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Abstract. In this paper, we address the semi-supervised learning prob-
lem when there is a small amount of labeled data augmented with pair-
wise constraints indicating whether a pair of examples belongs to a
same class or different classes. We introduce a discriminative learning
approach that incorporates pairwise constraints into the conventional
margin-based learning framework. We also present an efficient algorithm,
PCSVM, to solve the pairwise constraint learning problem. Experiments
with 15 data sets show that pairwise constraint information significantly
increases the performance of classification.
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1 Introduction

Learning with partially labeled training data, also known as semi-supervised
learning, has received considerable attention, especially for classification and
clustering [1-17]. While labeled data is usually expensive, time consuming to
collect, and sometimes requires human domain experts to annotate, unlabeled
data often is relatively easy to obtain. For this reason, semi-supervised learning
has mainly focused on using the large amount of unlabeled data [18], together
with a small amount of labeled data, to learn better classifiers. Note that unla-
beled data may not always help. For example, [19] showed that unlabeled data
can degrade classification performance even in situations where additional la-
beled data would increase the performance. Hence, partially labeled data is an
attractive tradeoff between fully labeled data and unlabeled data.

In this paper, we investigate the usefulness of partially labeled information
in the form of pairwise constraints. More specifically, a pairwise constraint be-
tween two items indicates whether they belong to the same class or not. Similar
to unlabeled data, in many applications pairwise constraints can be collected au-
tomatically, e.g. in [1], pairwise constraints are extracted from surveillance video.
Pairwise constraints also can be relatively easy to collect from human feedback:
unlike labels that would require users to have prior knowledge or experience
with a data set, pairwise constraints require often little effort from users. For
example, in face recognition, it is far easier for users to determine if two faces
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belong to the same nationality, than it would be for the same users to classify
the faces into different nationalities.

In this paper, we propose a discriminative learning approach which incor-
porates pairwise constraints into the conventional margin-based learning frame-
work. In extensive experiments with a variety of data sets, pairwise constraints
significantly increase the performance of classification. The paper is structured
as follow: in section 2, we describe in detail our classification algorithm, PCSVM,
which incorporates pairwise constraints; in section 3, we review related work on
semi-supervised learning with pairwise constraints; the experimental results and
conclusion are given in section 4 and 5, respectively.

2 Classification with Pairwise Constraints

In the supervised setting, a learning algorithm typically takes a set of labeled
training examples, L = {(x;,y;)}"; as input, where z; € X’ and y; belongs to
a finite set of classes called ). For our learning framework, in addition to the
labeled data, there is additional partially labeled data in the form of pairwise
constraints C = {(w?,x?,ﬂz)}:’gl where xf‘,:cf € X and y; € {+1,—1} is the
indicator of whether z¢ and xZB belong to the same class (g; = +1), or not (y; =
—1). Ultimately, the goal of classification is to form a hypothesis h: X — Y.
First, we review the margin-based multiclass classification, also known as the
multiclass-SVM proposed by [20]. Consider a mapping @ : X x ) — F which
projects each item-label pair (z,y) € X x Y to &(z,y) in a new space F,

@(:];’y) =

)

v I(y = Y))

where Z(-) is the indicator function. The multiclass-SVM learns a weight vector
w and slack variables £ via the following quadratic optimization problem:

OPTIMIZATION PROBLEM I: MULTICLASS-SVM

subject to:
After we have learned w and &, the classification of a new example,x, is done by

h(x) = argmax w’ ®(x,y).
yey

In this margin-based learning framework, we observed that for a training
example (z;,v;) € L the score associated with the correct label y;, w” ®(z;, y;),
is greater than the scores associated with any other labels ¥, # vi, w? ®(x;,7;),
by at least the amount, 1 — ;. In Figure 1, we demonstrate how the relative
positions of the scores associated with different labels, w?'®(z;,-), change from
before training to after training for a fully labeled example, (z;,y;).
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Fig. 1. [llustration of how the relative positions of the scores associated with different
labels, w”®(x;,-), change from before training to after training for a fully labeled
example.
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Fig. 2. llustration of how the relative positions of the pairwise scores associated with
label-pairs, w” & (z¢, xf, -, +), change from before training to after training for a positive
pairwise constraint.

In a similar manner, we will incorporate the pairwise constraint information
into the margin-based learning framework. Specifically, given a positive pairwise
constraint (z¢, xf ,+1), we want the maximum score associated with the same-

label pairs y* = yiﬁ,

max [wT@(ﬁf,fciﬁ»y?»%ﬁ) )
ye =y
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to be greater than the maximum score associated with any different-label pairs
£ Y,

max, [wTé(x?,xf,yf‘,yf)} ,

Y5 #Y;
by a soft margin of at least 1 — v;. Similarly, for a negative pairwise constraint
(x, xf ,—1) we have the following inequality,

max [wl (ag, o,y yf)] - max [wle(af, 2,y )] > 1-w
YAy yg=y;
In Figure 2, we demonstrate how the relative positions of the pairwise scores
associated with label-pairs, w ®(z¢, xf .+, ), change from before training to after
training for a positive pairwise constraint, (x?,:v? ,+1). In our framework, we
define the mapping of a pairwise constraint as the sum of the individual example-
label scores,
B,y y)) = Plaf,u) + Bl yl).

Formally, the pairwise constraint SVM classification (PCSVM) learns a weight
vector w and slack variables &, v via the following margin-based quadratic opti-
mization problem:

OPTIMIZATION PrROBLEM II: PCSVM

i B (S ) @
subject to:
V(ziyi) € L,g; € V\yi » w” [D(wi,y:) — D0, 7,)] > 1 =&,
V(:U?,xf},ﬂi) eC’:

s, [u0(o2, 22,08, 00)] — e [0 o7, 0640)] 21w,
Y=y Yo Fyy

V(x?,xf,ﬂl) eC

max {wT@(fU?,xf,yf‘,yf)} — max {w%(ﬂf?‘,xf,yf‘,yf)} >1-u,
YAyl e =yf
where C* = {(,27,7;) € C | 3 = 41} and C~ = {(a,27,5;) e C | I =
—1} are the set of same/positive constraints and different/negative constraints
respectively. The classification of test examples is done in the same manner as
for the multiclass SVM classification.

In order to solve the pairwise constraint SVM classification, we extend the
Primal QP solver by [21]. The PCSVM is a simple and effective iterative algo-
rithm for solving the above QP and does not require transforming to the dual
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Algorithm 1 Pairwise Constraint SVM Classification (PCSVM)

Input: L - the labeled data, C - the pairwise constraint data
A and T - parameters of the QP

Initialize: Choose w; such that ||w:| < 1/v/X
fort=1to T do

Set A = {($i7yi) €L | wf (i, y;) — max wi B(w;,Y,) < 1}

Yi#Yi

Set AT = {(mf‘,xf,?j@) e Ct | max, [wfgﬁ(m?,xf,yﬁyf)]
— max [w;f@(x?,xf,yf,yf) < 1}
Set A” = {(w?,mf,ﬂl) e C™ | max [wfé(xf,x?7yf,yf

)
— maxﬁ [w?@(m?,wf,y?,y?)} < 1}

1
Set 1 = —
V]

e _
Set wH% = (1 — mA)we + m ( E N [@(xi,yi) - @(:C“yi)]
TiyYi)€

+ > [¢(x?,xf7yi,yf) — 45(55?7:6?4/3,2/‘3)]
(zg.0f G )eat

D DR LI R B Co ]
(@ o] J)EA~

where ¥ = argmax w{ ®(z:,7;),

Yi#Y
(v, y}) = argmax wi B,z y™, y?),
yr=y
(y2,y”) = argmax w{ ®(zf, =7, y*, y?)
yo#£yP
. 1/vVA
Set w1 = minK 1, /7\[ Wy 1
Torgl f et

end for

Output: wri1

formulation. The algorithm alternates between gradient descent steps and pro-
jection steps. In each iteration, the algorithm first computes a set of labeled
examples A C L, a set of positive pairwise constraints AT ¢ CT, and a set of
negative pairwise constraints A~ C C~ that contain violated examples and pair-
wise constraints. Then the weight vector w is updated according to the violated
sets A, AT, and A~. In the projection step, the weight vector w is projected to
the sphere of radius 1/v/X. The details of the PCSVM are given in Algorithm 1.
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We observed that if w; = 0 then w; can be written as
wy = Z @my@(xa y)
z,y

Hence, we can incorporate the usage of kernel when computing inner product
operations, i.e.:

(w,®(z',y") Z ey K(z,y,2',y)

|”UJ||2 ZZ ‘PmyQOmy’K x,Y,T ay)

zy x'y’

In our experiments, we use the polynomial kernel,

K(J,‘7 Y, xla y/) = <¢($, y)a @(.’IJ/, y/)>d7

where polynomial kernel degree d is chosen from the set {1,2,3,4,5}.
The efficiency and guaranteed performance of PCSVM in solving the quadratic
optimization problem is shown by the following theorem:

Theorem 1 Let

max||(z, y)|,
T,y

R = 2max ( rr;ax B||Q5(xa,x5,ya,yﬁ)||
zl’x ’y(l’y

then the number of iterations for Algorithm 1 to achieving a solution of accuracy

§ >0 is O(R%/(\)).!

3 Related Work

For classification, pairwise constraints have been shown to improve the perfor-
mance of classifiers. In [3-9], pairwise constraints is used to learn a Mahalanobis
metric and then apply distance-based classifier such as KNN to the transformed
data. Unlike our proposed method, most metric learning algorithms deal with
labeled data indirectly by converting into pairwise constraints. In addition, the
work of [1,2] is most related to our proposed algorithm. In [1], the authors
also presented a discriminative learning framework which can learn the decision
boundary with labeled data as well as additional pairwise constraints. However,
in the binary algorithm, PKLR proposed by [1], a logistic regression loss func-
tion is used for binary classification instead of the hinge loss. In [2], the authors
proposed a binary classifier which also utilizes pairwise constraint information.
The proposed classifier, Linear-PC, is a sign-insensitive estimator of the optimal
linear decision boundary.

! The proof of Theorem 1 is omitted since it is similar to the one given in [21].
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Similarly, pairwise constraints have also shown to be successful in the semi-
supervised clustering [10-17]. In particular, COPKmeans [11] is a semi-supervised
variant of Kmeans. COPKmeans follows the same clustering procedure of Kmeans
while avoiding violations of pairwise constraints. In addition, MPCKmeans [17]
utilized both metric learning and pairwise constraints in the clustering process.
In MPCKmeans, a separate weight matrix for each cluster is learned to minimize
the distance between must-linked instances and maximize the distance between
cannot-link instances. Hence, the objective function of MPCKmeans minimizes
cluster dispersion under the learned metrics while reducing constraint violations.
However, most existing algorithms can only find a local-optimal solution for the
clustering problem with pairwise constraints as users’ feedback.

4 Experiments

We evaluate our proposed algorithms on fifteen data sets from the UCI repository
[22] and the LIBSVM data [23]. A summary of the data sets is given in Table
1. For the PCSVM algorithm, we set the parameters used in the experiments as
follows: (i) the SVM A parameter is chosen from {10°}3__,; (ii) the kernel degree,
d, is selected from the set {1,2,3,4,5}; (iii) the number of pairwise constraints
is from the set {10, 20, 40,80, 160}; (iv) the number of label examples is chosen
from the set {1,...,5}2. The parameters, A and d, are selected using two fold

cross validation on the training pairwise constraints.

Table 1. A summary of the data sets.

DATA SETS CLASSES S1ZE FEATURES
AUSTRALIAN 2 690 14
SPAMBASE 2 2300 57
IONOSPHERE 2 351 34
GERMAN 2 1000 24
HEART 2 270 13
DIABETES 2 768 8
LIVER-DISORDER 2 345 6
SPLICE 2 3175 60
MUSHROOM 2 8124 112
SVMGUIDE2 3 391 20
VEHICLE 4 846 18
DERMATOLOGY 6 179 34
SATIMAGE 6 6435 36
SEGMENT 7 2310 19
VOWEL 11 990 10

2 Both the pairwise constraints and label examples are randomly generated.
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In the first set of experiments, we compare the performance of the PCSVM
against the two other methods proposed by [1, 2], called PKLR and Linear-PC
respectively, on 9 binary data sets. In Figure 3, we plot the performance of
PCSVM, Linear-PC, and PKLR versus the number of pairwise constraints when
there are 5 fully labeled examples per class. To summarize the information, Fig-
ure 4 presents the same information by averaging across 9 binary data sets. For
different numbers of pairwise constraints and different numbers of fully labeled
examples, we observe that both PCSVM and PKLR show significant improve-
ment over Linear-PC. The inferior performance of Linear-PC is due to the fact
that the estimator only finds the optimal linear decision boundary. On the other
hand, PCSVM and PKLR are able to handle the non-linear separable case by
utilizing the non-linear kernel functions. In addition, we also observe that PKLR
tends to produce better performance than PCSVM when the number of training
pairwise constraints is small. As the number of pairwise constraints increases,
PCSVM outperforms PKLR. An explanation of this phenomenon is that the loss
function of PCSVM is not formulated specifically for binary classification.

australian diabetes german

0.28¢

--{)-- Linear-PC
0.26 PKLR
024—&~ PCSVM .
10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
heart ionosphere liver-disorder
0.4{) 0.4
035 ¢ ¢ $ 038

0.3

Error

0.2 0.32
10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
mushrooms spambase splice
o @i $ ............ e )

10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
No. of pairwise constraints No. of pairwise constraints No. of pairwise constraints

Fig. 3. Classification Performance of 9 binary data sets using 5 label points per class:
PCSVM, Linear-PC, and PKLR

In the second set of experiments, we compare the performance of the PCSVM
against SVM and SVM-AIl. SVM is only trained on the labeled data but ignores
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Fig. 4. Average classification performance of 9 binary data sets: PCSVM, Linear-PC,
and PKLR

the pairwise constraint information. On the other hand, SVM-AII is not only
trained on the labeled data but also use the examples in the pairwise constraint
data where the true labels are revealed to the algorithm. In Figure 5, we plot the
performance of the PCSVM versus the number of pairwise constraints presented
in the training set when there are 5 labeled examples per class for all 15 data sets.
To summarize the information, Figure 6 shows the same information but aver-
aging across 15 data sets. Across all data sets, we observe that the performance
of the PCSVM is between that of SVM and SVM-AIL. This behavior is what we
should expect since pairwise constraint information helps to improve the perfor-
mance of PCSVM over SVM which does not use this information; and labeled
data should still provide more discriminative information to the SVM-AII than
pairwise constraint information could do to the PCSVM. Note that PCSVM,
by learning from the pairwise constraints, on average yields half or more of the
error reduction that could be achieved by learning with labels. Hence, SVM and
SVM-AIl can be viewed as the lower and upper bound on the performance of
PCSVM.

5 Conclusion

In this paper, we study the problem of classification in the presence of pairwise
constraints. We propose a discriminative learning approach which incorporates
pairwise constraints into the margin-based learning framework. We also present
an efficient algorithm, PCSVM, that integrates pairwise constraints into the
multiclass-SVM classification. In experiments with 15 data sets, pairwise con-
straints not only improves the performance of the binary classification in com-
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Fig. 5. Classification Performance of 15 data sets using 5 label points per class:
PCSVM, SVM, and SVM-AIl

parison with two other methods (Linear-PC and PKLR) but also significantly
increase the performance of the multiclass classification.
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Fig. 6. Average classification performance of 15 data sets
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