {𝑃} 𝐶 {□𝑄}
we get that J𝐶K† (𝜂 (𝜎)) ⊨ □𝑄 , which is equivalent to J𝐶K (𝜎) ⊨
∃𝑢 : 𝑈 .𝑄 (𝑢)

. This means that supp(J𝐶K (𝜎)) ⊆ 𝑄 , therefore by

definition 𝜎 ∈ [𝐶]𝑄 . Therefore, we have shown that 𝑃 ⊆ [𝐶]𝑄 .
(⇐) Suppose that 𝑃 ⊆ [𝐶]𝑄 and𝑚 ⊨ 𝑃 , so |𝑚 | ≠ 0 and supp(𝑚) ⊆
𝑃 ⊆ [𝐶]𝑄 . This means that supp(J𝐶K (𝜎)) ⊆ 𝑄 for all 𝜎 ∈
supp(𝑚), so we also get that:

supp(J𝐶K† (𝑚)) =
⋃

𝜎 ∈supp(𝑚)
J𝐶K (𝜎) ⊆ 𝑄

This means that J𝐶K† (𝑚) ⊨ □𝑄 , therefore ⊨ ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩.
□

Theorem 3.3 (Subsumption of Lisbon Logic).

⊨ ⟨𝑃⟩ 𝐶 ⟨^𝑄⟩ iff 𝑃 ⊆ ⟨𝐶⟩𝑄 iff ⊨ {|𝑃 |} 𝐶 {|𝑄 |}

Proof. We only prove that ⊨ ⟨𝑃⟩ 𝐶 ⟨^𝑄⟩ iff 𝑃 ⊆ ⟨𝐶⟩𝑄 , since
𝑃 ⊆ ⟨𝐶⟩𝑄 iff ⊨ {|𝑃 |} 𝐶 {|𝑄 |} follows by definition [45, 57].

(⇒) Suppose 𝜎 ∈ 𝑃 , then 𝜂 (𝜎) ⊨ 𝑃 and since ⊨ {𝑃}𝐶 {^𝑄} we get
that J𝐶K† (𝜂 (𝜎)) ⊨ ^𝑄 , which is equivalent to J𝐶K (𝜎) ⊨ 𝑄 ⊕ ⊤.
This means that there exists a 𝜏 ∈ J𝐶K (𝜎) such that 𝜏 ∈ 𝑄 ,

therefore by definition 𝜎 ∈ ⟨𝐶⟩𝑄 . So, we have shown that 𝑃 ⊆
⟨𝐶⟩𝑄 .

(⇐) Suppose that 𝑃 ⊆ ⟨𝐶⟩𝑄 and𝑚 ⊨ 𝑃 , so |𝑚 | ≠ 0 and supp(𝑚) ⊆
𝑃 ⊆ ⟨𝐶⟩𝑄 . This means that supp(J𝐶K (𝜎)) ∩ 𝑄 ≠ ∅ for all 𝜎 ∈
supp(𝑚). In other words, for each 𝜎 ∈ supp(𝑚), there exists

a 𝜏 ∈ supp(J𝐶K (𝜎)) such that 𝜏 ∈ 𝑄 . Since supp(J𝐶K† (𝑚)) =⋃
𝜎 ∈supp(𝑚) J𝐶K (𝜎), then there is also a 𝜏 ∈ supp(J𝐶K† (𝑚)) such

that 𝜏 ∈ 𝑄 , so J𝐶K† (𝑚) ⊨ ^𝑄 , therefore ⊨ ⟨𝑃⟩ 𝐶 ⟨^𝑄⟩.
□

C SOUNDNESS AND COMPLETENESS OF

OUTCOME LOGIC

We provide a formal definition of assertion entailment 𝜑 ⊨ 𝑒 = 𝑢,

which informally means that 𝜑 has enough information to deter-

mine that the expression 𝑒 evaluates to the value 𝑢.

Definition C.1 (Assertion Entailment). Given an outcome assertion

𝜑 , an expression 𝑒 , and a weight 𝑢 ∈ 𝑈 , we define the following:

𝜑 ⊨ 𝑒 = 𝑢 iff ∀𝑚 ∈ 𝜑, 𝜎 ∈ supp(𝑚). J𝑒K (𝜎) = 𝑢

Occasionally we will also write 𝜑 ⊨ 𝑏 for some test 𝑏, which

is shorthand for 𝜑 ⊨ 𝑏 = 1. It is relatively easy to see that the

following statements hold given this definition:

⊤ ⊨ 𝑒 = 𝑢 iff ∀𝜎 ∈ Σ. J𝑒K (𝜎) = 𝑢

⊥ ⊨ 𝑒 = 𝑢 always

𝜑 ∨𝜓 ⊨ 𝑒 = 𝑢 iff 𝜑 ⊨ 𝑒 = 𝑢 and 𝜓 ⊨ 𝑒 = 𝑢

𝜑 ∧𝜓 ⊨ 𝑒 = 𝑢 iff 𝜑 ⊨ 𝑒 = 𝑢 or 𝜓 ⊨ 𝑒 = 𝑢

𝜑 ⊕𝜓 ⊨ 𝑒 = 𝑢 iff 𝜑 ⊨ 𝑒 = 𝑢 and 𝜓 ⊨ 𝑒 = 𝑢

𝜑 (𝑣) ⊨ 𝑒 = 𝑢 iff 𝑣 = 0 or 𝜑 ⊨ 𝑒 = 𝑢

1𝑚 ⊨ 𝑒 = 𝑢 iff ∀𝜎 ∈ supp(𝑚) . J𝑒K (𝜎) = 𝑢

𝑃 ⊨ 𝑒 = 𝑢 iff ∀𝜎 ∈ 𝑃 . J𝑒K (𝜎) = 𝑢

□𝑃 ⊨ 𝑒 = 𝑢 iff 𝑃 ⊨ 𝑒 = 𝑢

We now present the soundness proof, following the sketch from

Section 4.1. The first results pertain to the semantics of iteration.

We start by recalling the characteristic function:

Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) = J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

Note that as defined in Figure 1,

r
𝐶 ⟨𝑒,𝑒′⟩

z
(𝜎) = (𝜇𝑓 .Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 )) (𝜎).

The first lemma relatesΦ⟨𝐶,𝑒,𝑒 ⟩ to a sequence of unrolled commands.

Lemma C.2. For all 𝑛 ∈ N and 𝜎 ∈ Σ:

Φ𝑛+1⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥 .0) (𝜎) =
𝑛∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜎)

Proof. By mathematical induction on 𝑛.
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⊲ 𝑛 = 0. Unfolding the definition of Φ⟨𝐶,𝑒1,𝑒2 ⟩ , we get:

Φ⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥.0) (𝜎)

= J𝑒K (𝜎) · (𝜆𝑥.0)† (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
= 0 + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
= Jassume 𝑒 ′K (𝜎)
=

q
(assume 𝑒 #𝐶)0 # assume 𝑒 ′

y
(𝜎)

⊲ Inductive step, suppose the claim holds for 𝑛:

Φ𝑛+2⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥.0) (𝜎)

= J𝑒K (𝜎) · Φ𝑛+1( ⟨𝑏,𝐶 ⟩) (𝜆𝑥.0)
† (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

By the induction hypothesis

= J𝑒K (𝜎) ·
(
𝜆𝜏 .

𝑛∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜏)

)†
(J𝐶K (𝜎))

+ J𝑒 ′K (𝜎) · 𝜂 (𝜎)

=

𝑛+1∑︁
𝑘=1

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜎) + Jassume 𝑒 ′K (𝜎)

=

𝑛+1∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜎)

□

Lemma 4.3. The following equation holds:

r
𝐶 ⟨𝑒,𝑒′⟩

z
(𝜎) =

∑︁
𝑛∈N

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K (𝜎)

Proof. First, by the Kleene fixed point theorem and the seman-

tics of programs (Figure 1), we get:

r
𝐶 ⟨𝑒,𝑒′⟩

z
(𝜎) = sup

𝑛∈N
Φ𝑛⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥 .0) (𝜎)

Now, since Φ0

⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥 .0) (𝜎) = 0 and 0 is the bottom of the order

⊑, we can rewrite the supremum as follows.

= sup

𝑛∈N
Φ𝑛+1⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥 .0) (𝜎)

By Lemma C.2:

= sup

𝑛∈N

𝑛∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜎)

Since we use the natural order, then sup(𝑢,𝑢 + 𝑣) = 𝑢 + 𝑣 , and

therefore the supremum above is the following infinite sum:

=
∑︁
𝑛∈N

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K (𝜎)

□

Theorem 4.2 (Soundness). Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ =⇒ ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩

Proof. The triple ⟨𝜑⟩𝐶 ⟨𝜓 ⟩ is proven using inference rules from
Figure 3, or by applying an axiom in Ω. If the last step is using an

axiom, then the proof is trivial since we assumed that all the axioms

in Ω are semantically valid. If not, then the proof is by induction

on the derivation Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩.

⊲ Skip. We need to show that ⊨ ⟨𝜑⟩ skip ⟨𝜑⟩. Suppose that𝑚 ⊨ 𝜑 .
Since JskipK† (𝑚) =𝑚, then clearly JskipK† (𝑚) ⊨ 𝜑 .

⊲ Seq. Given that Ω ⊢ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ and Ω ⊢ ⟨𝜗⟩ 𝐶2 ⟨𝜓 ⟩, we need
to show that ⊨ ⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓 ⟩. Note that since Ω ⊢ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩
and Ω ⊢ ⟨𝜗⟩ 𝐶2 ⟨𝜓 ⟩, those triples must be derived either us-

ing inference rules (in which case the induction hypothesis ap-

plies), or by applying an axiom in Ω. In either case, we can

conclude that ⊨ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ and ⊨ ⟨𝜗⟩ 𝐶2 ⟨𝜓 ⟩. Suppose that

𝑚 ⊨ 𝜑 . Since ⊨ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩, we get that J𝐶1K† (𝑚) ⊨ 𝜗 and

using ⊨ ⟨𝜗⟩ 𝐶2 ⟨𝜓 ⟩, we get that J𝐶2K† (J𝐶1K† (𝑚)) ⊨ 𝜓 . Since
J𝐶2K† (J𝐶1K† (𝑚)) = J𝐶1 #𝐶2K† (𝑚), we are done.

⊲ Plus. Given thatΩ ⊢ ⟨𝜑⟩𝐶1 ⟨𝜓1⟩ andΩ ⊢ ⟨𝜑⟩𝐶2 ⟨𝜓2⟩, we need to
show that ⊨ ⟨𝜑⟩ 𝐶1 +𝐶2 ⟨𝜓1 ⊕𝜓2⟩. Suppose that𝑚 ⊨ 𝜑 , so by the
induction hypotheses, J𝐶1K† (𝑚) ⊨ 𝜓1 and J𝐶2K† (𝑚) ⊨ 𝜓2. Recall
from the remark at the end of Section 2.3 that we are assuming

that programs are well-formed, and therefore J𝐶1 +𝐶2K† (𝑚) is
defined and it is equal to J𝐶1K† (𝑚) + J𝐶2K† (𝑚). Therefore by the

semantics of ⊕, J𝐶1 +𝐶2K† (𝑚) ⊨ 𝜓1 ⊕𝜓2.

⊲ Assume. Given 𝜑 ⊨ 𝑒 = 𝑢, we must show ⊨ ⟨𝜑⟩ assume 𝑒 ⟨𝜑 (𝑢) ⟩.
Suppose 𝑚 ⊨ 𝜑 . Since 𝜑 ⊨ 𝑒 = 𝑢, then J𝑒K (𝜎) = 𝑢 for all 𝜎 ∈
supp(𝑚). This means that:

Jassume 𝑒K† (𝑚) = (𝜆𝜎. J𝑒K (𝜎) · 𝜂 (𝜎))† (𝑚)

= (𝜆𝜎.𝑢 · 𝜂 (𝜎))† (𝑚)
= 𝑢 ·𝑚

And by definition, 𝑢 ·𝑚 ⊨ 𝜑 (𝑢)
, so we are done.

⊲ Iter. We know that ⊨ ⟨𝜑𝑛⟩ assume 𝑒 # 𝐶 ⟨𝜑𝑛+1⟩ and that ⊨
⟨𝜑𝑛⟩ assume 𝑒 ′ ⟨𝜓𝑛⟩ for all 𝑛 ∈ N by the induction hypothe-

ses. Now, we need to show that ⊨ ⟨𝜑0⟩ 𝐶 ⟨𝑒,𝑒′⟩ ⟨𝜓∞⟩. Suppose
𝑚 ⊨ 𝜑0. It is easy to see that for all 𝑛 ∈ N:

J(assume 𝑒 #𝐶)𝑛K† (𝑚) ⊨ 𝜑𝑛
and

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K† (𝑚) ⊨ 𝜓𝑛
by mathematical induction on 𝑛, and the two induction hypothe-

ses. Now, since (𝜓𝑛)𝑛∈N ⇝ 𝜓∞, we also know that:∑︁
𝑛∈N

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K† (𝑚) ⊨ 𝜓∞

Finally, by Lemma 4.3 we get that

r
𝐶 ⟨𝑒,𝑒′⟩

z†
(𝑚) ⊨ 𝜓∞.

⊲ False. We must show that ⊨ ⟨⊥⟩ 𝐶 ⟨𝜑⟩. Suppose that𝑚 ⊨ ⊥. This
is impossible, so the claim follows vacuously.

⊲ True. We must show that ⊨ ⟨𝜑⟩𝐶 ⟨⊤⟩. Suppose𝑚 ⊨ 𝜑 . It is trivial
that J𝐶K† (𝑚) ⊨ ⊤, so the triple is valid.

⊲ Scale. By the induction hypothesis, we get that ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩
and we must show that ⊨ ⟨𝜑 (𝑢) ⟩ 𝐶 ⟨𝜓 (𝑢) ⟩. Suppose𝑚 ⊨ 𝜑 (𝑢)

. If

𝑢 = 0, then𝑚 = 0 and J𝐶K† (0) = 0, and clearly 0 ⊨ 𝜓 (0)
, so we

are done. If 𝑥 ≠ 0, then there is some𝑚′
such that𝑚′ ⊨ 𝜑 and

𝑚 = 𝑢 ·𝑚′
. We therefore get that J𝐶K† (𝑚′) ⊨ 𝜓 . Now, observe that

J𝐶K† (𝑚) = J𝐶K† (𝑢 ·𝑚′) = 𝑢 · J𝐶K† (𝑚). Finally, by the definition

of (−) (𝑢) , we get that 𝑢 · J𝐶K† (𝑚) ⊨ 𝜓 (𝑢)
.

⊲ Disj. By the induction hypothesis, we know that ⊨ ⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩
and ⊨ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩ and we need to show ⊨ ⟨𝜑1 ∨ 𝜑2⟩ 𝐶 ⟨𝜓1 ∨𝜓2⟩.
Suppose𝑚 ⊨ 𝜑1 ∨ 𝜑2. Without loss of generality, suppose𝑚 ⊨
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𝜑1. By the induction hypothesis, we get J𝐶K† (𝑚) ⊨ 𝜓1. We can

weaken this to conclude that J𝐶K† (𝑚) ⊨ 𝜓1 ∨𝜓2. The case where

instead𝑚 ⊨ 𝜑2 is symmteric.

⊲ Conj. By the induction hypothesis, we get that ⊨ ⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩
and ⊨ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩ and we need to show ⊨ ⟨𝜑1 ∧ 𝜑2⟩ 𝐶 ⟨𝜓1 ∧𝜓2⟩.
Suppose𝑚 ⊨ 𝜑1 ∧ 𝜑2, so𝑚 ⊨ 𝜑1 and𝑚 ⊨ 𝜑2. By the induction

hypotheses, J𝐶K† (𝑚) ⊨ 𝜓1 and J𝐶K† (𝑚) ⊨ 𝜓2, so J𝐶K† (𝑚) ⊨
𝜓1 ∧𝜓2.

⊲ Choice. By the induction hypothesis, ⊨ ⟨𝜑1⟩𝐶 ⟨𝜓1⟩ and ⊨ ⟨𝜑2⟩𝐶 ⟨𝜓2⟩
and we need to show ⊨ ⟨𝜑1 ⊕ 𝜑2⟩ 𝐶 ⟨𝜓1 ⊕𝜓2⟩. Suppose 𝑚 ⊨
𝜑1 ⊕ 𝜑2, so𝑚1 ⊨ 𝜑1 and𝑚2 ⊨ 𝜑2 such that𝑚 =𝑚1 +𝑚2. By the

induction hypotheses, J𝐶K† (𝑚1) ⊨ 𝜓1 and J𝐶K† (𝑚2) ⊨ 𝜓2. Now,
since J𝐶K† (𝑚) = J𝐶K† (𝑚1 +𝑚2) = J𝐶K† (𝑚1) + J𝐶K† (𝑚2), we get
that J𝐶K† (𝑚) ⊨ 𝜓1 ⊕𝜓2.

⊲ Exists. By the induction hypothesis, ⊨ ⟨𝜙 (𝑡)⟩𝐶 ⟨𝜙 ′(𝑡)⟩ for all 𝑡 ∈
𝑇 and we need to show ⊨ ⟨∃𝑥 : 𝑇 .𝜙 (𝑥)⟩ 𝐶 ⟨∃𝑥 : 𝑇 .𝜙 ′(𝑥)⟩. Now
suppose𝑚 ∈ ∃𝑥 : 𝑇 .𝜙 (𝑥) = ⋃

𝑡 ∈𝑇 𝜙 (𝑡). This means that there

is some 𝑡 ∈ 𝑇 such that𝑚 ∈ 𝜙 (𝑡). By the induction hypothesis,

this means that J𝐶K† (𝑚) ⊨ 𝜙 ′(𝑡), so we get that J𝐶K† (𝑚) ⊨ ∃𝑥 :

𝑇 .𝜙 ′(𝑥).
⊲ Conseqence. We know that 𝜑 ′ ⇒ 𝜑 and 𝜓 ⇒ 𝜓 ′

and by the

induction hypothesis ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩, and we need to show that

⊨ ⟨𝜑 ′⟩ 𝐶 ⟨𝜓 ′⟩. Suppose that𝑚 ⊨ 𝜑 ′
, then it also must be the case

that 𝑚 ⊨ 𝜑 . By the induction hypothesis, J𝐶K† (𝑚) ⊨ 𝜓 . Now,
using the second consequence J𝐶K† (𝑚) ⊨ 𝜓 ′

.

□

Now, moving to completeness, we prove the following lemma.

Lemma 4.5. Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨post(𝐶,𝜑)⟩

Proof. By induction on the structure of the program 𝐶 .

⊲ 𝐶 = skip. Since JskipK† (𝑚) =𝑚 for all𝑚, then clearly post(skip, 𝜑) =
𝜑 . We complete the proof by applying the Skip rule.

⟨𝜑⟩ skip ⟨𝜑⟩
Skip

⊲ 𝐶 = 𝐶1 #𝐶2. First, observe that:

post(𝐶1 #𝐶2, 𝜑) = {J𝐶1 #𝐶2K† (𝑚) | 𝑚 ∈ 𝜑}

= {J𝐶2K† (J𝐶1K† (𝑚)) | 𝑚 ∈ 𝜑}

= {J𝐶2K† (𝑚′) | 𝑚′ ∈ {J𝐶1K† (𝑚) | 𝑚 ∈ 𝜑}}
= post(𝐶2, post(𝐶1, 𝜑))

Now, by the induction hypothesis, we know that:

Ω ⊢ ⟨𝜑⟩ 𝐶1 ⟨post(𝐶1, 𝜑)⟩
Ω ⊢ ⟨post(𝐶1, 𝜑)⟩ 𝐶2 ⟨post(𝐶1 #𝐶2, 𝜑)⟩

Now, we complete the derivation as follows:

Ω

⟨𝜑⟩ 𝐶1 ⟨post(𝐶1, 𝜑)⟩
Ω

⟨post(𝐶1, 𝜑)⟩ 𝐶2 ⟨post(𝐶1 #𝐶2, 𝜑)⟩
⟨𝜑⟩ 𝐶1 #𝐶2 ⟨post(𝐶1 #𝐶2, 𝜑)⟩

Seq

⊲ 𝐶 = 𝐶1 +𝐶2. So, we have that:

post(𝐶1 +𝐶2, 𝜑) = {J𝐶1 +𝐶2K† (𝑚) | 𝑚 ∈ 𝜑}

= {J𝐶1K† (𝑚) + J𝐶2K† (𝑚) | 𝑚 ∈ 𝜑}

=
⋃
𝑚∈𝜑

{J𝐶1K† (𝑚) + J𝐶2K† (𝑚) | 𝑚 ∈ 1𝑚}

= ∃𝑚 : 𝜑. post(𝐶1, 1𝑚) ⊕ post(𝐶2, 1𝑚)
We now complete the derivation as follows:

Ω

⟨1𝑚⟩ 𝐶1 ⟨post(𝐶1, 1𝑚)⟩
Ω

⟨1𝑚⟩ 𝐶2 ⟨post(𝐶2, 1𝑚)⟩
⟨1𝑚⟩ 𝐶1 +𝐶2 ⟨post(𝐶1, 1𝑚) ⊕ post(𝐶2, 1𝑚)⟩

Plus

⟨𝜑⟩ 𝐶1 +𝐶2 ⟨post(𝐶1 +𝐶2, 𝜑)⟩
Exists

⊲ 𝐶 = assume 𝑒 , and 𝑒 must either be a test 𝑏 or a weight 𝑢 ∈ 𝑈 .

Suppose that 𝑒 is a test 𝑏. Now, for any𝑚 define the operator

𝑏?𝑚 as follows:

𝑏?𝑚(𝜎) =
{

0 if J𝑏K (𝜎) = 0

𝑚(𝜎) if J𝑏K (𝜎) = 1

Therefore 𝑚 = 𝑏?𝑚 + ¬𝑏?𝑚 and 1𝑚 = 1𝑏?𝑚 ⊕ 1¬𝑏?𝑚 . We also

have:

post(assume 𝑏, 𝜑) = {Jassume 𝑏K† (𝑚) | 𝑚 ∈ 𝜑}

= {Jassume 𝑏K† (𝑏?𝑚 + ¬𝑏?𝑚) | 𝑚 ∈ 𝜑}
= {𝑏?𝑚 | 𝑚 ∈ 𝜑}
= ∃𝑚 : 𝜑. 1𝑏?𝑚

Clearly also 1𝑏?𝑚 ⊨ 𝑏 and 1¬𝑏?𝑚 ⊨ ¬𝑏. We now complete the

derivation:

1𝑏?𝑚 ⊨ 𝑏 = 1

⟨1𝑏?𝑚⟩ assume 𝑏 ⟨1(1)
𝑏?𝑚⟩

Assume

···········

1¬𝑏?𝑚 ⊨ 𝑏 = 0

⟨1¬𝑏?𝑚⟩ assume 𝑏 ⟨1(0)¬𝑏?𝑚⟩
Assume

⟨1𝑏?𝑚 ⊕ 1¬𝑏?𝑚⟩ assume 𝑏 ⟨1𝑏?𝑚⟩
Split

⟨𝜑⟩ assume 𝑏 ⟨post(assume 𝑏, 𝜑)⟩
Exists

Now, suppose 𝑒 = 𝑢, so 𝜑 ⊨ 𝑢 = 𝑢 and Jassume 𝑢K† (𝑚) = 𝑢 ·𝑚
for all𝑚 ∈ 𝜑 and therefore post(assume 𝑢, 𝜑) = 𝜑 (𝑢)

. We can

complete the proof as follows:

𝜑 ⊨ 𝑢 = 𝑢

⟨𝜑⟩ assume 𝑢 ⟨𝜑 (𝑢) ⟩
Assume

⊲ 𝐶 = 𝐶 ⟨𝑒,𝑒′⟩
. For all 𝑛 ∈ N, let 𝜑𝑛 (𝑚) and 𝜓𝑛 (𝑚) be defined as

follows:

𝜑𝑛 (𝑚) ≜ post((assume 𝑒 #𝐶)𝑛, 1𝑚)
= 1J(assume 𝑒#𝐶)𝑛K†(𝑚)

𝜓𝑛 (𝑚) ≜ post(assume 𝑒 ′, 𝜑𝑛 (𝑚))
= 1J(assume 𝑒#𝐶)𝑛#assume 𝑒′K†(𝑚)

𝜓∞ (𝑚) ≜ post(𝐶 ⟨𝑒,𝑒′⟩, 1𝑚)
= 1J𝐶 ⟨𝑒,𝑒′⟩K†(𝑚)

Note that by definition, 𝜑0 (𝑚) = 1𝑚 , 𝜑 = ∃𝑚 : 𝜑.𝜑0 (𝑚), and
post(𝐶 ⟨𝑒,𝑒′⟩, 𝜑) = ∃𝑚 : 𝜑.𝜓∞ (𝑚).
We now show that (𝜓𝑛)𝑛∈N∞ converges ((𝜓𝑛)𝑛∈N ⇝ 𝜓∞). Take

any (𝑚𝑛)𝑛∈N such that𝑚𝑛 ⊨ 𝜓𝑛 for each𝑛. That means that𝑚𝑛 =

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K† (𝑚). Therefore by Lemma 4.3 we
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get that

∑
𝑛∈N𝑚𝑛 =

r
𝐶 ⟨𝑒,𝑒′⟩

z†
(𝑚), and therefore

∑
𝑛∈N𝑚𝑛 ⊨

𝜓∞ (𝑚). We now complete the derivation as follows:

Ω

⟨𝜑𝑛 (𝑚)⟩ assume 𝑒 #𝐶 ⟨𝜑𝑛+1 (𝑚)⟩
··········

Ω

⟨𝜑𝑛 (𝑚)⟩ assume 𝑒 ′ ⟨𝜓𝑛 (𝑚)⟩
⟨𝜑0 (𝑚)⟩ 𝐶 ⟨𝑒,𝑒′⟩ ⟨𝜓∞ (𝑚)⟩

Iter

⟨𝜑⟩ 𝐶 ⟨𝑒,𝑒′⟩ ⟨post(𝐶 ⟨𝑒,𝑒′⟩, 𝜑)⟩
Exists

⊲ 𝐶 = 𝑎. We assumed that Ω contains all the valid triples pertaining

to atomic actions 𝑎 ∈ Act, so Ω ⊢ ⟨𝜑⟩ 𝑎 ⟨post(𝑎, 𝜑)⟩ since ⊨
⟨𝜑⟩ 𝑎 ⟨post(𝑎, 𝜑)⟩.

□

D DERIVED RULES

D.1 Sequencing in Hoare and Lisbon Logic

We first prove the results about sequencing Hoare Logic encodings.

Lemma D.1. The following inference is derivable.

⟨𝑃⟩ 𝐶 ⟨□𝑄⟩
⟨□𝑃⟩ 𝐶 ⟨□𝑄⟩

Proof. Before we show the derivation, we argue that:

∃𝑢 : 𝑈 .

(
∃𝑣 : 𝑈 .𝑄 (𝑣)

) (𝑢)
⇒ ∃𝑤 : 𝑈 .𝑄 (𝑤)

Suppose that𝑚 ⊨ ∃𝑢 : 𝑈 .

(
∃𝑣 : 𝑈 .𝑄 (𝑣)

) (𝑢)
, this means that there is

some𝑚′
such that𝑚 = 𝑢 ·𝑚′

for some 𝑢 ∈ 𝑈 and𝑚′ ⊨ ∃𝑣 : 𝑈 .𝑄 (𝑣)
.

Now, there must also be𝑚′′ = 𝑣 ·𝑚′
for some 𝑣 ∈ 𝑈 and𝑚′′ ⊨ 𝑄 .

This means that𝑚 = (𝑢 · 𝑣) ·𝑚′′
, so𝑚 ⊨ 𝑄 (𝑢 ·𝑣)

. Now let𝑤 = 𝑢 · 𝑣 ,
so clearly𝑚 ⊨ ∃𝑤 : 𝑈 .𝑄 (𝑤)

. Using this as a consequence, we now

complete the derivation.

∀𝑢 ∈ 𝑈 .

⟨𝑃⟩ 𝐶 ⟨□𝑄⟩
⟨𝑃⟩ 𝐶 ⟨∃𝑣 : 𝑈 .𝑄 (𝑣) ⟩

⟨𝑃 (𝑢) ⟩ 𝐶 ⟨(∃𝑣 : 𝑈 .𝑄 (𝑣) ) (𝑢) ⟩
Scale

⟨∃𝑢 : 𝑈 .𝑃 (𝑢) ⟩ 𝐶 ⟨∃𝑢 : 𝑈 .(∃𝑣 : 𝑈 .𝑄 (𝑣) ) (𝑢) ⟩
Exists

⟨∃𝑢 : 𝑈 .𝑃 (𝑢) ⟩ 𝐶 ⟨∃𝑤 : 𝑈 .𝑄 (𝑤) ⟩
Conseqence

⟨□𝑃⟩ 𝐶 ⟨□𝑄⟩
□

Lemma D.2. The following inference is derivable.

⟨𝑃⟩ 𝐶1 ⟨□𝑄⟩ ⟨𝑄⟩ 𝐶2 ⟨□𝑅⟩
⟨𝑃⟩ 𝐶1 #𝐶2 ⟨□𝑅⟩

Proof.

⟨𝑃⟩ 𝐶1 ⟨□𝑄⟩
⟨𝑄⟩ 𝐶2 ⟨□𝑅⟩
⟨□𝑄⟩ 𝐶2 ⟨□𝑅⟩

Lemma D.1

⟨𝑃⟩ 𝐶1 #𝐶2 ⟨□𝑅⟩
Seq

□

Now, we turn to Lisbon Logic

Lemma D.3. The following inference is derivable.

⟨𝑃⟩ 𝐶 ⟨^𝑄⟩
⟨^𝑃⟩ 𝐶 ⟨^𝑄⟩

Proof. First, let𝑈 ′ = 𝑈 \ {0}. The derivation is done as follows:

⟨𝑃⟩ 𝐶 ⟨^𝑄⟩
⟨𝑃⟩ 𝐶 ⟨∃𝑣 : 𝑈 ′.𝑄 (𝑣) ⊕ ⊤⟩

⟨𝑃 (𝑢) ⟩ 𝐶 ⟨(∃𝑣 : 𝑈 ′.𝑄 (𝑣) ⊕ ⊤) (𝑢) ⟩
Scale

⟨⊤⟩ 𝐶 ⟨⊤⟩
True

⟨𝑃 (𝑢) ⊕ ⊤⟩ 𝐶 ⟨(∃𝑣 : 𝑈 ′.𝑄 (𝑣) ⊕ ⊤) (𝑢) ⊕ ⊤⟩
Split

⟨∃𝑢 : 𝑈 ′.𝑃 (𝑢) ⊕ ⊤⟩ 𝐶 ⟨∃𝑢 : 𝑈 ′.(∃𝑣 : 𝑈 ′.𝑄 (𝑣) ⊕ ⊤) (𝑢) ⊕ ⊤⟩
Exists

⟨^𝑃⟩ 𝐶 ⟨^𝑄⟩
Cons

Now, we show that the application of the rule of consequence (ab-

breviated at Cons) is valid as follows. First, we note that weighting

by 𝑢 distributes over the existential quanitifier and ⊕, and that

⊤(𝑢) ⇒ ⊤.

∃𝑢 : 𝑈 ′.(∃𝑣 : 𝑈 ′.𝑄 (𝑣) ⊕ ⊤) (𝑢) ⊕ ⊤

=⇒ ∃𝑢 : 𝑈 ′.∃𝑣 : 𝑈 ′.𝑄 (𝑣 ·𝑢) ⊕ ⊤ ⊕ ⊤

Now, since 𝑢 ≠ 0 and 𝑣 ≠ 0, then 𝑣 · 𝑢 ≠ 0 (see remark at the end

of Section 5.1), therefore we can combine the two existentials into

a single variable𝑤 ≠ 0. Similarly, ⊤ ⊕ ⊤ ⇒ ⊤.

=⇒ ∃𝑤 : 𝑈 ′.𝑄 (𝑤) ⊕ ⊤
=⇒ ^𝑄

□

Lemma D.4. The following inference is derivable.

⟨𝑃⟩ 𝐶1 ⟨^𝑄⟩ ⟨𝑄⟩ 𝐶2 ⟨^𝑅⟩
⟨𝑃⟩ 𝐶1 #𝐶2 ⟨^𝑅⟩

Proof.

⟨𝑃⟩ 𝐶1 ⟨^𝑄⟩
⟨𝑄⟩ 𝐶2 ⟨^𝑅⟩
⟨^𝑄⟩ 𝐶2 ⟨^𝑅⟩

Lemma D.3

⟨𝑃⟩ 𝐶1 #𝐶2 ⟨^𝑅⟩
Seq

□

D.2 If Statements and While Loops

Lemma D.5. The following inference is derivable.

𝜑1 ⊨ 𝑏 ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ 𝜑2 ⊨ ¬𝑏 ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩
⟨𝜑1 ⊕ 𝜑2⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓2 ⊕𝜓2⟩

If

Proof. First note that 𝜑 ⊨ 𝑏 is syntactic sugar for 𝜑 ⊨ 𝑏 = 1, and

so from the assumptions that 𝜑1 ⊨ 𝑏 and 𝜑2 ⊨ ¬𝑏, we get 𝜑1 ⊨ 𝑏 = 1,

𝜑2 ⊨ 𝑏 = 0, 𝜑1 ⊨ ¬𝑏 = 0, and 𝜑2 ⊨ ¬𝑏 = 1. We split the derivation
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into two parts. Part (1) is shown below:

𝜑1 ⊨ 𝑏 = 1

⟨𝜑1⟩ assume 𝑏 ⟨𝜑 (1)
1

⟩
Assume

𝜑2 ⊨ 𝑏 = 0

⟨𝜑2⟩ assume 𝑏 ⟨𝜑 (0)
2

⟩
Assume

⟨𝜑1 ⊕ 𝜑2⟩ assume 𝑏 ⟨𝜑1⟩
Split

······ ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩
⟨𝜑1 ⊕ 𝜑2⟩ assume 𝑏 #𝐶1 ⟨𝜓1⟩

Seq

We omit the proof with part (2), since it is nearly identical. Now,

we combine (1) and (2):

(1) (2)
⟨𝜑1 ⊕ 𝜑2⟩ (assume 𝑏 #𝐶1) + (assume ¬𝑏 #𝐶2) ⟨𝜓1 ⊕𝜓2⟩

Plus

⟨𝜑1 ⊕ 𝜑2⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓1 ⊕𝜓2⟩
□

Lemma D.6. For any assertion 𝑃 and test 𝑏:

𝑃 =⇒ ∃𝑢 : 𝑈 .∃𝑣 : {𝑣 ∈ 𝑉 | 𝑢 + 𝑣 = 1}.(𝑃 ∧ 𝑏) (𝑢) ⊕ (𝑃 ∧ ¬𝑏) (𝑣)

Proof. Suppose𝑚 ⊨ 𝑃 , so |𝑚 | = 1 and supp(𝑚) ⊆ 𝑃 . Now, let:

𝑚1 (𝜎) ≜
{
𝑚(𝜎) if J𝑏K (𝜎) = 1

0 if J𝑏K (𝜎) = 0

𝑚2 (𝜎) ≜
{

0 if J𝑏K (𝜎) = 1

𝑚(𝜎) if J𝑏K (𝜎) = 0

Clearly, since𝑏 is a test,𝑚 =𝑚1+𝑚2. Now, let𝑢 = |𝑚1 | and 𝑣 = |𝑚2 |.
Since |𝑚 | = 1, then 𝑢 + 𝑣 = 1. By construction,𝑚1 ⊨ (𝑃 ∧ 𝑏) (𝑢) and
𝑚2 ⊨ (𝑃 ∧¬𝑏) (𝑣) , so𝑚 ⊨ (𝑃 ∧𝑏) (𝑢) ⊕ (𝑃 ∧¬𝑏) (𝑣) . By existentially

quantifying 𝑢 and 𝑣 , we get:

𝑚 ⊨ ∃𝑢 : 𝑈 .∃𝑣 : {𝑣 ∈ 𝑈 | 𝑢 + 𝑣 = 1}.(𝑃 ∧ 𝑏) (𝑢) ⊕ (𝑃 ∧ ¬𝑏) (𝑣)

□

Lemma D.7. 𝑄 (𝑢) ⊕ 𝑄 (𝑣) =⇒ 𝑄 (𝑢+𝑣)
.

Proof. Suppose𝑚 ⊨ 𝑄 (𝑢) ⊕ 𝑄 (𝑣)
, so there are𝑚1 and𝑚2 such

that𝑚 = 𝑚1 +𝑚2 and |𝑚1 | = 𝑢 and |𝑚2 | = 𝑣 , and supp(𝑚1) ⊆ 𝑄

and supp(𝑚2) ⊆ 𝑄 . We also have that |𝑚 | = |𝑚1 | + |𝑚2 | = 𝑢 + 𝑣

and supp(𝑚) = supp(𝑚1) ∪ supp(𝑚2) ⊆ 𝑄 , so𝑚 ⊨ 𝑄 (𝑢+𝑣)
. □

Lemma D.8 (Hoare Logic If Rule). The following inference is

derivable.

⟨𝑃 ∧ 𝑏⟩ 𝐶1 ⟨□𝑄⟩ ⟨𝑃 ∧ ¬𝑏⟩ 𝐶2 ⟨□𝑄⟩
⟨𝑃⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨□𝑄⟩

If (Hoare)

Proof. The derivation is shown in Figure 4a. The application

of the rule of Conseqence uses Lemmas D.6 and D.7. The sets in

the existential quantifiers are omitted for brevity, but should read

𝑢 ∈ 𝑈 and 𝑣 ∈ {𝑣 ∈ 𝑈 | 𝑢 + 𝑣 = 1}, so we know that 𝑢 + 𝑣 = 1.

The implication in the postcondition is justified as follows. First,

we simply unfold the definition of □.

∃𝑢, 𝑣 .(□𝑄) (𝑢) ⊕ (□𝑄) (𝑣) =⇒ ∃𝑢, 𝑣 .(∃𝑤.𝑄 (𝑤) ) (𝑢) ⊕ (∃𝑧.𝑄 (𝑧) ) (𝑣)

Next, we can lift the existential quantifiers to the top level since

𝑤 and 𝑧 are fresh variables and do not affect 𝑢 or 𝑣 . We can also

collapse the two weighting operations

=⇒ ∃𝑢, 𝑣,𝑤, 𝑧.𝑄 (𝑤 ·𝑢) ⊕ 𝑄 (𝑧 ·𝑣)

By Lemma D.7.

=⇒ ∃𝑢, 𝑣,𝑤, 𝑧.𝑄 (𝑤 ·𝑢+𝑧 ·𝑣)

=⇒ □𝑄

The application of If also introduces proof obligations for (𝑃 ∧
𝑏) (𝑢) ⊨ 𝑏 and (𝑃 ∧ ¬𝑏) (𝑣) ⊨ ¬𝑏, which both hold trivially.

□

Lemma D.9. (𝜑 ⊕𝜓 ) (𝑢) =⇒ 𝜑 (𝑢) ⊕𝜓 (𝑢)

Proof. Suppose𝑚 ⊨ (𝜑 ⊕𝜓 ) (𝑢) , therefore there is𝑚′
such that

𝑚 = 𝑢 ·𝑚′
and𝑚′ ⊨ 𝜑 ⊕𝜓 . Therefore, there is also𝑚1 and𝑚2 such

that 𝑚′ = 𝑚1 +𝑚2 and 𝑚1 ⊨ 𝜑 and 𝑚2 ⊨ 𝜓 . So, this means that

𝑢 ·𝑚1 ⊨ 𝜑
(𝑢)

and𝑢 ·𝑚2 ⊨ 𝜓
(𝑢)

and since𝑚 = 𝑢 ·𝑚′ = 𝑢 · (𝑚1+𝑚2) =
𝑢 ·𝑚1 + 𝑢 ·𝑚2, we get that𝑚 ⊨ 𝜑

(𝑢) ⊕𝜓 (𝑢)
. □

Lemma D.10 (Lisbon Logic If Rule). The following inference is

derivable.

⟨𝑃 ∧ 𝑏⟩ 𝐶1 ⟨^𝑄⟩ ⟨𝑃 ∧ ¬𝑏⟩ 𝐶2 ⟨^𝑄⟩
⟨𝑃⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩

If (Lisbon)

Proof. The derivation is shown in Figure 4b. The implication

in the postcondition is justified as follows. First, we simply unfold

the definition of ^. Also, note that although the sets are omitted,

we know that 𝑢, 𝑣,𝑤, 𝑧 ∈ 𝑈 such that 𝑢 + 𝑣 = 1,𝑤 ≠ 0 and 𝑧 ≠ 0.

∃𝑢, 𝑣 .(^𝑄) (𝑢) ⊕ (^𝑄) (𝑣)

=⇒ ∃𝑢, 𝑣 .(∃𝑤.𝑄 (𝑤) ⊕ ⊤) (𝑢) ⊕ (∃𝑧.𝑄 (𝑧) ⊕ ⊤) (𝑣)

Next, we can lift the existential quantifiers to the top level since𝑤

and 𝑧 are fresh variables and do not affect 𝑢, 𝑣 or ⊤. We can also

collapse the two weighting operations, and rearrange the terms of

⊕, including using Lemma D.9 and ⊤(𝑢) ⊕ ⊤(𝑣) ⇒ ⊤.

=⇒ ∃𝑢, 𝑣,𝑤, 𝑧.𝑄 (𝑤 ·𝑢) ⊕ 𝑄 (𝑧 ·𝑣) ⊕ ⊤

By Lemma D.7.

=⇒ ∃𝑢, 𝑣,𝑤, 𝑧.𝑄 (𝑤 ·𝑢+𝑧 ·𝑣) ⊕ ⊤

Since 𝑢 + 𝑣 = 1, then one of 𝑢 or 𝑣 is nonzero. We also know that

𝑤 and 𝑧 are nonzero, so if 𝑢 ≠ 0 then 𝑤 · 𝑢 ≠ 0 and therefore

𝑤 · 𝑢 + 𝑧 · 𝑣 ≠ 0. The same is true if instead 𝑣 ≠ 0.

=⇒ ∃𝑥 : (𝑈 \ {0}) .𝑄 (𝑥) ⊕ ⊤
=⇒ ^𝑄

The application of If also introduces proof obligations for (𝑃 ∧
𝑏) (𝑢) ⊨ 𝑏 and (𝑃 ∧ ¬𝑏) (𝑣) ⊨ ¬𝑏, which both hold trivially. □

Lemma D.11 (While Rule). The following inference is derivable.

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞ ⟨𝜑𝑛⟩ 𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩ 𝜑𝑛 ⊨ 𝑏 𝜓𝑛 ⊨ ¬𝑏
⟨𝜑0 ⊕𝜓0⟩ while 𝑏 do 𝐶 ⟨𝜓∞⟩

While
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(𝑃 ∧ 𝑏) (𝑢) ⊨ 𝑏
⟨𝑃 ∧ 𝑏⟩ 𝐶1 ⟨□𝑄⟩

⟨(𝑃 ∧ 𝑏) (𝑢) ⟩ 𝐶1 ⟨(□𝑄) (𝑢) ⟩
Scale

(𝑃 ∧ ¬𝑏) (𝑣) ⊨ ¬𝑏
⟨𝑃 ∧ ¬𝑏⟩ 𝐶2 ⟨□𝑄⟩

⟨(𝑃 ∧ ¬𝑏) (𝑣) ⟩ 𝐶1 ⟨(□𝑄) (𝑣) ⟩
Scale

⟨(𝑃 ∧ 𝑏) (𝑢) ⊕ (𝑃 ∧ ¬𝑏) (𝑣) ⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨(□𝑄) (𝑢) ⊕ (□𝑄) (𝑣) ⟩
If

⟨∃𝑢, 𝑣 .(𝑃 ∧ 𝑏) (𝑢) ⊕ (𝑃 ∧ ¬𝑏) (𝑣) ⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨∃𝑢, 𝑣 .(□𝑄) (𝑢) ⊕ (□𝑄) (𝑣) ⟩
Exists

⟨𝑃⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨□𝑄⟩
Conseqence

(a) Derivation of If (Hoare) from Lemma D.8

(𝑃 ∧ 𝑏) (𝑢) ⊨ 𝑏
⟨𝑃 ∧ 𝑏⟩ 𝐶1 ⟨^𝑄⟩

⟨(𝑃 ∧ 𝑏) (𝑢) ⟩ 𝐶1 ⟨(^𝑄) (𝑢) ⟩
Scale

(𝑃 ∧ ¬𝑏) (𝑣) ⊨ ¬𝑏
⟨𝑃 ∧ ¬𝑏⟩ 𝐶2 ⟨^𝑄⟩

⟨(𝑃 ∧ ¬𝑏) (𝑣) ⟩ 𝐶1 ⟨(^𝑄) (𝑣) ⟩
Scale

⟨(𝑃 ∧ 𝑏) (𝑢) ⊕ (𝑃 ∧ ¬𝑏) (𝑣) ⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨(^𝑄) (𝑢) ⊕ (^𝑄) (𝑣) ⟩
If

⟨∃𝑢, 𝑣 .(𝑃 ∧ 𝑏) (𝑢) ⊕ (𝑃 ∧ ¬𝑏) (𝑣) ⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨∃𝑢, 𝑣 .(^𝑄) (𝑢) ⊕ (^𝑄) (𝑣) ⟩
Exists

⟨𝑃⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
Conseqence

(b) Derivation of If (Lisbon) from Lemma D.10

Figure 4: Derivations of inference rules for if statements

Proof. First, let 𝜑 ′
𝑛 = 𝜑𝑛 ⊕ 𝜓𝑛 . The derivation has two parts.

First, part (1):

𝜑𝑛 ⊨ 𝑏

⟨𝜑𝑛⟩ assume 𝑏 ⟨𝜑𝑛⟩
Assume

𝜓𝑛 ⊨ ¬𝑏
⟨𝜓𝑛⟩ assume 𝑏 ⟨(𝜓𝑛)0⟩

Assume

⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume 𝑏 ⟨𝜑𝑛⟩
Split

····· ⟨𝜑𝑛⟩ 𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩
⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩

Seq

Now part (2):

𝜑𝑛 ⊨ 𝑏

⟨𝜑𝑛⟩ assume ¬𝑏 ⟨(𝜑𝑛)0⟩
Assume

𝜓𝑛 ⊨ ¬𝑏
⟨𝜓𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

Assume

⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩
Split

Finally, we complete the derivation as follows:

(1)
⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩········

(2)
⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

⟨𝜑0 ⊕𝜓0⟩ while 𝑏 do 𝐶 ⟨𝜓∞⟩
Iter

□

D.3 Loop Invariants

Lemma D.12 (Loop Invariant Rule). The following inference is

derivable.

⟨𝑃 ∧ 𝑏⟩ 𝐶 ⟨□𝑃⟩
⟨𝑃⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩

Invariant

Proof. We will derive this rule using the While rule. For all

𝑛, let 𝜑𝑛 = □(𝑃 ∧ 𝑏) and 𝜓𝑛 = □(𝑃 ∧ ¬𝑏). We will now show

that (𝜓𝑛)𝑛∈N∞ converges. Suppose that𝑚𝑛 ⊨ □(𝑃 ∧ ¬𝑏) for each
𝑛 ∈ N. That means that supp(𝑚𝑛) ⊆ 𝑃 ∧ ¬𝑏. We also have that

supp(∑𝑛∈N𝑚𝑛) =
⋃
𝑛∈N supp(𝑚𝑛), and since each 𝑚𝑛 ⊆ 𝑃 ∧

¬𝑏, then their union must also be contained in 𝑃 ∧ ¬𝑏, and thus

∑
𝑛∈N𝑚𝑛 ⊨ □(𝑃∧¬𝑏). We remark that□(𝑃∧𝑏) ⊨ 𝑏 and□(𝑃∧¬𝑏) ⊨

¬𝑏 trivially. We complete the derivation as follows:

⟨𝑃 ∧ 𝑏⟩ 𝐶 ⟨□𝑃⟩
⟨□(𝑃 ∧ 𝑏)⟩ 𝐶 ⟨□𝑃⟩

Lemma D.1

⟨□(𝑃 ∧ 𝑏)⟩ 𝐶 ⟨□(𝑃 ∧ 𝑏) ⊕ □(𝑃 ∧ ¬𝑏)⟩
Conseqence

⟨□(𝑃 ∧ 𝑏) ⊕ □(𝑃 ∧ ¬𝑏)⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩
While

⟨𝑃⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩
Conseqence

Both usages of the rule of Conseqence follow from Lemma D.6.

□

D.4 Loop Variants

Lemma D.13. The following inference is derivable.

∀𝑛 < 𝑁 . 𝜑0 ⊨ ¬𝑏 𝜑𝑛+1 ⊨ 𝑏 ⟨𝜑𝑛+1⟩ 𝐶 ⟨𝜑𝑛⟩
⟨∃𝑛 : N.𝜑𝑛⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩

Variant

Proof. For the purpose of applying the While rule, we define

the following for all 𝑛 and 𝑁 :

𝜑 ′
𝑛 =

{
𝜑𝑁−𝑛 if 𝑛 < 𝑁

⊤(0)
if 𝑛 ≥ 𝑁

𝜓𝑛 =

{
𝜑0 if 𝑛 ∈ {𝑁,∞}
⊤(0)

otherwise

It is easy to see that (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. Each𝜓𝑛 except for𝜓𝑁 and𝜓∞
is only satisfied by 0, so taking (𝑚𝑛)𝑛∈N such that𝑚𝑛 ⊨ 𝜓𝑛 for each

𝑛 ∈ N, it must be the case that

∑
𝑛∈N𝑚𝑛 =𝑚𝑁 . By assumption, we

know that𝑚𝑁 ⊨ 𝜓∞ since𝜓∞ = 𝜓𝑁 = 𝜑0. We also know that𝜑 ′
𝑛 ⊨ 𝑏

and𝜓𝑛 ⊨ ¬𝑏 by our assumptions and the fact that ⊤(0) ⊨ 𝑒 = 𝑢 for

any 𝑒 and 𝑢. There are two cases for the premise of the While rule

(1) where 𝑛 < 𝑁 (left) and 𝑛 ≥ 𝑁 (right).

∀𝑚 < 𝑁 . ⟨𝜑𝑚+1⟩ 𝐶 ⟨𝜑𝑚⟩
∀𝑛 < 𝑁 . ⟨𝜑𝑁−𝑛⟩ 𝐶 ⟨𝜑𝑁−(𝑛+1) ⟩
∀𝑛 < 𝑁 . ⟨𝜑 ′

𝑛⟩ 𝐶 ⟨𝜑 ′
𝑛+1 ⊕𝜓𝑛+1⟩

⟨⊤⟩ 𝐶 ⟨⊤⟩
True

⟨⊤(0) ⟩ 𝐶 ⟨⊤(0) ⟩
Scale

∀𝑛 ≥ 𝑁 . ⟨𝜑 ′
𝑛⟩ 𝐶 ⟨𝜑 ′

𝑛+1 ⊕𝜓𝑛+1⟩
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Finally, we complete the derivation.

∀𝑁 ∈ N.

(1)
⟨𝜑 ′
𝑛⟩ 𝐶 ⟨𝜑 ′

𝑛+1 ⊕𝜓𝑛+1⟩
⟨𝜑𝑁 ⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩

While

⟨∃𝑛 : N.𝜑𝑛⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩
Exists

□

Lemma D.14 (Lisbon Logic Loop Variants). The following in-

ference is derivable.

∀𝑛 ∈ N. 𝑃0 ⊨ ¬𝑏 𝑃𝑛+1 ⊨ 𝑏 ⟨𝑃𝑛+1⟩ 𝐶 ⟨^𝑃𝑛⟩
⟨∃𝑛 : N.𝑃𝑛⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩

Lisbon Variant

Proof. First, for all 𝑁 ∈ N, let 𝜑𝑛 and𝜓𝑛 be defined as follows:

𝜑𝑛 =

{
^𝑃𝑁−𝑛 if 𝑛 ≤ 𝑁

⊤ if 𝑛 > 𝑁
𝜓𝑛 =

{
^𝑃0 if 𝑛 ∈ {𝑁,∞}
⊤ otherwise

Now, we prove that (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. Take any (𝑚𝑛)𝑛∈N such that

𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛 ∈ N. Since 𝑚𝑁 ⊨ ^𝑃0, then there is some

𝜎 ∈ supp(𝑚𝑁 ) such that 𝜎 ∈ 𝑃0. By definition (∑𝑛∈N𝑚𝑛) (𝜎) ≥
𝑚𝑁 (𝜎) > 0, so

∑
𝑛∈N𝑚𝑛 ⊨ ^𝑃0 as well. We opt to derive this rule

with the Iter rule rather than While since it is inconvenient to

split the assertion into components where 𝑏 is true and false. We

complete the derivation in two parts, and each part is broken into

two cases. We start with (1), and the case where 𝑛 < 𝑁 . In this

case, we know that 𝜑𝑛 = ^𝑃𝑁−𝑛 and 𝜑𝑛+1 = ^𝑃𝑁−𝑛−1 (even if

𝑛 = 𝑁 − 1, then we get 𝜑𝑁 = ^𝑃0 = ^𝑃𝑁−(𝑁−1)−1).

𝑃𝑁−𝑛 ⊨ 𝑏

⟨𝑃𝑁−𝑛⟩ assume 𝑏 ⟨𝑃𝑁−𝑛⟩
Assume

······ ⟨𝑃𝑁−𝑛⟩ 𝐶 ⟨^𝑃𝑁−𝑛−1⟩
⟨𝑃𝑁−𝑛⟩ assume 𝑏 #𝐶 ⟨^𝑃𝑁−𝑛−1⟩

Seq

⟨^𝑃𝑁−𝑛⟩ assume 𝑏 #𝐶 ⟨^𝑃𝑁−𝑛−1⟩
Lemma D.3

⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1⟩

Now, we prove (1) where 𝑛 ≥ 𝑁 , 𝜑𝑛+1 = ⊤.

⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨⊤⟩
True

⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1⟩

We now move on to (2) below. On the left, 𝑛 = 𝑁 , and so 𝜑𝑛 = ^𝑃0
and𝜓𝑛 = ^𝑃0. On the right, 𝑛 ≠ 𝑁 , so𝜓𝑛 = ⊤.

𝑃0 ⊨ ¬𝑏
⟨𝑃0⟩ assume ¬𝑏 ⟨𝑃0⟩

Assume

⟨𝑃0⟩ assume ¬𝑏 ⟨^𝑃0⟩
Conseqence

⟨^𝑃0⟩ assume ¬𝑏 ⟨^𝑃0⟩
Lemma D.3

⟨𝜑𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩
⟨𝜑𝑛⟩ assume ¬𝑏 ⟨⊤⟩

True

⟨𝜑𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

Finally, we complete the derivation using the Iter rule.

(1)
⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1⟩

(2)
⟨𝜑𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

⟨𝜑0⟩ 𝐶 ⟨𝑏,¬𝑏 ⟩ ⟨𝜓∞⟩
Iter

⟨^𝑃𝑁 ⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩
∀𝑁 ∈ N. ⟨𝑃𝑁 ⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩

Conseqence

⟨∃𝑛 : N.𝑃𝑛⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩
Exists

□

E VARIABLES AND STATE

We now give additional definitions and proofs from Section 6. First,

we give the interpretation of expressions J𝐸KExp : S → Val where
𝑥 ∈ Var, 𝑣 ∈ Val, and 𝑏 is a test.

J𝑥KExp (𝑠) ≜ 𝑠 (𝑥)
J𝑣KExp (𝑠) ≜ 𝑣

J𝑏KExp (𝑠) ≜ J𝑏KTest (𝑠)
J𝐸1 + 𝐸2KExp (𝑠) ≜ J𝐸1KExp (𝑠) + J𝐸2KExp (𝑠)
J𝐸1 − 𝐸2KExp (𝑠) ≜ J𝐸1KExp (𝑠) − J𝐸2KExp (𝑠)
J𝐸1 × 𝐸2KExp (𝑠) ≜ J𝐸1KExp (𝑠) · J𝐸2KExp (𝑠)

Informally, the free variables of an assertion 𝑃 are the variables that

are used in 𝑃 . Given that assertions are semantic, we define free(𝑃)
to be those variables that 𝑃 constrains in some way. Formally, 𝑥 is

free in 𝑃 iff reassigning 𝑥 to some value 𝑣 would not satisfy 𝑃 .

free(𝑃) ≜ {𝑥 ∈ Var | ∃𝑠 ∈ 𝑃, 𝑣 ∈ Val. 𝑠 [𝑥 ↦→ 𝑣] ∉ 𝑃}
The modified variables of a program 𝐶 are the variables that are

assigned to in the program, determined inductively on the structure

of the program.

mod(skip) ≜ ∅
mod(𝐶1 #𝐶2) ≜ mod(𝐶1) ∪mod(𝐶2)
mod(𝐶1 +𝐶2) ≜ mod(𝐶1) ∪mod(𝐶2)

mod(assume 𝑒) ≜ ∅

mod
(
𝐶 ⟨𝑒,𝑒′⟩

)
≜ mod(𝐶)

mod(𝑥 B 𝐸) ≜ {𝑥}
Now, before the main soundness and completeness result, we prove

a lemma stating that ⟨□𝑃⟩ 𝐶 ⟨□𝑃⟩ is valid as long as 𝑃 does not

contain information about variables modified by 𝐶 .

Lemma E.1. If free(𝑃) ∩mod(𝐶) = ∅, then:
⊨ ⟨□𝑃⟩ 𝐶 ⟨□𝑃⟩

Proof. By induction on the program 𝐶:

⊲ 𝐶 = skip. Clearly the claim holds using Skip.

⊲ 𝐶 = 𝐶1 # 𝐶2. By the induction hypotheses, ⊨ ⟨□𝑃⟩ 𝐶𝑖 ⟨□𝑃⟩ for
𝑖 ∈ {1, 2}. We complete the proof using Seq.

⊲ 𝐶 = 𝐶1 + 𝐶2. By the induction hypotheses, ⊨ ⟨□𝑃⟩ 𝐶𝑖 ⟨□𝑃⟩ for
𝑖 ∈ {1, 2}. We complete the proof using Plus and the fact that

□𝑃 ⊕ □𝑃 ⇔ □𝑃 .
⊲ 𝐶 = assume 𝑒 . Since assume 𝑒 can only remove states, it is clear

that □𝑃 must still hold after running the program.
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⊲ 𝐶 = 𝐶 ⟨𝑒,𝑒′⟩
. The argument is similar to that of the soundness

of Invariant. Let 𝜑𝑛 = 𝜓𝑛 = 𝜓∞ = □𝑃 . It is obvious that

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞. We also know that ⊨ ⟨□𝑃⟩ 𝐶 ⟨□𝑃⟩ by the in-

duction hypothesis. The rest is a straightforward application of

the Iter rule, also using the argument about assume from the

previous case.

⊲ 𝐶 = 𝑥 B 𝐸. We know that 𝑥 ∉ free(𝑃), so for all 𝑠 ∈ 𝑃 and 𝑣 ∈ Val,
we know that 𝑠 [𝑥 ↦→ 𝑣] ∈ 𝑃 . We will now show that 𝑃 [𝐸/𝑥] = 𝑃 .

Suppose 𝑠 ∈ 𝑃 [𝐸/𝑥], this means that 𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)] ∈ 𝑃 ,

which also means that:

(𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)]) [𝑥 ↦→ 𝑠 (𝑥)] = 𝑠 ∈ 𝑃

Now suppose that 𝑠 ∈ 𝑃 , then clearly 𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)] ∈ 𝑃 ,

so 𝑠 ∈ 𝑃 [𝐸/𝑥]. Since 𝑃 [𝐸/𝑥] = 𝑃 , then (□𝑃) [𝐸/𝑥] = □𝑃 , so the

proof follows from the Assign rule.

□

We now prove the main result. Recall that this result pertains

specifically to the OL instance where variable assignment is the

only atomic action.

Theorem 6.1 (Soundness and Completeness).

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩ ⇐⇒ ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩

Proof.

(⇒) Suppose ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩. By Theorem 4.6, we already know that

this triple is derivable for all commands other than assignment

so it suffices to show the case where 𝐶 = 𝑥 B 𝐸.

Now suppose ⊨ ⟨𝜑⟩ 𝑥 B 𝐸 ⟨𝜓 ⟩. For any𝑚 ∈ 𝜑 , we know that

(𝜆𝑠.𝜂 (𝑠 [𝑥 ↦→ J𝐸K (𝑠)]))† (𝑚) ∈ 𝜓 . By definition, this means that

𝑚 ∈ 𝜓 [𝐸/𝑥], so we have shown that 𝜑 ⇒ 𝜓 [𝐸/𝑥]. Finally, we
complete the derivation as follows:

𝜑 ⇒ 𝜓 [𝐸/𝑥] ⟨𝜓 [𝐸/𝑥]⟩ 𝑥 B 𝐸 ⟨𝜓 ⟩
Assign

⟨𝜑⟩ 𝑥 B 𝐸 ⟨𝜓 ⟩
Conseqence

(⇐) The proof is by induction on the derivation ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓 ⟩. All
the cases except for the two below follow from Theorem 4.2.

– Assign. Suppose that𝑚 ⊨ 𝜑 [𝐸/𝑥]. By the definition of substi-

tution, we immediately know that

(𝜆𝑠.𝜂 (𝑠 [𝑥 ↦→ J𝐸K (𝑠)]))† (𝑚) ∈ 𝜑

Since J𝑥 B 𝐸K (𝑠) = 𝜂 (𝑠 [𝑥 ↦→ J𝐸K (𝑠)]), we are done.
– Constancy. Follows immediately from Lemma E.1 and the

soundness of the Conj rule.

□

F REUSING PROOF FRAGMENTS

F.1 Integer Division

Recall the definition of the program below that divides two integers.

DIV ≜


𝑞 B 0 # 𝑟 B 𝑎 #
while 𝑟 ≥ 𝑏 do
𝑟 B 𝑟 − 𝑏 #
𝑞 B 𝑞 + 1

⟨𝑎 ≥ 0 ∧ 𝑏 > 0⟩
𝑞 B 0 #
⟨𝑎 ≥ 0 ∧ 𝑏 > 0 ∧ 𝑞 = 0⟩
𝑟 B 𝑎 #
⟨𝑎 ≥ 0 ∧ 𝑏 > 0 ∧ 𝑞 = 0 ∧ 𝑟 = 𝑎⟩ =⇒
⟨𝑞 + ⌊𝑎 ÷ 𝑏⌋ = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + ⌊𝑎 ÷ 𝑏⌋ × 𝑏⟩ =⇒
⟨𝜑 ⌊𝑎÷𝑏 ⌋⟩ =⇒
⟨∃𝑛 : N.𝜑𝑛⟩
while 𝑟 ≥ 𝑏 do

⟨𝜑𝑛⟩ =⇒
⟨𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏⟩
𝑟 B 𝑟 − 𝑏 #
⟨𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + (𝑛 − 1) × 𝑏⟩
𝑞 B 𝑞 + 1

⟨𝑞 + (𝑛 − 1) = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + (𝑛 − 1) × 𝑏⟩ =⇒
⟨𝜑𝑛−1⟩

⟨𝜑0⟩ =⇒
⟨𝑞 + 0 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 0 × 𝑏⟩ =⇒
⟨𝑞 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏)⟩

Figure 5: Derivation for the DIV program.

To analyze this program with the Variant rule, we need a family

of variants (𝜑𝑛)𝑛∈N, defined as follows.

𝜑𝑛 ≜

{
𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏 if 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋
false if 𝑛 > ⌊𝑎 ÷ 𝑏⌋

Additionally, it must be the case that 𝜑𝑛 ⊨ 𝑟 ≥ 𝑏 for all 𝑛 ≥ 1 and

𝜑0 ⊨ 𝑟 < 𝑏. For 𝑛 > ⌊𝑎 ÷ 𝑏⌋, 𝜑𝑛 = false and false ⊨ 𝑟 ≥ 𝑏 vacuously.

If 1 ≤ 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋, then we know that 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏, and

since 𝑛 ≥ 1, then 𝑟 ≥ 𝑏. When 𝑛 = 0, we know that 𝑟 = 𝑎 mod 𝑏,

and so by the definition of mod, it must be that 𝑟 < 𝑏.

The derivation is given in Figure 5. Most of the steps are ob-

tained by straightforward applications of the inference rules, with

consequences denoted by =⇒ . In the application of the Variant

rule, we only show the case where 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋. The case where
𝑛 > ⌊𝑎 ÷ 𝑏⌋ is vacuous by applying the False rule from Figure 3.

F.2 The Collatz Conjecture

Recall the definition of the program below that finds the stopping

time of some positive number 𝑛.

COLLATZ ≜


𝑖 B 0 #
while 𝑎 ≠ 1 do
𝑏 B 2 # DIV #
if 𝑟 = 0 then 𝑎 B 𝑞 else 𝑎 B 3 × 𝑎 + 1 #
𝑖 B 𝑖 + 1

The derivation is shown in Figure 6. Since we do not know if the

program will terminate, we use the Invariant rule to obtain a

partial correctness specification. We choose the loop invariant:

𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1
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⟨𝑎 = 𝑛 ∧ 𝑛 > 0⟩
𝑖 B 0 #
⟨𝑎 = 𝑛 ∧ 𝑛 > 0 ∧ 𝑖 = 0⟩ =⇒
⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1⟩
while 𝑎 ≠ 1 do

⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑎 ≠ 1⟩ =⇒
⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1⟩
𝑏 B 2 #
⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑏 = 2⟩
DIV #

⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑏 = 2 ∧ 𝑞 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏)⟩ =⇒
⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ 𝑟 = (𝑓 𝑖 (𝑛) mod 2)⟩
if 𝑟 = 0 then

⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ 𝑟 = (𝑓 𝑖 (𝑛) mod 2) ∧ 𝑟 = 0⟩ =⇒
⟨∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ (𝑓 𝑖 (𝑛) mod 2) = 0⟩
𝑎 B 𝑞

⟨∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑎 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ (𝑓 𝑖 (𝑛) mod 2) = 0⟩ =⇒
⟨□(𝑎 = 𝑓 𝑖+1 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1)⟩
else

⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ 𝑟 = (𝑓 𝑖 (𝑛) mod 2) ∧ 𝑟 ≠ 0⟩ =⇒
⟨𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ (𝑓 𝑖 (𝑛) mod 2) = 1⟩
𝑎 B 3 × 𝑎 + 1 #
⟨𝑎 = 3 × 𝑓 𝑖 (𝑛) + 1 ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ (𝑓 𝑖 (𝑛) mod 2) = 1⟩ =⇒
⟨□(𝑎 = 𝑓 𝑖+1 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1)⟩

⟨□(𝑎 = 𝑓 𝑖+1 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1)⟩
𝑖 B 𝑖 + 1

⟨□(𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1)⟩
⟨□(𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑎 = 1)⟩ =⇒
⟨□(𝑖 = 𝑆𝑛)⟩

Figure 6: Derivation for the COLLATZ program.

So, on each iteration of the loop, 𝑎 holds the value of applying 𝑓

repeatedly 𝑖 times to 𝑛, and 1 has not yet appeared in this sequence.

Immediately upon entering the while loop, we see that 𝑎 =

𝑓 𝑖 (𝑛) ≠ 1, and so from that and the fact that ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1, we

can conclude that ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1.

The DIV program is analyzed by inserting the proof from Fig-

ure 5, along with an application of the rule of Constancy to add

information about the other variables. We can omit the □ modality

from rule of Constancy, since 𝑃 ∧ □𝑄 ⇔ 𝑃 ∧𝑄 .

When it comes time to analyze the if statement, we use the If

(Hoare) rule (Lemma D.8) to get a partial correctness specification.

The structure of the if statement mirrors the definition of 𝑓 (𝑛), so
the effect is the same as applying 𝑓 to 𝑎 one more time, therefore

we get that 𝑎 = 𝑓 𝑖+1 (𝑛).
After exiting thewhile loop, we know that 𝑓 𝑖 (𝑛) = 1 and 𝑓 𝑘 (𝑛) ≠

1 for all 𝑘 < 𝑖 , therefore 𝑖 is (by definition) the stopping time, 𝑆𝑛 .

F.3 Embedding Division in a Probabilistic

Program

Recall the program that loops an even number of iterations with

probability
2

3
and an odd number of iterations with probability

1

3
.

𝑎 := 0 # 𝑟 := 0 # (𝑎 := 𝑎 + 1 # 𝑏 := 2 # DIV) ⟨
1

2
⟩

To analyze this program with the Iter rule, we define the two

families of assertions below for 𝑛 ∈ N.

𝜑𝑛 ≜ (𝑎 = 𝑛∧𝑟 = 𝑎 mod 2) (
1

2
𝑛 ) 𝜓𝑛 ≜ (𝑎 = 𝑛∧𝑟 = 𝑎 mod 2) (

1

2
𝑛+1 )

Additionally, let 𝜓∞ = (𝑟 = 0) 2
3

⊕ (𝑟 = 1) 1
3

. We now show that

(𝜓𝑛)𝑛∈N∞ converges. Suppose that 𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛 ∈ N. So
𝑚𝑛 ⊨ (𝑟 = 0) 1

2
𝑛+1

for all even 𝑛 and𝑚𝑛 ⊨ (𝑟 = 1) 1

2
𝑛+1

for all odd

𝑛. In other words, the cummulative probability mass for each𝑚𝑛
where 𝑛 is even is:∑︁

𝑘∈N

1

2
2𝑘+1 =

1

2

·
∑︁
𝑘∈N

(
1

4

)𝑘
=

1

2

· 1

1 − 1

4

=
2

3
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⟨true⟩
𝑎 := 0 #
⟨𝑎 = 0⟩
𝑟 := 0 #
⟨𝑎 = 0 ∧ 𝑟 = 0⟩ =⇒
⟨(𝑎 = 0 ∧ 𝑟 = 0 mod 2) (1) ⟩ =⇒
⟨𝜑0⟩©­«
𝑎 := 𝑎 + 1 #
𝑏 := 2 #
DIV

ª®¬
⟨ 1
2
⟩

⟨𝜓∞⟩ =⇒
⟨(𝑟 = 0) ⊕ 2

3

(𝑟 = 1)⟩

(a) Derivation of the main program

⟨𝜑𝑛⟩ =⇒
⟨(𝑎 = 𝑛) (

1

2
𝑛 ) ⟩

assume 1

2
#

⟨(𝑎 = 𝑛) (
1

2
𝑛+1 ) ⟩

𝑎 := 𝑎 + 1 #

⟨(𝑎 = 𝑛 + 1) (
1

2
𝑛+1 ) ⟩

𝑏 := 2 #

⟨(𝑎 = 𝑛 + 1 ∧ 𝑏 = 2) (
1

2
𝑛+1 ) ⟩

DIV

⟨(𝑎 = 𝑛 + 1 ∧ 𝑟 = 𝑎 mod 2) (
1

2
𝑛+1 ) ⟩ =⇒

⟨𝜑𝑛+1⟩

(b) Derivation of the probabilistic loop

Figure 7: Derivation for the probabilistic looping program.

Where the second-to-last step is obtained using the standard for-

mula for geometric series. Similarly, the total probability mass for

𝑛 being odd is:

∑︁
𝑘∈N

1

2
2𝑘+2 =

1

4

·
∑︁
𝑘∈N

(
1

4

)𝑘
=

1

4

· 1

1 − 1

4

=
1

3

We therefore get that

∑
𝑛∈N𝑚𝑛 ⊨ (𝑟 = 0) 2

3

⊕ (𝑟 = 1) 1
3

. Having

shown that, we complete the derivation, shown in Figure 7a. Two

proof obligations are generated by applying the Iter rule, the first is

proven in Figure 7b. Note that in order to apply our previous proof

for the DIV program, it is necessary to use the Scale rule. The sec-

ond proof obligation of the Iter rule is to show ⟨𝜑𝑛⟩ assume 1

2
⟨𝜓𝑛⟩,

which is easily dispatched using the Assume rule.

G GRAPH PROBLEMS AND QUANTITATIVE

ANALYSIS

G.1 Counting RandomWalks

Recall the following program that performs a random walk on a

two dimensional grid in order to discover how many paths exist

between the origin (0, 0) and the point (𝑁,𝑀).

WALK ≜



while 𝑥 < 𝑁 ∨ 𝑦 < 𝑀 do
if 𝑥 < 𝑁 ∧ 𝑦 < 𝑀 then

(𝑥 B 𝑥 + 1) + (𝑦 B 𝑦 + 1)
else if 𝑥 ≥ 𝑁 then
𝑦 B 𝑦 + 1

else
𝑥 B 𝑥 + 1

The derivation is provided in Figure 8. Since this program is guar-

anteed to terminate after exactly 𝑁 +𝑀 steps, we use the following

loop Variant, where the bounds for 𝑘 are described in Section 8.1.

𝜑𝑛 ≜

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛−𝑀)

(𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)) ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

Recall that 𝑛 indicates how many steps (𝑥,𝑦) is from (𝑁,𝑀), so
𝜑𝑁+𝑀 is the precondition and 𝜑0 is the postcondition. Upon enter-

ing the while loop, we encounter nested if statements, which we

analyze with the If rule. This requires us to split 𝜑𝑛+1 into three

components, satisfying 𝑛 < 𝑁 ∧ 𝑦 < 𝑀 , 𝑛 ≥ 𝑁 , and 𝑦 ≥ 𝑀 , re-

spectively. The assertion 𝑥 ≥ 𝑁 is only possible if we have already

taken at least 𝑁 steps, or in other words, if 𝑛+1 ≤ (𝑁 +𝑀)−𝑁 = 𝑀 .

Letting 𝑘 range from max(0, 𝑛 + 1 −𝑀) to 0 therefore gives us a

single term 𝑘 = 0 when 𝑛 + 1 ≤ 𝑀 and an empty conjunction

otherwise. A similar argument holds when 𝑦 ≥ 𝑀 . All the other

outcomes go into the first branch, where we preclude the 𝑘 = 0 and

𝑘 = 𝑛 + 1 cases since it must be true that 𝑥 ≠ 𝑁 and 𝑦 ≠ 𝑀 .

Let 𝑃 (𝑛, 𝑘) = (𝑥 = 𝑁 −𝑘∧𝑦 = 𝑀−(𝑛−𝑘)). Using this shorthand,
the postcondition at the end of the if statement is obtained by taking

an outcome conjunction of the results from the three branches.

min(𝑁,𝑛)⊕
𝑘=max(1,𝑛+1−𝑀)

𝑃 (𝑛, 𝑘 − 1) ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 )) ⊕
min(𝑁,𝑛)⊕

𝑘=max(1,𝑛+1−𝑀)
𝑃 (𝑛, 𝑘) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 ))

⊕
0⊕

𝑘=max(0,𝑛+1−𝑀)
𝑃 (𝑛, 𝑘) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 )) ⊕

min(𝑁,𝑛+1)⊕
𝑘=𝑛+1

𝑃 (𝑛, 𝑘 − 1) ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))

Now, we can combine the conjunctions with like terms.

min(𝑁,𝑛+1)⊕
𝑘=max(1,𝑛+1−𝑀)

𝑃 (𝑛, 𝑘 − 1) ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 )) ⊕
min(𝑁,𝑛)⊕

𝑘=max(0,𝑛+1−𝑀)
𝑃 (𝑛, 𝑘) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 ))

And adjust the bounds on the first conjunction by subtracting 1

from the lower and upper bounds of 𝑘 :

min(𝑁−1,𝑛)⊕
𝑘=max(0,𝑛−𝑀)

𝑃 (𝑛, 𝑘) ((
𝑁 +𝑀−(𝑛+1)
𝑁−(𝑘+1) )) ⊕

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛+1−𝑀)

𝑃 (𝑛, 𝑘) ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))

Now, we examine when the bounds of these two conjunctions differ.

If 𝑛 ≥ 𝑀 , then the first conjunction has an extra 𝑘 = 𝑛 −𝑀 term.

Similarly, the second conjunction has an extra 𝑘 = 𝑁 term when

𝑛 ≥ 𝑁 . Based on that observation, we split them as follows:⊕
𝑘∈{𝑛−𝑀 |𝑛≥𝑀 }

𝑃 (𝑛, 𝑘) ((
𝑁 +𝑀−(𝑛+1)
𝑁−(𝑘+1) )) ⊕

⊕
𝑘∈{𝑁 |𝑛≥𝑁 }

𝑃 (𝑛, 𝑘) ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))

⊕
min(𝑁−1,𝑛)⊕

𝑘=max(0,𝑛+1−𝑀)
𝑃 (𝑛, 𝑘) ((

𝑁 +𝑀−(𝑛+1)
𝑁−(𝑘+1) )+(𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))



A Relatively Complete Program Logic for Effectful Branching

⟨𝑥 = 0 ∧ 𝑦 = 0⟩ =⇒
⟨𝜑𝑁+𝑀 ⟩ =⇒
⟨∃𝑛 : N. 𝜑𝑛⟩
while 𝑥 < 𝑁 ∨ 𝑦 < 𝑀 do

⟨𝜑𝑛+1⟩
if 𝑥 < 𝑁 ∧ 𝑦 < 𝑀 then

⟨
min(𝑁,𝑛)⊕

𝑘=max(1,𝑛+1−𝑀)
(𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 )) ⟩

(𝑥 B 𝑥 + 1) + (𝑦 B 𝑦 + 1)

⟨
min(𝑁,𝑛)⊕

𝑘=max(1,𝑛+1−𝑀)
(𝑥 = 𝑁 − 𝑘 + 1 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 )) ⊕ (𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 )) ⟩

else if 𝑥 ≥ 𝑁 then

⟨
0⊕

𝑘=max(0,𝑛+1−𝑀)
(𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 )) ⟩

𝑦 B 𝑦 + 1

⟨
0⊕

𝑘=max(0,𝑛+1−𝑀)
(𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)) ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 )) ⟩

else

⟨
min(𝑁,𝑛+1)⊕
𝑘=𝑛+1

(𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)) ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 )) ⟩

𝑥 B 𝑥 + 1

⟨
min(𝑁,𝑛+1)⊕
𝑘=𝑛+1

(𝑥 = 𝑁 − 𝑘 + 1 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)) ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 )) ⟩

⟨𝜑𝑛⟩
⟨(𝑥 = 𝑁 ∧ 𝑦 = 𝑀) ((

𝑁 +𝑀
𝑁 )) ⟩

Figure 8: Random walk proof

Knowing that 𝑘 = 𝑛 −𝑀 in the first conjunction, we get that:(
𝑁 +𝑀 − (𝑛 + 1)
𝑁 − (𝑘 + 1)

)
=

(
𝑁 +𝑀 − (𝑛 + 1)
𝑁 − (𝑛 −𝑀 + 1)

)
= 1 =

(
𝑁 +𝑀 − 𝑛

𝑁 − 𝑘

)
Similarly, for the second conjunction we get the same weight. Also,

observe that for any 𝑎 and 𝑏:(
𝑎

𝑏

)
+

(
𝑎

𝑏 + 1

)
=

𝑎!

𝑏!(𝑎 − 𝑏)! +
𝑎!

(𝑏 + 1)!(𝑎 − 𝑏 − 1)!

=
𝑎!

𝑏!(𝑎 − 𝑏) (𝑎 − 𝑏 − 1)! +
𝑎!

(𝑏 + 1)𝑏!(𝑎 − 𝑏 − 1)!

=
𝑎!(𝑏 + 1) + 𝑎!(𝑎 − 𝑏)

(𝑏 + 1)𝑏!(𝑎 − 𝑏) (𝑎 − 𝑏 − 1)!

=
𝑎!(𝑏 + 1 + 𝑎 − 𝑏)
(𝑏 + 1)!(𝑎 − 𝑏)!

=
(𝑎 + 1)!

(𝑏 + 1)!((𝑎 + 1) − (𝑏 + 1))!

=

(
𝑎 + 1

𝑏 + 1

)
So, letting 𝑎 = 𝑁 +𝑀 − (𝑛 + 1) and 𝑏 = 𝑁 − (𝑘 + 1), it follows that:(

𝑁 +𝑀 − (𝑛 + 1)
𝑁 − (𝑘 + 1)

)
+

(
𝑁 +𝑀 − (𝑛 + 1)

𝑁 − 𝑘

)
=

(
𝑁 +𝑀 − 𝑛

𝑁 − 𝑘

)

We can therefore rewrite the assertion as follows:

⊕
𝑘∈{𝑛−𝑀 |𝑛≥𝑀 }

𝑃 (𝑛, 𝑘) ((
𝑁 +𝑀−𝑛
𝑁−𝑘 )) ⊕

⊕
𝑘∈{𝑁 |𝑛≥𝑁 }

𝑃 (𝑛, 𝑘) ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

⊕
min(𝑁−1,𝑛)⊕

𝑘=max(0,𝑛+1−𝑀)
𝑃 (𝑛, 𝑘) ((

𝑁 +𝑀−𝑛
𝑁−𝑘 ))

And by recombining the terms, we get:

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛−𝑀)

𝑃 (𝑛, 𝑘) ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

Which is precisely 𝜑𝑛 . According to the Variant rule, the final

postcondition is just 𝜑0.

G.2 Shortest Paths

Recall the following program that nondeterministically finds the

shortest path from 𝑠 to 𝑡 using a model of computation based on
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the tropical semiring (Example 2.8).

SP ≜


while 𝑝𝑜𝑠 ≠ 𝑡 do
𝑛𝑒𝑥𝑡 B 1 #
(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #
𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 #
assume 1

The derivation is shown in Figure 9. We use the While rule to

analyze the outer loop. This requires the following families of asser-

tions, where 𝜑𝑛 represents the outcomes where the guard remains

true after exactly𝑛 iterations and𝜓𝑛 represents the outcomes where

the loop guard is false after 𝑛 iterations. Let 𝐼 = {1, . . . , 𝑁 } \ {𝑡}.

𝜑𝑛 ≜
⊕
𝑖∈𝐼

(𝑝𝑜𝑠 = 𝑖) (sp
𝑡
𝑛 (𝐺,𝑠,𝑖)+𝑛)

𝜓𝑛 ≜ (𝑝𝑜𝑠 = 𝑡) (sp
𝑡
𝑛 (𝐺,𝑠,𝑡 )+𝑛) 𝜓∞ ≜ (𝑝𝑜𝑠 = 𝑡) (sp(𝐺,𝑠,𝑡 ))

We now argue that (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. Take any (𝑚𝑛)𝑛∈N such that

𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛, which means that |𝑚𝑛 | = sp𝑡𝑛 (𝐺, 𝑠, 𝑡) + 𝑛 and

supp(𝑚𝑛) ⊆ (𝑝𝑜𝑠 = 𝑡). In the tropical semiring, |𝑚𝑛 | corresponds
to the minimum weight of any element in supp(𝑚𝑛), so we know

there is some 𝜎 ∈ supp(𝑚𝑛) such that 𝑚𝑛 (𝜎) = sp𝑡𝑛 (𝐺, 𝑠, 𝑡) + 𝑛,

and since sp𝑡𝑛 (𝐺, 𝑠, 𝑡) is Boolean valued and true = 0 and false = ∞,

then𝑚𝑛 (𝜎) is either 𝑛 or∞.

By definition, the minimum 𝑛 for which sp𝑡𝑛 (𝐺, 𝑠, 𝑡) = true is
sp(𝐺, 𝑠, 𝑡), so for all 𝑛 < sp𝑡𝑛 (𝐺, 𝑠, 𝑡), it must be the case that |𝑚𝑛 | =
∞ and for all𝑛 ≥ sp𝑡𝑛 (𝐺, 𝑠, 𝑡), it must be the case that |𝑚𝑛 | = 𝑛. Now,

|∑𝑛∈N𝑚𝑛 | = min𝑛∈N |𝑚𝑛 | = sp𝑡𝑛 (𝐺, 𝑠, 𝑡), and since all elements of

each𝑚𝑛 satisfies 𝑝𝑜𝑠 = 𝑡 , then we get that

∑
𝑛∈N𝑚𝑛 ⊨ 𝜓∞.

Now, we will analyze the inner iteration using the Iter rule and

the following two families of assertions, which we will assume are

1-indexed for simplicity of the proof.

𝜗 𝑗 ≜


⊕

𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗) (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛) if 𝑗 < 𝑁

⊤(0)
if 𝑗 ≥ 𝑁

𝜉 𝑗 ≜


⊕

𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗) ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)
if 𝑗 < 𝑁

⊤(0)
if 𝑗 ≥ 𝑁

𝜉∞ ≜
𝑁⊕
𝑗=1

⊕
𝑖∈𝐼

(𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗) ( (sp
𝑡
𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)

It is easy to see that (𝜉𝑛)𝑛∈N ⇝ 𝜉∞ since 𝜉∞ is by definition an

outcome conjunction of all the non-empty terms 𝜉 𝑗 . When 𝑗 < 𝑁 ,

then we get 𝜗 𝑗 ⊨ 𝑛𝑒𝑥𝑡 < 𝑁 , so we dispatch the first proof obligation

of the Iter rule as follows:

⟨𝜗 𝑗 ⟩ =⇒
⟨
⊕

𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗) (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛) ⟩
assume 𝑛𝑒𝑥𝑡 < 𝑁 #
⟨
⊕

𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗) (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛) ⟩
𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1

⟨
⊕

𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗 + 1) (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛) ⟩ =⇒
⟨𝜗 𝑗+1⟩

⟨𝑝𝑜𝑠 = 𝑠⟩ =⇒

⟨
⊕𝑁

𝑖=1 (𝑝𝑜𝑠 = 𝑖)sp𝑡0 (𝐺,𝑠,𝑖) ⟩ =⇒

⟨𝜑0 ⊕𝜓0⟩

while 𝑝𝑜𝑠 ≠ t do

⟨𝜑𝑛⟩ =⇒

⟨
⊕
𝑖∈𝐼

(𝑝𝑜𝑠 = 𝑖) (sp
𝑡
𝑛 (𝐺,𝑠,𝑖)+𝑛) ⟩

𝑛𝑒𝑥𝑡 B 1 #

⟨
⊕

𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 1) (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛) ⟩

(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗) ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛) ⟩ =⇒

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 (𝑛𝑒𝑥𝑡 = 𝑗) ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛) ⟩

𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 #

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑗) ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛) ⟩

assume 1

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 (𝑝𝑜𝑠 = 𝑗) ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛+1) ⟩ =⇒

⟨
⊕𝑁

𝑗=1 (𝑝𝑜𝑠 = 𝑗) (sp𝑡𝑛+1 (𝐺,𝑠,𝑗)+𝑛+1) ⟩ =⇒

⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩

⟨𝜓∞⟩ =⇒

⟨(𝑝𝑜𝑠 = 𝑡) (sp(𝐺,𝑠,𝑡 )) ⟩

Figure 9: Shortest path proof

When instead 𝑗 ≥ 𝑁 , then we know that 𝜗 𝑗 ⊨ ¬(𝑛𝑒𝑥𝑡 < 𝑁 ) and so

it is easy to see that:

⟨𝜗 𝑗 ⟩ assume 𝑛𝑒𝑥𝑡 < 𝑁 # 𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1 ⟨⊤(0) ⟩
For the second proof obligation, we must show that:

⟨𝜗 𝑗 ⟩ assume 𝐺 [𝑝𝑜𝑠] [𝑛𝑒𝑥𝑡] ⟨𝜉 𝑗 ⟩
For each outcome, we know that 𝑝𝑜𝑠 = 𝑖 and 𝑛𝑒𝑥𝑡 = 𝑗 . If𝐺 [𝑖] [ 𝑗] =
true = 0, then (sp𝑡𝑛 (𝐺, 𝑠, 𝑖) ∧ 𝐺 [𝑖] [ 𝑗]) + 𝑛 = sp𝑡𝑛 (𝐺, 𝑠, 𝑖) + 𝑛, so

the postcondition is unchanged. If 𝐺 [𝑖] [ 𝑗] = false = ∞, then

(sp𝑡𝑛 (𝐺, 𝑠, 𝑖) ∧ 𝐺 [𝑖] [ 𝑗]) + 𝑛 = ∞ and the outcome is eliminated

as expected. We now justify the consequence after assume 1. Con-
sider the term:⊕

𝑖∈𝐼
(𝑝𝑜𝑠 = 𝑗) ( (sp

𝑡
𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛+1)

This corresponds to just taking the outcome of minimum weight,

whichwill be𝑛+1 if sp𝑛 (𝐺, 𝑠, 𝑖)∧𝐺 [𝑖] [ 𝑗] is true for some 𝑖 ∈ 𝐼 and∞
otherwise. By definition, this corresponds exactly to sp𝑡

𝑛+1 (𝐺, 𝑠, 𝑗) +
𝑛 + 1.
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