
Near-Optimal Algorithms for Omniprediction

Princewill Okoroafor* Robert Kleinberg Michael P. Kim†‡

Abstract

Omnipredictors are simple prediction functions that encode loss-minimizing predictions with re-
spect to a hypothesis class H , simultaneously for every loss function within a class of losses L. In
this work, we give near-optimal learning algorithms for omniprediction, in both the online and of-
fline settings. To begin, we give an oracle-efficient online learning algorithm that acheives (L,H)-
omniprediction with Õ(

√
T log |H|) regret for any class of Lipschitz loss functions L ⊆ LLip. Quite

surprisingly, this regret bound matches the optimal regret for minimization of a single loss function
(up to a

√
log(T) factor). Given this online algorithm, we develop an online-to-offline conversion that

achieves near-optimal complexity across a number of measures. In particular, for all bounded loss func-
tions within the class of Bounded Variation losses LBV (which include all convex, all Lipschitz, and all
proper losses) and any (possibly-infinite) H , we obtain an offline learning algorithm that, leveraging
an (offline) ERM oracle and m samples from D, returns an efficient (LBV,H , ε(m))-omnipredictor for
ε(m) scaling near-linearly in the Rademacher complexity of Th ◦ H .

*PO was in part supported by a Linkedin-Cornell Fellowship Grant.
†MPK: This research was supported by a gift to the LinkedIn-Cornell Bowers CIS Strategic Partnership.
‡Authors listed in reverse-alphabetical order.

Contents

1 Introduction 1

1.1 Overview of Contributions . 3

1.1.1 Decision OI as Proper Calibration . 4

1.1.2 Blackwell Approachability for Online Omniprediction 6

1.1.3 Oracle-Efficient Online Omniprediction . 7

1.1.4 Near-Optimal Offline Omnipredictors . 9

1.2 Discussion of Results and Related Works . 13

1.3 Acknowledgements . 15

2 Model and Preliminaries 16

3 Proper Calibration 20

3.1 Omniprediction via Proper Calibration and Multiaccuracy 20

3.2 Approximating Proper Calibration with Weighted Calibration over Thresholds 23

3.3 Algorithm for Proper Calibration in the Online Setting 25

3.4 Augmented Proper Calibration . 27

4 Online Omniprediction 32

4.1 Online Weak Agnostic Learning . 33

4.2 Omniprediction for Finite Classes . 36

4.3 Omniprediction for Infinite Loss Classes with Finite Approximate Basis 36

5 Omniprediction for Notable Loss Classes 39

5.1 Online Omniprediction bounds for Notable Loss Classes 40

5.2 Approximate Bases for Notable Loss Classes . 40

6 Offline Omniprediction 43

6.1 Learning Randomized Omnipredictors via Online-to-Batch Conversion 44

6.2 Implementing an Online Weak Agnostic Learner with Offline Sample Complexity 45

6.3 Uniform Convergence Results for Online-to-Batch Conversion 45

7 Oracle-Efficient Offline Omniprediction 49

7.1 Implementing a dowal using FTRL . 52

7.2 Frank-Wolfe reduction to ERM oracle . 56

A Relating Proper Calibration to Existing Notions of Calibration 62

A.1 Calibration is stronger than Proper Calibration . 62

A.2 Proper calibration is stronger than other prior notions . 64

A.3 Calibration Decision Loss is incomparable to Proper Calibration 68

B Online Multiaccuracy 70

B.1 Multiaccuracy for Finite Hypothesis Classes . 70

B.2 Achieving Online Multiaccuracy using Online Weak Agnostic Learner 72

C Proper Calibrated Multiaccuracy Boosting 73

D Implementing an OWAL with Offline Sample Complexity 76

1 Introduction

In recent years, the research community has investigated learning frameworks beyond the traditional ob-
jective of loss minimization. Amidst research addressing concerns of fairness and robustness, Gopalan
et al. (2022) introduced a powerful notion of robust learning, called omniprediction. An omnipredictor
is a simple prediction function for binary outcomes that encodes loss-minimizing predictions simultane-
ously for every loss within a broad class of loss functions L. In contrast to the conventional wisdom—that
exploring different loss functions necessitates training different loss minimizers—omnipredictors allow a
decision-maker to learn a single model p (an omnipredictor) and subsquently decide which loss function ℓ
is appropriate for their setting, without retraining p.

More technically, omniprediction is a parameterized guarantee, based on a class of loss functions L as
well as a hypothesis classH , and requires loss minimization for every ℓ ∈ L with respect toH .

Definition. A prediction function p : X → [0, 1] is an (L,H , ε)-omnipredictor if for every ℓ ∈ L

E[ℓ(kℓ ◦ p(x), y)] ≤ min
h∈H

E[ℓ(h(x), y)] + ε.

That is, for every loss ℓ within the collection, kℓ ◦ p is a loss minimizer for ℓ. Here, kℓ is a data-free post-
processing of the predictions given by p that “type-checks” the outputs given by p to match ℓ, specifically:
kℓ(v) ≜ arg mina∈[0,1] Ey∼Ber(v)[ℓ(a, y)]. Such a post-processing of p is necessary for the omnipredictor
definition, as different losses expect different “types” of optimal predictions.1

On its face, the guarantee of omniprediction significantly strengthens that of loss minimization with respect
to a single loss function, especially when faced with a large, diverse class of losses. A natural question,
facing such a strong definition, is whether omnipredictors exist. With some thought, it’s not hard to see
that the optimal predictor p∗(x) = Pr[y = 1|x] is an omnipredictor for every L and H . That is, if we
know the true conditional distribution of outcomes given covariates, we can make (statistically) optimal
predictions according to every loss function. In most learning settings, however, the optimal predictor p∗

is unattainable, both statistically and computationally.

A more delicate question is whether efficient omnipredictors exist, with complexity scaling comparably to
the hypotheses the omnipredictor is competing against. Moreover, if such omnipredictors exist, can we
learn them from a finite sample of data, using reasonable amounts of computation? The original work
introducing omniprediction showed the sweeping result that efficient2 omniprediction is possible for the
class of all convex loss functions.

Theorem (Efficient Omnipredictors Exist (Gopalan et al., 2022)). Let Lcvx be the set of all convex, 1-
Lipschitz loss functions. For any data distribution D, hypothesis class H , and ε ≥ 0, there exist efficient
(Lcvx,H , ε)-omnipredictors. Further, such omnipredictors can be learned using a weak agnostic learner
for H , from m = O(dH · poly(1/ε)) samples from D, where dH represents the VC (or fat-shattering)
dimension ofH .

The original construction of efficient omnipredictors follows as a consequence of multicalibration, a pow-
erful notion for learning introduced in the algorithmic fairness literature by Hébert-Johnson et al. (2018).
Even though multicalibration is defined without any reference to loss minimization, Gopalan et al. (2022)

1For example, the optimal prediction for ℓ2 is Pr[y = 1|x], whereas for ℓ1, it’s the most likely outcome in {0, 1}.
2Technically, we say an omnipredictor is efficient if it has a poly(1/ε)-sized circuit using oracle gates for h ∈ H .

1

showed that, in fact, multicalibration implicitly guarantees loss minimization over every convex loss.
While powerful, multicalibration is quite expensive in terms of sample complexity. For example, the
sample complexity of omniprediction via multicalibration scales as O(1/ε10) in the error parameter.

Subsequent work has investigated whether omniprediction can be achieved more efficiently than multical-
ibration. The work of Gopalan et al. (2023) introduced a general recipe, dubbed Loss OI, for achieving
omnipredictors (for more general classes of loss functions) via two weaker conditions, calibration (Dawid,
1985) and multiaccuracy (Kim et al., 2019). Despite qualitative progress, the quantitative bounds for learn-
ing omnipredictors have not improved considerably. The state-of-the-art learning algorithms for efficient
omnipredictors (even for subclasses of Lcvx) still use sample complexity that scales as O(1/ε10), consid-
erably larger than the optimal ε-dependence for loss minimization of Θ(1/ε2).

One concrete barrier to improved bounds for omniprediction is the reliance on calibration. At least in the
online setting, calibration is known to require asymptotically more samples than loss minimization (Qiao
and Valiant, 2021; Dagan et al., 2024). This “calibration bottleneck” has inspired researchers to look for
alternative variants of calibration that are strong enough to give omniprediction-style guarantees, but weak
enough to be achieved efficiently. Towards this end, Kleinberg et al. (2023) recently gave an algorithm that
achieves simultaneous O(

√
T)-regret for all proper losses; subsequently, Hu and Wu (2024) and Roth and

Shi (2024) showed that similar bounds can be achieved for swap regret. These settings are non-contextual,
so they do not directly guarantee omniprediction. Still, the results raise the prospect of simultaneous loss
minimization at the price of minimizing a single loss. Indeed, Garg et al. (2024) showed a restricted setting
in which online omniprediction is possible, albeit inefficiently, with near-optimal Õ(

√
T log |H|) regret.

Despite a flurry of progress since its introduction, key questions about omniprediction remained unan-
swered. Most importantly, what is the sample complexity of learning efficient omnipredictors? In the on-
line setting, what is the best omniprediction regret attainable? And how does the computational complexity
of learning omnipredictors depend on the number of samples used? Underlying all of these questions is
a methodological question about the relationship between calibration and omniprediction: Is calibration
necessary for efficient omniprediction, and if not, what weaker properties suffice?

Our Contributions. In this work, we establish the near-optimal complexity of learning efficient om-
nipredictors. Remarkably, we show that for an extremely broad class of loss functions, there is essentially
no cost to omniprediction compared to loss minimization. In both the online and distributional settings, we
give oracle-efficient learning algorithms that establish upper bounds on the omniprediction regret (sample
complexity, respectively) that match the lower bounds for minimization of a single loss function, up to low
order factors. Our main contributions can be summarized as follows:

• Proper Calibration. We define a new variant of calibration—proper calibration—that is weaker
than full calibration, but suffices for omniprediction. Following the Loss OI framework of Gopalan
et al. (2023), we show that proper calibration actually characterizes “Decision OI” and, in doing so,
show that proper calibration, paired with ∆L ◦H-multiaccuracy, implies (L,H)-omniprediction.

• Near-Optimal Online Omniprediction. We devise an online learning algorithm, based on Black-
well Approachability (Blackwell, 1956; Abernethy et al., 2011), that achieves proper calibration and
multiaccuracy with near-optimal regret. Consequently, we obtain Õ

(√
T · log |H|

)
omniprediction

regret, for any finite hypothesis class H and any class L ⊆ LBV of bounded variation losses; in

2

particular, LBV includes all Lipschitz losses LLip, their restriction to convex losses Lcvx, as well as
all proper losses Lprop and all bounded convex losses, irrespective of Lipschitz continuity.

• Oracle-Efficiency. We extend this basic approach, showing that, for any hypothesis classH (includ-
ing infinite classes), online omniprediction reduces to Online Weak Agnostic Learning. This reduc-
tion establishes an upper bound on the omniprediction regret in terms of the sequential Rademacher
complexity of the derived class ∆L ◦H .

• Efficient Offline Omnipredictors. To achieve optimal omniprediction in the distributional setting,
we develop an offline learning algorithm inspired by our online learning algorithm. In some sense,
our algorithm can be viewed as a online-to-offline conversion, but running the conversion naively re-
sults in inefficient omniprediction. Instead, we devise a more sophisticated framework that maintains
efficiency in samples, computation, and the resulting omnipredictor complexity simultaneously. In
all, our algorithm returns an efficient randomized omnipredictor (that is evaluated by sampling one
of poly(1/ε) hypotheses from H and postprocessing its output), using an offline ERM oracle, with
sample complexity scaling near-optimally in the offline Rademacher complexity.

Organization. The remainder of the manuscript is organized as follows. The bulk of the introduction
is dedicated to a detailed overview of our contributions (Section 1.1). We highlight our main results,
emphasizing an intuitive understanding of our techniques. We conclude the introduction with a discussion
of related works and open directions (Section 1.2). Beginning in Section 2, we give a complete presentation
of our results, including formal definitions and proofs. Throughout Section 1.1, we aim to give pointers to
the formal presentations of results in the body of the manuscript.

1.1 Overview of Contributions

Basic Preliminaries. We work in both an online and distributional prediction setting: inputs x ∈ X
come from a discrete domain and outcomes y ∈ Y = {0, 1} are binary. Omniprediction aims to learn
a single predictor p : X → [0, 1] that guarantees loss minimization for every loss within a class L ⊆
{ℓ : [0, 1] × Y → R} compared to the best hypothesis from a class H ⊆ {h : X → [0, 1]}. In the distribu-
tional setting, we assume a fixed but unknown distribution D supported on X × Y; when not specified,
expectations are taken overD.

We denote the set of all bounded loss functions3 as Lall = {ℓ : [0, 1] × Y → [−1, 1]} and consider loss
classes defined based on functional properties (in the first argument). These loss classes include bounded
variation LBV, 1-Lipschitz Llip, and (Lipschitz) convex losses Lcvx, with the following inclusions.

Lall ⊋ LBV ⊋ Llip ⊋ Lcvx

One very important class of losses are the proper lossesLproper. A loss function ℓ is proper if for y ∼ Ber(v),
predicting v is an optimal strategy; that is, E[ℓ(v, y)] ≤ E[ℓ(u, y)] for any u ∈ [0, 1]. Note that the class of
bounded proper losses Lproper is a subset of LBV, but incomparable to Llip.

A key object in the study of omniprediction is the discrete derivative of a loss,

∆ℓ(v) = ℓ(v, 1) − ℓ(v, 0)
3Throughout, we restrict our attention to measurable loss functions.

3

which intuitively captures whether ℓ distinguishes between y = 1 and y = 0 at a given prediction v ∈ [0, 1].

Calibration is an essential notion for our discussion. We work with the generic notion of weighted calibra-
tion, which allows us to instantiate different variants easily.

Definition (Weighted Calibration Error). Fix a class of functions W ⊆ {w : [0, 1]→ [−1, 1]}, called
weight functions. TheW-weighted calibration error is defined distributionally for any predictor p : X →
[0, 1], and sequentially, for any sequence of predictions, contexts, and outcomes p, x, y, as follows.

W-CalErr(p) = sup
w∈W

∣∣∣ E[w(p(x)) · (y − p(x))]
∣∣∣ W-CalErr(p, x, y) = sup

w∈W

∣∣∣∣∣∣∣
T∑

t=1

w(pt(xt))(yt − pt(xt))

∣∣∣∣∣∣∣
The standard notion of calibration (ℓ1-calibration) corresponds to taking Wall = {w : [0, 1]→ [−1, 1]}.
Threshold functions are a key weight class, whereWTh = {Thθ : θ ∈ [0, 1]} for Thθ(p) = sgn(θ − p).

Another important notion in the development of omnipredictors is multiaccuracy (Hébert-Johnson et al.,
2018; Kim et al., 2019). Multiaccuracy is parameterized by a hypothesis class H and guarantees that the
residual in predictions have no nontrivial correlation with any h ∈ H .

Definition (Multiaccuracy). Fix a hypothesis classH ⊆ {h : X → [−1, 1]}. TheH-multiaccuracy error is
defined distributionally for any predictor p : X → [0, 1], and sequentially, for any sequence of predictions,
contexts, and outcomes p, x, y, as follows.

H-MAErr(p) = sup
h∈H

∣∣∣ E[h(x) · (y − p(x))]
∣∣∣ H-MAErr(p, x, y) = sup

h∈H

∣∣∣∣∣∣∣
T∑

t=1

h(xt)(yt − pt(xt))

∣∣∣∣∣∣∣
A complete set of preliminaries is given in Section 2.

1.1.1 Decision OI as Proper Calibration

Our approach to omniprediction follows the framework put forth by Gopalan et al. (2023) of Loss Outcome
Indistinguishability (OI). As our first contribution, we give a novel characterization of one of the key
components of the framework, Decision OI, in terms of a notion, which we call proper calibration. We
develop this notion and its properties in Section 3. In particular, working with proper calibration reveals a
more efficient scheme for achieving omniprediction, as we overview next.

The OI paradigm (Dwork et al., 2021) frames learning as indistinguishability. A predictor p : X → [0, 1]
satisfies OI if outcomes generated based on p “look like” real-world outcomes. Concretely, OI compares
samples from the real world (x, y) ∼ D and modeled samples (x, ỹ) where ỹ ∼ Ber(p(x)) is resampled
based on the predictor p. Loss OI guarantees (L,H)-omniprediction via two sub-conditions, Hypothesis
OI and Decision OI, using efficient tests defined by the losses ℓ ∈ L and hypotheses h ∈ H .

Hypothesis OI: E
x,y∼D

[ℓ(h(x), y)] ≈ε E
x∼D

ỹ∼Ber(p(x))

[ℓ(h(x), ỹ)] ∀ℓ ∈ L, h ∈ H (1)

Decision OI: E
x,y∼D

[ℓ(kℓ ◦ p(x), y)] ≈ε E
x∼D

ỹ∼Ber(p(x))

[ℓ(kℓ ◦ p(x), ỹ)] ∀ℓ ∈ L (2)

Under these OI conditions, omniprediction follows immediately.

4

Theorem (Gopalan et al. (2023)). If p satisfies (L,H , ε)-Hypothesis OI and (L, ε)-Decision OI, then p is
an (L,H , 2ε)-omnipredictor.

This OI argument follows by switching from expectations in the real world (i.e., the LHS of (1) and (2)) to
the modeled world (RHS). In the modeled world, outcomes are sampled from our predictor ỹ ∼ Ber(p(x)),
so kℓ◦p(x) is the statistically-optimal predictor; thus, in the real world, E[ℓ(h(x), y)] ≥ E[ℓ(kℓ◦p(x), y)]−2ε
by OI (losing an additive ε to switch from the real world to the modeled world and back).

Gopalan et al. (2023) go on to show that Hypothesis OI is equivalent to a certain multiaccuracy condition,
for the class ∆L ◦ H = {∆ℓ ◦ h : ℓ ∈ L, h ∈ H}. They also show how the Decision OI error can be
expressed as the following weighted calibration condition.∣∣∣ E

x,y∼D
[ℓ(kℓ ◦ p(x), y)] − E

x∼D
ỹ∼Ber(p(x))

[ℓ(kℓ ◦ p(x), ỹ)]
∣∣∣ = ∣∣∣ E

x,y∼D
[∆ℓ(kℓ ◦ p(x)) · (y − p(x))]

∣∣∣ (3)

While standard calibration implies this weighted calibration condition, we argue that it can be simplified
into the following notion, based on proper losses.

Definition (Proper Calibration). LetWproper = {∆ℓ : ℓ ∈ Lproper}. A predictor p : X → [0, 1] is ε-proper
calibrated ifWproper-CalErr(p) ≤ ε; that is,

sup
ℓ∈Lproper

∣∣∣ E[∆ℓ(p(x)) · (y − p(x))]
∣∣∣ ≤ ε

At first, this notion may seem insufficient to deal with improper losses. But when we compose a non-
proper loss ℓ ∈ L with the optimal post-processing kℓ, we can effectively treat the loss as proper. Formally,
for any loss ℓ, there exists a proper loss ℓproper ∈ Lproper such that ∆ℓ(kℓ(·)) = ∆ℓproper(·). The restriction
to proper calibration allows us to exploit structural properties of proper losses. In particular, as in (Li
et al., 2022; Kleinberg et al., 2023), we lean on a characterization of proper losses in terms of threshold
functions. In all, we can show the following characterization of Decision OI in terms of proper calibration,
and in terms of threshold-weighted calibration, which can be achieved efficiently.

Theorem 1. Lall-Decision OI, Proper Calibration, andWTh-calibration are equivalent. Formally, for any
predictor p : X → [0, 1] (or sequence of predictions p), the errors can be related as follows:

WTh-CalErr(p) ≤ Wproper-CalErr(p) = Lall-DecOIErr(p) ≤ 2 · WTh-CalErr(p)

Thus, if p is (∆L ◦ H , ε)-multiaccurate and (WTh, ε)-calibrated, then p is an (L,H , 3ε)-omnipredictor.
Further, there exists an online algorithm that guarantees O(

√
T log T) proper calibration regret.

With this characterization in hand, we can enforce proper calibration (and thus Decision OI) by auditing
the predictor with threshold functions. Incorporating proper calibration—rather than ℓ1-calibration—into
the algorithmic framework of Gopalan et al. (2023) results in statistical improvements, but does not realize
sample optimality. For completeness, we analyze this approach in Appendix C. Importantly, as we describe
in the next section, we can enforce proper calibration simultaneously with multiaccuracy in the online
setting to obtain near-optimal omniprediction regret, which we subsequently leverage to establish statistical
near-optimality in the offline setting.

5

1.1.2 Blackwell Approachability for Online Omniprediction

In Section 4, we describe our strategy to learn predictions that obtain near-optimal omniprediction regret.
Our algorithmic approach to online omniprediction is based on Blackwell Approachability (Blackwell,
1956) to solve a vector-valued game, defined by the proper calibration and multiaccuracy constraints. At
a high level, we employ a framework developed by Abernethy et al. (2011) to use multiplicative weights
over the set of constraints defined by the vector-valued game. Within this framework, we devise an explicit
“halfspace oracle” used by the forecaster to play optimally given the dual weights. We begin with an
overview of the intuition behind our approach, and describe our oracle-efficient implementation in the
subsequent section.

To build intuition, we focus on the omniprediction setting where the loss class L and hypothesis class H
are finite. As discussed above, our learning goal is to achieve low regret for proper calibration and online
multiaccuracy simultaneously.4 Per Theorem 1, the multiaccuracy and proper calibration regret necessary
for omniprediction can be expressed as follows.

Multiaccuracy: max
ℓ∈L,
h∈H

∣∣∣∣∣∣∣
T∑

t=1

∆ℓ ◦ h(xt)(yt − pt)

∣∣∣∣∣∣∣ Proper Calibration: sup
θ∈[0,1]

∣∣∣∣∣∣∣
T∑

t=1

Thθ(pt)(yt − pt)

∣∣∣∣∣∣∣
In other words, the learner’s job is to choose a sequence of predictions p that, when playing against an
adversarial sequence of contexts x, y, guarantee low regret over a worst-case choice over loss-hypothesis
pairs (ℓ, h) ∈ L × H (multiaccuracy) and thresholds θ ∈ [0, 1] (proper calibration). In such a setting, we
can formulate the learner’s task as a Blackwell Approachability game with vector-valued payoffs.

Concretely, we can imagine the following finite-dimensional payoff vector u⃗. Given a prediction p, input
x ∈ X, and outcome y ∈ {0, 1}, the multiaccuracy constraints are indexed by loss-hypothesis pairs for each
ℓ ∈ L and h ∈ H and signs s ∈ {+,−}, and the proper calibration constraints are indexed by (appropriately-
discretized) thresholds θ ∈ {0, ε, . . . , 1}, also signed by s ∈ {+,−}:

MA: u⃗ℓ,h,s(p, x, y) = s · ∆ℓ ◦ h(x) · (y − p) PC: u⃗θ,s(p, x, y) = s · Thθ(p) · (y − p)

The learner’s goal in playing this game is to make the payoff vector u⃗ “approach” the origin, driving the
worst-case violation of any constraint towards 0. To achieve this approachability, we can run multiplicative
weights over the coordinates in u⃗, to maintain a dual halfspace w⃗ to witness violations of the constraints;
then, given the halfspace, the algorithm computes an explicit optimal strategy to hedge against the choice
of outcome yt ∈ {0, 1}. Concretely, given a context xt, we consider the following weighted function f ,
which (as a function of p), maps predictions on the interval [0, 1] to the range [−1, 1].

f (xt, p) =
∑

ℓ,h,s∈{±}

wℓ,h,s · s · ∆ℓ ◦ h(xt) +
∑
θ,s∈{±}

wt
θ,s · s · Thθ(p) (4)

Intuitively, f (xt, p) · (y − p) captures the error (in multiaccuracy or proper calibration) that the learner
may incur from predicting p on outcome y. Note that, for a fixed p, the adversary may choose the sign
of this error through the choice of y. Thus, to minimize the potential error incurred—regardless of the
outcome y—our algorithm plays a mixture between adjacent predictions p and p′ where f (xt, p) ≤ 0
and f (xt, p′) > 0, so that potential negative and positive error cancel in expectation.5 By choosing the
prediction interval appropriately, we can guarantee that the combined regret grows slowly.

4While natural, we don’t know of any prior work that has studied multiaccuracy in the online setting. For completeness, we
define the problem, and show how to achieve oracle-efficient optimal regret bounds in Appendix B.2.

5Note that the constraint functions defined by Thθ are not continuous, so f (xt, ·) need not have a zero between p and p′.

6

Theorem 2. There exists an online algorithm that for any finite class of bounded loss functions L and
finite hypothesis classH , guarantees expected (L,H)-omniprediction regret O

(√
T log(|H| |L|T)

)
.

1.1.3 Oracle-Efficient Online Omniprediction

Of course, the framework described above suffers from tracking weights for each multiaccuracy constraint
explicitly. To achieve omniprediction more efficiently, or for infinite loss/hypothesis classes, we need a
more sophisticated approach. To achieve these goals, we must generalize the algorithmic approach to
avoid explicit dependence on a finite class of loss functions L and hypotheses H . We will do this using
an Online Weak Agnostic Learner for the class ∆L ◦ H , introduced in (Chen et al., 2012; Brukhim et al.,
2020; Beygelzimer et al., 2015).

Our online algorithm for achieving (L,H)-omniprediction consists of an interaction between two sub-
algorithms.

• The first algorithm is an Online Weak Agnostic Learner (owal). The owal is responsible for pro-
ducing a sequence of adaptively-chosen functions q1, . . . , qT : X → [−1, 1] such that enforcing a
sequential multiaccuracy condition with respect to the qt implies low multiaccuracy regret with re-
spect to all of ∆L ◦ H . This online sparsification task is reminiscent of “scaffolding sets” problem,
studied by Burhanpurkar et al. (2021) in the offline setting.

• The second algorithm is an Augmented Proper Calibration (apcal). The apcal produces a sequence
of prediction functions pt with low proper calibration regret on the sequence of (xt, yt); simultane-
ously, it enforces multiaccuracy with respect to the sequence of tests provided by the owal.

In more detail, these sub-algorithms satisfy the following semantics.

Online Weak Agnostic Learner. We use the owal abstraction to produce a sequence of functions such
that {qt}-multiaccuracy implies online ∆L ◦H-multiaccuracy. Specifically, the owal solves the following
online learning task: identify a sequence of functions q1, . . . , qT : X → [−1, 1] whose sequential multiac-
curacy with respect to the sequence pt is at least as large as the multiaccuracy violation of every c ∈ ∆L◦H
in hindsight:

max
c∈∆L◦H

T∑
t=1

c(xt)(yt − pt(xt)) ≤
T∑

t=1

qt(xt)(yt − pt(xt)) + OracleReg∆L◦H (5)

In other words, auditing against the sequence of T different qt test functions (one at each time step) guar-
antees that the overall multiaccuracy regret is bounded.

Augmented Proper Calibration. The apcal algorithm takes in a sequence of data (x1, y1), . . . , (xT , yT),
and is responsible for producing a sequence of predictor functions p1, . . . , pT : X → [0, 1] that satisfy
proper calibration over the given sequence. Additionally, the proper calibrator’s input is augmented to
receive a sequence of functions q1, . . . , qT : X → [−1, 1], and is responsible for simultaneously ensuring
a sequential multiaccuracy guarantee with respect to these functions. In all, the apcal is required to

7

guarantee the following regret bounds on its sequence.

sup
θ∈[0,1]

∣∣∣∣∣∣∣
T∑

t=1

Thθ(pt(xt))(yt − pt(xt))

∣∣∣∣∣∣∣ ≤ Õ
(√

T
)

and
T∑

t=1

qt(xt)(yt − pt(xt)) ≤ Õ
(√

T
)

(6)

Our implementation of the apcal algorithm follows a similar approach to the finite omniprediction algo-
rithm described earlier. As before, the algorithm runs multiplicative weights over each proper calibration
constraint, indexed by the thresholds θ ∈ {0, ε, . . . , 1}. In contrast, however, rather than maintaining a
weight per multiaccuracy constraint, our apcal maintains a single weight for multiaccuracy. This weight
determines the importance (and is updated according to violations) of the sequence of qt functions that it
receives from the owal.

Our eventual algorithm is still based on Blackwell Approachability, but approaches multiaccuracy im-
plicitly through the sparse set of constraints provided by the owal. Specifically, in place of the high-
dimensional payoff vector u⃗(p, x, y) that enforced multiaccuracy constraints in the algorithm sketched
above, we substitute the scalar qt(x)(y − p) where qt is the output of the owal at time t. (The proper
calibration constraints are still enforced using a 2T -dimensional vector u⃗θ,s(p, x, y) as before.) Then, at
each step, our online algorithm bases its decision on a new function f (xt, p).

f (xt, p) = wma · qt(xt) +
∑
θ,s∈{±}

wt
θ,s · s · Thθ(p) (7)

Instead of maintaining weights over |H| × |L| + 2T multiaccuracy and proper calibration constraints to
compute the function as defined in Equation (4), we have collapsed all of the multiaccuracy constraints
into a single dimension represented by the weight wma, thereby reducing the number of weights the al-
gorithm must maintain to 2T + 1. To the best of our knowledge, this method of “sparsifying” Blackwell
Approachability by outsourcing many dimensions of the payoff vector to an auxiliary algorithm (in this
case, the owal) that detects constraint violations in those dimensions is novel and may be of independent
interest.

Once we implement each of these components, the online omniprediction guarantee follows immediately.
Combining the guarantees from the apcal and owal, we obtain an oracle-efficient online learning algo-
rithm with the following properties.

Theorem 3. There exists an oracle-efficient online algorithm that for any class of loss functions L and
any hypothesis class H , given an online weak agnostic learner for ∆L ◦ H , guarantees expected (L,H)-
omniprediction regret O

(√
T log T + OracleReg∆L◦H (T)

)
.

Basis Decompositions for Infinite Loss Classes. As in prior works, given an infinite class of loss func-
tions L, we obtain omniprediction by designing a basis G that allows us to get uniform approximations to
∆ℓ ∈ ∆L. Then, using this basis in place of ∆L, we obtain omniprediction via a weak learner for G ◦ H .

Using and refining bases developed by Gopalan et al. (2023, 2024b), we give online omniprediction guar-
antees for notable classes of loss functions. We define and construct these bases for loss classes formally
in Section 4, but give a high-level summary here. Concretely, we obtain omniprediction guarantees from
owal as outlined in Table 1.

A few comments are in order. First, notationally, for two classes of functions, we use G ◦H to refer to the
class of compositions {g ◦ h : g ∈ G, h ∈ H}. The oracles we need are for hypothesis classes derived by

8

Loss Class OWAL Oracle
GLM Losses LGLM H

1-Lipschitz, Convex Lcvx ReLU1/T ◦ H

1-Lipschitz Llip Th1/T ◦ H

Proper Lproper Th ◦ H
Bounded Variation LBV Th ◦ H

Table 1: Summary of Loss Classes L and the associated Online Weak Agnostic Learning Oracle sufficient
to achieve (L,H)-omniprediction for hypothesis classH via Algorithm 3.

composition withH . Specifically, we consider applying ReLU’s and threshold functions.

ReLU = {ReLUθ(·) : θ ∈ [0, 1]} where ReLUθ(p) = max{0, p − θ}

Th = {Thθ(·) : θ ∈ [0, 1]} where Thθ(p) = sgn(θ − p).

Importantly, while these classes are defined for θ ∈ [0, 1], we use the superscript notation to denote a fixed
precision. For instance, Thγ considers threshold functions Thθ for θ ∈ {0, γ, 2γ, . . . , 1}.

We obtain omniprediction for Lipschitz, convex loss functions leveraging an owal for (fixed-precision)
ReLU’s over hypotheses in H . Notably, this oracle is different (and indeed a stronger oracle) than that
used by Gopalan et al. (2022) to obtain (Lcvx,H)-omnipredictors; indeed,H-multicalibration is sufficient
for convex omniprediction and can be obtained using a weak agnostic learner for H . But as discussed,
this strategy is statistically less efficient. Per (Gopalan et al., 2023), we can achieve omniprediction for
Generalized Linear Model losses using a learner forH (because ∆LGLM ◦ H = H).

The remaining loss classes considered use an oracle for some class of threshold functions over H . Om-
niprediction for the weakest of these classes, Lipschitz losses, can be achieved using an online learning
oracle for fixed-precision threshold functions. While bounded variation losses (and proper losses which
are a subset Lproper ⊆ LBV) also follow from an oracle for thresholds applied to H , the basis necessary
to obtain uniform approximations of ℓ ∈ LBV, is actually uncountably infinite. Indeed, the basis consists
of a V-shaped loss for every v ∈ [0, 1], not simply a discrete finite approximation of the interval. Thus, in
principle, we require an oracle for learning arbitrarily precise thresholds over h ∈ H .

1.1.4 Near-Optimal Offline Omnipredictors

Online-to-offline conversion is a classic tool from learning theory: given a data set sampled from the target
distribution D, simulate the online learner on the samples (in arbitrary order); then, output the uniform
mixture over predictions suggested at each “timestep” of the online algorithm. With a near-optimal online
algorithm for omniprediction regret, one may hope that a corresponding distributional learning algorithm
would follow from a standard online-to-offline conversion. Running such a conversion naively, however,
results in an inefficient omniprediction algorithm, in a number of ways.

• Representation Complexity. To achieve online omniprediction unconditionally (without assuming
an oracle), our approach maintains explicit weights for each hypothesis h ∈ H . Converting this
online algorithm into an offline omnipredictor produces a circuit of enormous complexity, scaling
linearly in |H|. Ideally, our offline algorithm would prove the existence of efficient omnipredictors
for all hypothesis classes.

9

• Statistical Complexity. The regret bounds we achieve are near-optimal in the online setting, but
naturally, depend on the sequential dimension of the class ∆L ◦ H . The sequential dimension can
be arbitrarily (even infinitely) larger than the statistical dimension (e.g., Littlestone vs. VC). In the
standard conversion of the online learner, we inherit the dependence on the sequential dimension.

• Computational Complexity. Finally, in aiming for computational efficiency, our online algorithm
relies on an online weak agnostic learner. To learn omnipredictors in the distributional setting, we
may hope to reduce the task of learning offline omnipredictors to an empirical risk minimizer.

We address each of these inefficiencies. In particular, we develop two parallel strategies for adapting our
online algorithm to the distributional setting. The first approach, which runs multiplicative weights over
a finite cover of ∆L ◦ H , is computationally-inefficient, but achieves near-optimal statistical complexity
for every class of loss functions L. The second approach manages to achieve efficiency based on an
(offline) Empirical Risk Minimizer (ERM), while achieving statistical optimality for the class of proper
losses Lproper (or alternatively all bounded variation losses LBV). Technically, however, this result is
incomparable to our first approach. Our generalization argument leverages properties of the class Th ◦ H ,
so we pay for the Rademacher complexity of Th◦H even for loss classes that have a much simpler ∆L◦H
(e.g., convex losses Lcvx).

Statistically-Efficient Offline Omnipredictors. To begin, in Section 6, we give a conversion strategy
that addresses the representation complexity and statistical complexity. While online-to-batch conversions
are standard in learning theory, bounding the resulting error in our setting turns out to be very subtle.
As usual, the distributional error the offline omnipredictor suffers can be broken down in terms of the
regret achieved by the online learner and the generalization of the empirical statistics to their distributional
analogues. We discuss each contribution separately.

To give a sufficiently strong bound on the regret, we need to design an online learner for omniprediction
that, when fed data from the distribution D, achieves error that scales with the statistical complexity,
rather than the sequential complexity of the derived class. For this goal, we draw from the literature on
Online Hybrid Learning. In this framework, features are drawn i.i.d. from a distribution, while the labels
may be adversarially chosen. Similarly, in our offline setting, although the features are i.i.d., the labels
yt − pt(xt) are adaptively chosen since the p1, . . . , pT are constructed in an online manner. Wu et al.
(2022) and Lazaric and Munos (2009) demonstrate that applying a multiplicative weights algorithm over
a "stochastic cover" of the hypothesis class yields an online hybrid learner with near-optimal dependence
on the offline dimension of the hypothesis class for any convex, Lipschitz loss. Since the loss in our
owal is convex and 1-Lipschitz, the statistical result follows immediately. While this strategy requires
an explicit (inefficient) execution of multiplicative weights over the “stochastic cover” of hypotheses, the
representation complexity arises from the fact that at each timestep, a single hypothesis is sampled. In
all, the online-to-offline conversion outputs a distribution supported on T = poly(1/ε) (postprocessed)
hypotheses.

With an algorithm that allows us to achieve low regret on the empirical statistics, we need to prove gen-
eralization. Recall that in the online setting, our strategy was to bound omniprediction regret above by
proper calibration error plus multiaccuracy error. However, upper bounds on multiaccuracy error in the
sequential setting don’t generalize readily to the distributional setting, because the “labels” used to define
multiaccuracy error are the residuals, yt − pt(xt), rather than the raw labels yt themselves. Hence, even

10

when the training set {(xt, yt)}Tt=1 consists of i.i.d. draws from D, the residuals yt − pt(xt) depend on an
entire initial segment of the training set because pt is trained using an online algorithm that sees the exam-
ples (x1, y1), . . . , (xt−1, yt−1). This statistical adaptivity makes it very difficult (if not impossible) to prove
that the multiaccuracy error converges to its distributional quantity.

To circumvent this difficulty, rather than proving separate generalization bounds for proper calibration er-
ror and multiaccuracy error, we prove generalization bounds for the statistics that are actually essential
for omniprediction. Namely, we give generalization for the two expected losses that appear in the defini-
tion of omnipredictors: the loss of the best hypothesis in H and the loss obtained by postprocessing the
omnipredictor’s predictions using kℓ. The first of these two losses has no dependence on the sequence of
predictors selected by our algorithm, so its generalization bound follows by standard Rademacher com-
plexity arguments. The second generalization bound requires more care. Here, we make use of the fact that
loss of the post-processed predictions, ℓ(kℓ(p(x)), y), is equivalent to a proper loss ℓproper(p(x), y), which
in turn is a weighted combination of “V-shaped losses” as in (Li et al., 2022; Kleinberg et al., 2023). In
fact, since our omnipredictor always outputs predictions in the discrete set [1/T] = {0, 1/T, 2/T, . . . , 1},
we argue that we only need to prove generalization for each of the T+1 V-shaped losses indexed by this set.
This set of losses is small enough that a simple martingale argument suffices to conclude the generalization
bound.

Ultimately, after running our online-to-offline conversion, the algorithm returns a randomized predictor,
constituting a distribution over poly(1/ε) deterministic predictors each obtained by postprocessing the
output of a hypothesis from H . Throughout the manuscript, we abbreviate this property by writing that
the predictor “mixes over poly(1/ε) postprocessed hypotheses from H .” In all, we derive the following
theorem, which holds for anyH unconditionally.

Theorem 4. There exists an algorithmA that for any distributionD supported on X× {0, 1}, for any class
of loss functions L ⊆ LBV, any hypothesis classH , and ε > 0, learns an (L,H , ε)-omnipredictor with the
following properties:

• A returns a randomized omnipredictor that mixes over poly(1/ε) postprocessed hypotheses fromH .

• A uses m ≤ Õ(d∆L◦H/ε2) samples drawn i.i.d. fromD, where d∆L◦H denotes the VC dimension of
∆L ◦H or the fat-shattering dimension at scale ε in the case of a real-valued class.

As in the online case, we can instantiate the result using an appropriate basis in place of ∆L. As such, for
each of the loss-hypothesis class pairs highlighted in Table 1, the distributional algorithm depends on the
corresponding offline statistical complexity of the class.

In other words, even though the result is computationally-inefficient, it establishes a near-optimal statistical
complexity that adapts to the complexity of the loss class L. If better bases are developed for ∆L, the
statistical dependence of the result will adapt to depend on the complexity of the resulting class.

Oracle-Efficient Offline Omnipredictors. While the offline algorithm described above is sample-efficient
and representation-efficient, it suffers in one respect: it is computationally-inefficient and runs in time lin-
ear in the number of hypotheses. Addressing this inefficiency, in Section 7, we devise an offline algorithm
to learn efficient omnipredictors with respect to any loss class L ⊆ LBV and hypothesis class H that
achieves near-optimal sample complexity and is computationally-efficient given an ERM oracle for the
hypothesis class Th ◦ H . In all, we show the following theorem.

11

Theorem 5 (Oracle-Efficient Omniprediction). There exists an oracle-efficient algorithm A that for any
distribution D supported on X × {0, 1}, for any class of loss functions L ⊆ LBV, any hypothesis class H ,
and ε > 0, learns an (L,H , ε)-omnipredictor with the following properties:

• A returns a randomized omnipredictor that mixes over poly(1/ε) postprocessed hypotheses fromH .

• Given m samples, the error of the omnipredictor returned byA scales near-optimally with the offline
Rademacher complexity ε(m) = Õ (radm(Th ◦ H)) + O

(√
ln m/m

)
.

• A is oracle-efficient, making poly(1/ε) calls to an offline ERM oracle for Th ◦ H .

Our oracle-efficient offline algorithm is an adaptation of the online algorithm for achieving (L,H)-
omniprediction, which simultaneously maintains low proper calibration regret and low multiaccuracy re-
gret. Recall that our online algorithm consists of an interaction between two sub-algorithms: the Aug-
mented Proper Calibration (apcal) and the Online Weak Agnostic Learner (owal). One way to achieve
computational efficiency would be to make the owal computationally efficient with respect to an ERM
oracle without losing sample efficiency. However, the problem of designing hybrid online learning algo-
rithms (of which the owal is a special case) that are both oracle-efficient and sample-efficient has remained
an open problem for many years. We bypass this challenge of implementing an oracle-efficient owal by
introducing a different interface, a Distributional Online Weak Agnostic Learner (dowal), to replace the
owal. The dowal is responsible for producing the sequence of functions such that {qt}-multiaccuracy im-
plies ∆L ◦ H-multiaccuracy over the distribution D. More formally, the dowal must solve the following
hybrid learning task: identify a sequence of functions q1, . . . , qT : X → [−1, 1] that witness the distri-
butional multiaccuracy error (over D) of the sequence pt as effectively as the best fixed c ∈ ∆L ◦ H in
hindsight:

max
c∈∆L◦H

T∑
t=1

E
(x,y)∼D

[c(x)(y − pt(x))] ≤
T∑

t=1

E
(x,y)∼D

[qt(x)(y − pt(x))] + Regretdowal(T) (8)

The key distinction between the owal and the dowal is that the owal provides a guarantee over the online
sequence while the dowal provides a guarantee over the distribution.

Importantly, the oracle-efficient offline algorithm partitions its samples drawn fromD into two sets of size
m = T , denoted by Dapcal and Ddowal, and provides each sub-algorithm only with its half of the data. By
splitting samples, and designing careful interfaces through which the sub-algorithms interact, we are able
to maintain the martingale difference property we need for generalization of the proper calibration error,
while using a uniform convergence bound to argue generalization for the multiaccuracy tests generated
by the dowal. In particular, a martingale argument on the apcal guarantee in Equation (6) leads to the
following distributional guarantee

sup
θ∈[0,1]

∣∣∣∣∣∣ E
(x,y)∼D

[Thθ(pt(x))(y − pt(x))]

∣∣∣∣∣∣ ≤ Õ
(√

T
)

and E
(x,y)∼D

[qt(x)(y − pt(x))] ≤ Õ
(√

T
)

Combining this with Equation (8) allows us to conclude that the uniform mixture p̂ over the sequence of
predictors p1, . . . , pT is approximately proper calibrated and ∆L ◦ H-multiaccurate over the distribution
D with error that scales as Õ

(√
1/T

)
+ 1

T Regretdowal(T)

12

Implementing the dowal via Low-Regret Learning The dowal must achieve the regret guarantee ex-
pressed in Equation (8). We implement the dowal by designing a procedure that satisfies a corresponding
regret bound with respect to the empirical counterparts of the distributional expected values.

max
c∈∆L◦H

T∑
t=1

E
(x,y)∼Ddowal

[c(x)(y − pt(x))] ≤
T∑

t=1

E
(x,y)∼Ddowal

[qt(x)(y − pt(x))] + Õ
(√

T
)

(9)

Then, separately, we establish uniform convergence of the empirical quantities of interest to their distribu-
tional values.

The problem of selecting q1, . . . , qT to minimize the regret on the right side of (9) reduces to online linear
optimization, using the fact that the distribution Ddowal has support size m. We embed each c ∈ ∆L ◦ H
as a vector in [−1, 1]m by evaluating c(x) at each x ∈ {x1, . . . , xm}, and we observe that in this embedding,
two convenient properties hold.

1. The objective function E(x,y)∼Ddowal[c(x)(y − pt(x))] is a linear function of the vector representing c.

2. An ERM oracle for ∆L◦H enables us to optimize any linear function over the embedding of ∆L◦H .

Our implementation of the dowal solves the regret minimization problem embodied by (9) using a Follow-
The-Regularized-Leader (FTRL) procedure. Although our online learning problem is m-dimensional, we
show that its decision set and loss vectors have a structure that ensures a dimension-independent O(

√
T)

regret bound for FTRL with the entropy regularizer. As for the oracle complexity of implementing FTRL,
each iteration requires approximately minimizing a strongly convex function over the embedding of∆L◦H
in [−1, 1]m; we reduce this strongly convex minimization problem to a sequence of ERM oracle calls via
the Frank-Wolfe procedure.

Uniform Convergence for the dowal. The dowal is initialized with a dataset Ddowal drawn fromD and
guarantees low empirical multiaccuracy regret. The key question is: how many samples must Ddowal con-
tain in order to guarantee that the empirical quantities in Equation (9) converge to imply the distributional
guarantee of Equation (8)?

To establish convergence, we analyze the Rademacher complexity of functions of the form qt(x) ·(y− pt(x))
that might arise in our computations. This analysis requires us to be very careful about the complexity of
the functions that may be returned by each of the dowal (i.e., q1, . . . , qT) and the apcal (i.e., p1, . . . , pT).

Specifically, by leveraging properties of the threshold basis for bounded variation losses, for any loss class
L ⊆ LBV, we are able to bound the generalization error for Equation (9) in terms of the Rademacher
complexity of Th ◦H near-linearly. Our reliance on properties of thresholds overH , however, means that
we cannot improve the Rademacher dependence, even for simpler loss classes. Still, in all, we are able to
show the uniform convergence guarantee for the dowal in terms of the Rademacher complexity of Th◦H ,
establishing the near-optimal sample complexity for (L,H)-omniprediction with ERM oracle-efficiency.

1.2 Discussion of Results and Related Works

To conclude the introduction, we discuss the significance of our results and highlight some interesting
questions that we leave open. We also contextualize our results within the prior work on omnipredictors.

13

The Complexity of Omnipredictors. In the distributional context, we learn omnipredictors that can be
implemented with circuits of poly(1/ε)-size using oracle gates for h ∈ H , qualitatively matching the circuit
complexity of prior omnipredictor constructions (Gopalan et al., 2022, 2023). That said, there are key dif-
ferences in the omnipredictors produced by our algorithm that achieves near-optimal statistical complexity
and prior omnipredictors. In particular, our omnipredictors are actually randomized: our omnipredictors
mix over a collection of efficient predictors. While the use of randomness can be removed in certain
contexts, in generality, randomness is a critical aspect of the online-to-offline conversion. Naturally, this
discrepancy suggests questions about the complexity of statistically-optimal omniprediction. Can our om-
nipredictors be derandomized? Or, Is randomness necessary to achieve sample-optimal omnipredictors?

Beyond sample and randomness complexity, there are a number of other measures on which we can com-
pare constructions of omnipredictors. For instance, the boosting-based learning framework used in all prior
omnipredictor constructions (Hébert-Johnson et al., 2018) produces deep omnipredictors, with poly(1/ε)
layers of computation. In contrast, our randomized omnipredictors are essentially as shallow as possible:
we output a distribution supported on poly(1/ε) predictors, each of which is implemented by a postpro-
cessing of hypotheses fromH .

As the community understands the problem of omniprediction better, a complexity theory is emerging,
where we can ask precise questions about what is and isn’t possible along many axes of complexity mea-
sures. Precise accounting of complexity measures may be particularly interesting for applications of om-
nipredictors and multicalibrated predictors within complexity theory and pseudorandomness (Casacuberta
et al., 2024). Our work makes significant strides in settling the complexity of omniprediction along impor-
tant measures, but also raises a number of interesting questions for future research.

Towards Optimal Decision Making. This work adds to a growing collection of works investigating
when strong omniprediction-style guarantees can be achieved with regret comparable to a single loss. The
majority of the results in this area work in the online, non-contextual setting. A trend in these works is
identifying alternatives to full sequential calibration, which inherently suffers Ω(T 1/2+ε) regret, and until
this year, was only known to be achievable in O(T 2/3) regret (Foster and Vohra, 1998; Dagan et al., 2024).

First in this line of work, Kleinberg et al. (2023) introduced the notion of U-Calibration, or simultaneous
loss minimization with respect to all proper loss functions. Leveraging the V-shaped basis for proper
losses (also studied by Li et al. (2022)) and a representation of the Hedge algorithm (Freund and Schapire,
1997) for agents with V-shaped losses as a composition of randomized prediction with postprocessing,
they give a O(

√
T)-regret online learner to achieve U-Calibration. Subsequent work established optimal

U-Calibration regret bounds for the multi-class setting (Luo et al., 2024).

Hu and Wu (2024) study how to achieve swap regret bounds simultaneously for all proper losses (i.e., a
strengthened version of U-Calibration to allow for a different choice of optimal action in hindsight per
prediction interval). They introduce the notion of calibrated decision loss (CDL) and show how to achieve
O(
√

T log T) regret for CDL, guaranteeing the same bounds for swap regret. In Appendix A, we show
that CDL is actually incomparable to proper calibration. In this sense, CDL measures calibration error
differently than proper calibration: CDL cannot be used to achieve omniprediction via Decision OI, and
proper calibration does not give swap regret guarantees.

Most pertinent to our study, Garg et al. (2024) introduced the study of omniprediction in the online setting.
They give oracle-efficient algorithms for a number of related problems, including the stronger problem
of online multicalibration, which in turn gives the stronger guarantee of swap omniprediction for convex

14

losses (Gopalan et al., 2024a). The strength of their guarantees comes at a cost, obtaining O(T 3/4) swap
regret. In addition to this oracle-efficient result, they also include a result that shows, in restricted settings
of loss and hypothesis class, Õ(

√
T log |H|) omniprediction regret is information-theoretically possible.

Following Garg et al. (2024) and concurrent with the development of our work, Dwork et al. (2024) con-
tinued the study of online omniprediction. While their study is quite broad, motivated by fairness concerns
in professional networks, Dwork et al. (2024) develop online kernel outcome indistinguishability as a core
algorithmic primitive. They give an algorithm for online omniprediction, with respect to differentiable
strongly convex losses (a subclass of Lcvx) and hypotheses from a Reproducing Kernel Hilbert Space
(RKHS), that attains O(

√
T) regret in its dependence on T . While they obtain an optimal dependence

on T , the dependence on the RKHS is considerably inefficient; for instance, for the kernel of degree-d
polynomials over X = {0, 1}n, the regret scales as O(

√
T · nd), whereas our online algorithm would obtain

O(
√

Td log n) for an analogous omniprediction problem.

Finally, in closely related concurrent work, Hu et al. (2024) study the problem of omniprediction for Single
Index Models, which generalize the goal of omniprediction for GLM losses. They achieve improved
sample complexity of ε−4, as a function of the approximation parameter. While their motivations and
results are similar to ours, their techniques are very different, involving a new analysis of the Isotron
algorithm (Kalai and Sastry, 2009; Kakade et al., 2011).

Omniprediction and Multi-Group Fairness. Since its introduction by Gopalan et al. (2022), om-
niprediction has been studied in numerous works. Gopalan et al. (2023) introduced Loss Outcome Indis-
tinguishability as a method for obtaining omnipredictors, working within the Outcome Indistinguishability
(OI) paradigm developed by Dwork et al. (2021, 2022). Within this work, the notion of Decision OI (which
we establish is equivalent to Proper Calibration) draws directly from the work of Zhao et al. (2021), who
introduced the related notion of Decision Calibration for the multi-class prediction setting. Omniprediction
has also been studied in the context of constrained predictors (Hu et al., 2023; Globus-Harris et al., 2023a)
and in other prediction settings, including regression (Gopalan et al., 2024b) and performative prediction
(Kim and Perdomo, 2023).

The study of omniprediction is tightly connected to the study of multi-group fairness (Hébert-Johnson
et al., 2018; Kim et al., 2019). While omniprediction has always been known to follow from multical-
ibration, recent work showed a connection in the reverse direction. Specifically, Gopalan et al. (2024a)
study a stronger notion of omniprediction called swap omniprediction, where the omnipredictor p must
compete against a benchmark where a different hypothesis h ∈ H may be chosen per loss function ℓ ∈ L
and level set of p. In other words, the constant prediction p(x) = v must out-compete every h ∈ H with
respect to every ℓ ∈ L on the set of x such that p(x) = v. Gopalan et al. (2024a) demonstrate that Swap
Omniprediction for convex losses actually characterizes Multicalibration. In fact, they show both notions
are equivalent to Swap Squared Error Minimization, concurrently studied by Globus-Harris et al. (2023b).

1.3 Acknowledgements

We would like to enthusiastically thank Karthik Sridharan for many helpful discussions throughout the
development of this work about online and statistical learning theory. In particular, Karthik provided
invaluable resources and ideas in the development of our online-to-offline conversions.

15

2 Model and Preliminaries

Omniprediction for Binary Outcomes We are concerned with the binary prediction setting where there
is a distribution D over pairs of feature vectors x ∈ X and binary outcomes y ∈ Y = {0, 1}. With only
sample access to this distribution, the goal is to learn a predictor p : X → [0, 1] that outperforms a class
of hypothesis functions H = {h : X → [0, 1]} (e.g decision trees, neural networks) over a range of loss
functions L = {ℓ : [0, 1] × {0, 1} → [−1, 1]}. Formally, we define an omnipredictor as follows:

Definition 2.1 (Omnipredictor Gopalan et al. (2022)). Let H be a family of functions on X and let L be
a family of loss functions. The predictor p : X → [0, 1] is an (L,H , ε)-omnipredictor if for every ℓ ∈ L
there exists a function kℓ : [0, 1]→ [0, 1] so that

E
(x,y)∼D

[
ℓ(kℓ(p(x)), y)

]
≤ min

h∈H
E

(x,y)∼D

[
ℓ(kℓ(h(x)), y)

]
+ ε

One can think of an onmipredictor as a model of the world (or distribution) that is sufficient for the learner
to perform at least as well as the best hypothesis in H with respect to the loss functions in L. The post-
processing function kℓ is defined as follows:

kℓ(p) = arg min
q∈[0,1]

E
y∼Ber(p)

[ℓ(q, y)]

Online Omniprediction In the online version of the omniprediction, we will consider a sequential set-
ting where each round t ∈ [T], a context xt ∈ X arrives. On observing xt, a forecaster makes a prediction
pt of E[yt|xt] and then observes yt which may be adversarily chosen. Equivalently, each timestep t ∈ [T],
the forecaster chooses a prediction function pt : X → [0, 1], and the adversary, unaware of the forecaster’s
choice, chooses a pair (xt, yt) ∈ X×Y. We assume the adversary is fully aware of history Ht of predictions
made by the forecaster up until timestep t − 1. We measure the performance of the forecaster over a range
of loss functions in a class L and a benchmark hypothesis classH . For a sequence of T predictions p and
sequence of context, outcome pairs x, y, define the forecaster’s regret as follows:

(L,H)-OmniRegret(p, x, y) = E

 max
{h∈H ,ℓ∈L}

T∑
t=1

ℓ(kℓ(pt(xt)), yt) − ℓ(h(xt), yt)


where the expectation is over the randomness of the forecaster.

When the class of loss functions is the class of all bounded proper scoring losses, this objective becomes a
contextual version of the U-calibration objective in Kleinberg et al. (2023).

Definition 2.2 (Multiaccuracy Error). Let C = {c : X → [−1, 1]} be a family of hypothesis functions. For
a sequence of T predictions p and context, outcome pairs x, y, define

C-MAErr(p, x, y) = max
c∈C

∣∣∣∣∣∣∣
T∑

t=1

c(xt)(yt − pt(xt))

∣∣∣∣∣∣∣
We present the notion of weighted calibration error.

16

Definition 2.3 (Weighted Calibration Error). Let W = {w : [0, 1] → [−1, 1]} be a family of weight
functions. For a sequence of T predictions p and context, outcome pairs x, y, define

W-CalErr(p, x, y) = sup
w∈W

∣∣∣∣∣∣∣
T∑

t=1

w(pt(xt))(yt − pt(xt))

∣∣∣∣∣∣∣
Note that whenW is the set of all functions w : [0, 1]→ [−1, 1], this becomes the ℓ1-calibration error.

The key distinction between multiaccuracy error and weighted calibration error is that the functions in
calibration error can also depend on the predictions of the predictor.

Loss Families, Hypothesis Classes and ERM Oracles The loss functions we consider are functions
ℓ : [0, 1] × {0, 1} → R that take a binary outcome and a prediction and assigns a real value ℓ(p, y). Let Llip

denote the set of losses ℓ that are 1-Lipschitz in p and Lcvx denote the set of losses convex in p.

Definition 2.4 (Proper Losses). A loss function ℓ is said to be proper if

E
y∼Ber(p∗)

[ℓ(p∗, y)] ≤ E
y∼Ber(p∗)

[ℓ(q, y)]

for all q ∈ [0, 1]. Let Lproper denote the set of all such losses. Note that this is also the set of all losses for
which p ∈ kℓ(p).

Definition 2.5 (Bounded Variation). A function f : [0, 1]→ R has bounded variation if the quantity

V(f) = sup

 n∑
i=1

| f (xi) − f (xi−1)|

∣∣∣∣∣∣∣ 0 = x0 < x1 < · · · < xn = 1


is finite. The class LBV of bounded variation losses consists of all loss functions ℓ(p, y) taking values in
[−1, 1] that satisfy V(∆ℓ) ≤ 2.

Definition 2.6 (Discrete Derivative).
∆ℓ(t) = ℓ(t, 1) − ℓ(t, 0)

Observe that ℓ(t, y) = y∆ℓ(t) + ℓ(t, 0). For a class of loss functions L, we will refer to ∆L = {∆ℓ : ℓ ∈ L}.
We will characterize families of loss functions based on the complexity of the discrete derivate class.

Definition 2.7 (ERM Oracle). Our algorithms will require a empirical risk minimization oracle for a
specified class of hypothesis functions H . This oracle will take as a input a sequence of samples
(x1, y1) . . . , (xT , yT) and returns a hypothesis h∗ ∈ H such that

h∗ ∈ arg min
h∈H

T∑
t=1

h(xt)yt

Online Learning and Blackwell’s Approachability Theorem In online learning, the learner’s objective
is to select a sequence of actions from a given set such that the average regret asymptotically approaches
zero, irrespective of the loss functions chosen by an adversary.

Blackwell’s approachability theorem (Blackwell, 1956) generalizes repeated two-player zero-sum games
to setting where payoffs are vector-valued. In this framework, at each time step t, Player 1 selects an action

17

at ∈ A, Player 2 responds with bt ∈ B, and Player 1 receives a vector-valued payoff u(at, bt) ∈ Rd. The
action sets A and B are compact convex subsets of finite-dimensional spaces, and the payoff function u is
biaffine over A×B. Player 1’s goal is to ensure that the average payoff vector converges to a closed convex
target set S ⊆ Rd. Formally, given S , Player 1 chooses actions so that, regardless of Player 2’s choices, the
distance between the average payoff and S approaches zero as T → ∞.

dist

 1
T

T∑
t=1

u(at, bt), S

→ 0 as T → ∞ (10)

Player 1’s actions can adapt based on previous outcomes. A set S is approachable if Player 1 can guarantee
this convergence. Blackwell’s theorem characterizes this by stating that S is approachable if and only if
every closed halfspace containing S is approachable.

Many online learning problems can be effectively solved by a reduction to Blackwell’s approachability
theorem. In fact, Abernethy et al. (2011) show that approachability and no-regret learning are equivalent.
In this paper, we reduce the online omniprediction problem to an approachability problem and apply the re-
gret minimization reduction techniques from Abernethy et al. (2011) to solve the resulting approachability
problem.

Combinatorial Dimensions for Learning Given a feature space X and a fixed distribution D|X, let
S = {x1, . . . , xm} be a set of examples drawn i.i.d. from D|X. Furthermore, let F be a class of functions
f : X → [−1, 1]].

Definition 2.8 (α-shattering). We say F α-shatters the set S if there exists values v1, . . . , vm ∈ [0, 1] such
that for all A ⊆ S , there exists fA ∈ F such that

∀xi ∈ A, fA(xi) ≥ vi + α

∀xi ∈ S − A, fA(xi) ≤ vi − α

The fat shattering dimension of F at scale α is the size of the largest α-shattered set. For binary valued
class F ⊆ {0, 1}X, the VC dimension of F is the size of the largest 1/2-shattered set.

Definition 2.9. The empirical Rademacher complexity of F is defined to be

ˆradm(F ; S) = Eσ

sup
f∈F

 1
m

m∑
i=1

σi f (xi)


where σ1, . . . , σm are independent random variables uniformly chosen from {−1, 1}. We will refer to such
random variables as Rademacher variables.

Definition 2.10. The statistical Rademacher complexity of F is defined as

radm(F) = ES∼D[ˆradm(F ; S)]

The following is a well know result in learning theory:

18

Lemma 2.1. Fix distribution D|X and parameter δ ∈ (0, 1). If F ⊆ { f : X → [−1, 1]} and S = {x1, . . . , xm}

is drawn i.i.d. from D|X, then with probability ≥ 1 − δ over the draw of S , for every function f ∈ F ,

ED[f (x)] ≤ ES [f (x)] + 2radm(F) +

√
ln(1/δ)

m
. (1)

In addition, with probability ≥ 1 − δ, for every function f ∈ F ,

ED[f (x)] ≤ ES [f (x)] + 2 ˆradm(F) + 3

√
ln(2/δ)

m
. (2)

Lemma 2.2 (Sridharan (2010)). Fat-shattering dimension and Rademacher complexities are related as
follows:

Ω̃

inf
α>0

4α +
12
√

m

∫ 1

α

√
K fatδ(F) log

2
δ

dδ


 ≤ radm(F) ≤ inf

α>0

4α +
12
√

m

∫ 1

α

√
K fatδ(F) log

2
δ

dδ


where Ω̃ hides log factors in m and K is a universal constant.

These parameters have been generalized to the online learning setting using binary trees. A X-valued tree
x of depth n is a rooted complete binary tree with nodes labeled by elements of X. We identify the tree x
with the sequence (x1, . . . , xm) of labeling functions xi : {±1}i−1 7→ X which provide the labels for each
node. Here, x1 ∈ X is the label for the root of the tree, while xi for i > 1 is the label of the node obtained
by following the path of length i − 1 from the root, with +1 indicating ’right’ and −1 indicating ’left’. A
path of length m is given by the sequence σ = (σ1, . . . , σm) ∈ {±1}m. For brevity, we shall often write
zt(σ), but it is understood that zt only depends only on the prefix (σ1, . . . , σt−1) of σ.

Definition 2.11. The sequential Rademacher complexity of F on a X-valued tree x is defined to be

ˆsradm(F ; x) = Eσ

sup
f∈F

 1
m

m∑
i=1

σi f (xi(σ))


Definition 2.12. The sequential Rademacher complexity of F is defined as

sradm(F) = sup
x

[ˆsradm(F ; x)]

Concentration. The Azuma-Hoeffding Inequality is an essential component of showing concentration
in online algorithms and online-to-offline conversions.

Lemma 2.3 (Azuma-Hoeffding’s Inequality). If X1, . . . , XT is a martingale difference sequence, and for
every t, with probability 1, |Xt| ≤ M. Then with probability 1 − δ,∣∣∣∣∣∣∣

T∑
t=1

Xt

∣∣∣∣∣∣∣ ≤ M

√
2T ln

2
δ
.

19

3 Proper Calibration

In this section, we introduce the notion of proper calibration (Definition 3.1). We show that proper cal-
ibration is actually a restatement of the notion of Decision OI, used by Gopalan et al. (2023) to achieve
omniprediction. Because proper calibration is defined in terms of proper loss functions, we leverage a
characterization of proper losses by the V-shaped losses (Li et al., 2022; Kleinberg et al., 2023) to give an
efficient strategy for achieving proper calibration.

Defining Proper Calibration. We define proper calibration as an instance of weighted calibration. In
particular, we use a class of weight functions Wproper associated with proper scoring rules, where each
weight function w ∈ Wproper corresponds to the discrete derivative (Definition 2.6) of a proper loss func-
tion. Concretely,Wproper is defined as the following set of weight functions.

Wproper = {∆ℓ : ℓ ∈ Lproper}

Proper calibration ensures that the predictions, weighted by the discrete derivatives of any proper loss, do
not correlate with the residual prediction error.

Definition 3.1 (Proper Calibration). For a sequence of T predictions p and context, outcome pairs x, y, the
proper calibration error is given byWproper-CalErr(p, x, y) i.e

PCalErr(p, x, y) = sup
w∈Wproper

∣∣∣∣∣∣∣
T∑

t=1

w(pt(xt))(yt − pt(xt))

∣∣∣∣∣∣∣
When x, y are drawn from a fixed distribution D, we shall refer to the expected proper calibration error
over the distribution by PCalErrD(p) defined as follows:

PCalErrD(p) = sup
w∈Wproper

∣∣∣∣∣ED [
w(p(x))(y − p(x))

]∣∣∣∣∣
In our understanding, proper calibration is a novel notion of calibration not known to be implied by other
notions, other than full ℓ1-calibration. We provide a more complete comparison of proper calibration to
prior notions of calibration in Appendix A. Next, we describe why proper calibration is natural and useful
in the context of omniprediction.

3.1 Omniprediction via Proper Calibration and Multiaccuracy

To motivate proper calibration, we recall the notion of Decision OI introduced by Gopalan et al. (2023).
We restate their definition and extend it to include the sequential prediction setting.

Definition 3.2 (Decision OI). Fix a collection of loss functions L. For a predictor p : X → [0, 1], the
Decision OI error over a distributionD is given by L-DecOIErrD(p).

L-DecOIErrD(p) = sup
ℓ∈L

∣∣∣∣∣∣∣∣ E
x,y∼D

[ℓ(kℓ ◦ p(x), y)] − E
x∼D

ỹ∼Ber(p(x))

[ℓ(kℓ ◦ p(x), ỹ)]

∣∣∣∣∣∣∣∣
20

For a sequence of T predictions p and context, outcome pairs x, y, the Decision OI error is given by
L-DecOIErr(p, x, y).

L-DecOIErr(p, x, y) = sup
ℓ∈L

∣∣∣∣∣∣∣
T∑

t=1

(ℓ(kℓ ◦ pt(xt), yt) − E
ỹ∼Ber(pt(xt))

ℓ(kℓ ◦ pt(xt), ỹ))

∣∣∣∣∣∣∣
As in all notions of outcome indistinguishability, Decision OI compares the expected value of some test on
outcomes sampled from the “real” world (i.e., yt) versus the value on outcomes sampled from a “modeled”
world, where outcomes are sampled according to our predictions ỹ ∼ Ber(pt(xt)).

Gopalan et al. (2023) showed that Decision OI plus a certain multiaccuracy condition suffice for om-
niprediction; they use full ℓ1-calibration to achieve Decision OI. We show that, for any loss classL, proper
calibration suffices to imply Decision OI. In fact, Proper Calibration is equivalent to Decision OI for the
class of all loss function Lall = {ℓ : [0, 1]→ [−1, 1]}.

Theorem 3.1. For any predictor p : X → [0, 1] and distributionD,

Lall-DecOIErrD(p) = PCalErrD(p).

For every sequence of T predictions p and context, outcome pairs x, y

Lall-DecOIErr(p, x, y) = PCalErr(p, x, y).

Proof. In the distributional setting, we rewrite the definition of Decision OI. We write the difference of
losses in terms of the difference of their discrete derivatives,

Lall-DecOIErrD(p) = sup
ℓ∈Lall

∣∣∣ E
x,y∼D

[ℓ(kℓ ◦ p(x), y)] − E
x∼D

ỹ∼Ber(p(x))

[ℓ(kℓ ◦ p(x), ỹ)]
∣∣∣

= sup
ℓ∈Lall

∣∣∣ E
x,y∼D

[y · ∆ℓ(kℓ ◦ p(x)) − p(x) · ∆ℓ(kℓ ◦ p(x))]
∣∣∣

where the equality follows by the fact that, in the modeled world, E[ỹ|x] = p(x) and the definition of ∆ℓ.
Then, we can combine terms and consider the supremum.

sup
ℓ∈Lall

∣∣∣ E
x,y∼D

[∆ℓ(kℓ ◦ p(x)) · (y − p(x))]
∣∣∣ = sup

ℓ∈Lproper

∣∣∣ E
x,y∼D

[∆ℓ(p(x)) · (y − p(x))]
∣∣∣

The final equality, here, follows from the fact that for any loss, ℓ composed with the optimal post-
processing kℓ, can be viewed as a proper loss. Formally, for any ℓ : [0, 1] → [−1, 1], there exists a
proper loss ℓ′ ∈ Lproper (namely, ℓ′(p, y) = ℓ(kℓ(p), y)) such that ∆ℓ(kℓ(p)) = ∆ℓ′(p), for all p ∈ [0, 1].

Note that the same argument works in the sequential setting, establishing the analogous equality. □

Using this view on Proper Calibration, we can immediately apply the Loss OI framework to achieve
omnipredictors, with proper calibration replacing Decision OI / calibration.

Lemma 3.2. For a sequence of T predictions p and context, outcome pairs x, y,

(L,H)-OmniRegret(p, x, y) ≤ PCalErr(p, x, y) + (∆L ◦H)-MAErr(p, x, y)

21

The proof of lemma mirrors that of Proposition 4.5 in Gopalan et al. (2023) in that it explicitly follows the
Loss OI framework introduced in the paper. For completeness and self-containment, we give a proof of
the statement in the sequential setting.

Proof of Lemma 3.2. Recall that

(L,H)-OmniRegret(p, x, y) = max
{h∈H ,ℓ∈L}

T∑
t=1

ℓ(kℓ(pt(xt)), yt) − ℓ(h(xt), yt)

For a fixed timestep t ∈ [T], we expand the inner expression as follows:

ℓ(kℓ(pt(xt)), yt) − ℓ(h(xt), yt) (11)

≤ ℓ(kℓ(pt(xt)), yt) + E
ỹ∼Ber(pt(xt))

[ℓ(h(xt), ỹ)] − E
ỹ∼Ber(pt(xt))

[ℓ(kℓ(pt(xt)), ỹ)] − ℓ(h(xt), yt) (12)

=

[
ℓ(kℓ(pt(xt)), yt) − E

ỹ∼Ber(pt(xt))
[ℓ(kℓ(pt(xt)), ỹ)]

]
+

[
E

ỹ∼Ber(pt(xt))
[ℓ(h(xt), ỹ)] − ℓ(h(xt), yt)

]
(13)

where the second line follows from the definition of kℓ. Now we simplify both terms separately. For the
first term, we have

ℓ(kℓ(pt(xt)), yt) − E
ỹ∼Ber(pt(xt))

[ℓ(kℓ(pt(xt)), ỹ)] (14)

= [yt∆ℓ(kℓ(pt(xt))) + ℓ(kℓ(pt(xt)), 0)] − [pt∆ℓ(kℓ(pt(xt))) + ℓ(kℓ(pt(xt))), 0)] (15)

= (yt − pt(xt))∆ℓ(kℓ(pt(xt))) (16)

where line (6) uses the fact that ℓ(p, y) = y(ℓ(p, 1)− ℓ(p, 0))+ ℓ(p, 0) for y ∈ {0, 1} Similarly, for the second
term, we have

E
ỹ∼Ber(pt(xt))

[ℓ(h(xt), ỹ)] − ℓ(h(xt), yt) (17)

= [pt(xt)∆ℓ(h(xt)) + ℓ(h(xt), 0)] − [yt∆ℓ(h(xt)) + ℓ(h(xt), 0)] (18)

= (pt(xt) − yt)∆ℓ(h(xt)) (19)

Plugging these simplifications back into the regret term, we obtain

(L,H)-OmniRegret(p, x, y) ≤ max
{h∈H ,ℓ∈L}

T∑
t=1

(yt − pt(xt))∆ℓ(kℓ(pt(xt))) + (pt(xt) − yt)∆ℓ(h(xt)) (20)

≤ max
{ℓ∈L}

∣∣∣∣∣∣∣
T∑

t=1

(yt − pt(xt))∆ℓ(kℓ(pt(xt)))

∣∣∣∣∣∣∣ + max
{h∈H ,ℓ∈L}

∣∣∣∣∣∣∣
T∑

t=1

(pt(xt) − yt)∆ℓ(h(xt))

∣∣∣∣∣∣∣
(21)

≤ max
{ℓ∈Lproper}

∣∣∣∣∣∣∣
T∑

t=1

(yt − pt(xt))∆ℓ(pt(xt))

∣∣∣∣∣∣∣ + max
{h∈H ,ℓ∈L}

∣∣∣∣∣∣∣
T∑

t=1

(pt(xt) − yt)∆ℓ(h(xt))

∣∣∣∣∣∣∣
(22)

≤ PCalErr(p, x, y) + (∆L ◦H)-MAErr(p, x, y) (23)

where line (22) follows from the fact that ∆ℓ composed with its kℓ function corresponds to some ∆ℓproper

for some proper loss ℓproper ∈ Lproper. □

22

Naturally, proper calibration can be incorporated into the original algorithms for learning omnipredictors
via Loss OI. In Appendix C, we describe an adaptation of the boosting-style algorithm of Gopalan et al.
(2023) that outputs an omnipredictor using a multiplicative factor of 1/ε6 fewer samples than the original
algorithm based on ℓ1-calibration.

3.2 Approximating Proper Calibration with Weighted Calibration over Thresholds

To achieve calibration for all proper weight functions, we will take advantage of the basis decomposition
of proper scoring losses in (Li et al., 2022; Kleinberg et al., 2023). To this end, we introduce a notion
of calibration, weighted by threshold functions that utilizes the basis functions as weight functions to ap-
proximate proper calibration effectively. Concretely, we consider the following characterization of proper
losses.

Lemma 3.3 (V-shaped proper losses (Li et al., 2022; Kleinberg et al., 2023)). For v ∈ [0, 1], define the
proper loss ℓv(p, y) = (y − v)sgn(v − p). Then every ℓ ∈ Lproper can be expressed as a convex combination
of these v-shaped proper losses. That is, for every ℓ ∈ Lproper, there exists nonnegative coefficients cv(ℓ)
such that

∫ 1
0 cv(ℓ)dv ≤ 2 and

ℓ(p, y) =
∫ 1

0
cv(ℓ)ℓv(p, y)dv

Immediately, this characterization also gives a characterization of the discrete derivatives of proper losses.

Corollary 3.4. For every ℓ ∈ Lproper, there exists nonnegative coefficients cv(ℓ) such that
∫ 1

0 cv(ℓ)dv ≤ 2
and

∆ℓ(p) =
∫ 1

0
cv(ℓ)∆ℓv(p)dv

where ∆ℓv(p) = sgn(v − p) is a {-1,1} threshold function at v.

In the Lemma 3.5, we show that proper calibration and calibration weighted by threshold functions are
within a constant factor of each other. Specifically, we let WTh denote the set of weight functions as-
sociated with V-shaped proper scoring rules, where each weight function w corresponds to the discrete
derivative of a V-shaped proper loss function i.e WTh = {sgn(v − p) : v ∈ [0, 1]}. Then, we obtain the
following tight approximation of the proper calibration error.

Lemma 3.5. For a sequence of T predictions p and context, outcome pairs x, y,

WTh-CalErr(p, x, y) ≤ PCalErr(p, x, y) ≤ 2WTh-CalErr(p, x, y)

Proof. We wish to show that

WTh-CalErr(p, x, y) ≤ Wproper-CalErr(p, x, y) ≤ 2WTh-CalErr(p, x, y)

By Corollary 3.4, we know that for every ℓ ∈ Lproper, there exists nonnegative coefficients cv(ℓ) such that∫ 1
0 cv(ℓ)dv ≤ 2

∆ℓ(p) =
∫ 1

0
cv(ℓ)∆ℓv(p)dv

23

max
w∈Wproper

∣∣∣∣∣∣∣
T∑

t=1

w(pt(xt))(yt − pt(xt))

∣∣∣∣∣∣∣ = max
ℓ∈Lproper

∣∣∣∣∣∣∣
T∑

t=1

∆ℓ(pt(xt))(yt − pt(xt))

∣∣∣∣∣∣∣ (24)

= max
ℓ∈Lproper

∣∣∣∣∣∣∣
T∑

t=1

(∫ 1

0
cv(ℓ)∆ℓv(pt(xt))dv

)
(yt − pt(x))

∣∣∣∣∣∣∣ (Corollary 3.4)

= max
ℓ∈Lproper

∣∣∣∣∣∣∣
∫ 1

0
cv(ℓ)

 T∑
t=1

∆ℓv(pt(xt))(yt − pt(x))

 dv

∣∣∣∣∣∣∣ (25)

≤ max
ℓ∈Lproper

∣∣∣∣∣∣∣
∫ 1

0
cv(ℓ) sup

v∈[0,1]

 T∑
t=1

∆ℓv(pt(xt))(yt − pt(x))

 dv

∣∣∣∣∣∣∣ (26)

≤ max
ℓ∈Lproper

∣∣∣∣∣∣
∫ 1

0
cv(ℓ)dv

∣∣∣∣∣∣ sup
v∈[0,1]

∣∣∣∣∣∣∣
T∑

t=1

∆ℓv(pt(xt))(yt − pt(x))

∣∣∣∣∣∣∣ (27)

≤ 2 sup
v∈[0,1]

∣∣∣∣∣∣∣
T∑

t=1

∆ℓv(pt(xt))(yt − pt(x))

∣∣∣∣∣∣∣ (28)

Thus,
Wproper-CalErr(p, x, y) ≤ 2WTh-CalErr(p, x, y)

The first inequality WTh-CalErr(p, x, y) ≤ Wproper-CalErr(p, x, y) follows from the fact that WTh ⊂

Wproper □

Lemma 3.5 bounds the proper calibration in terms of a notion of weighted calibration with an uncountably
infinite collection of weight functionsWTh. Towards a practically-realizable algorithm for proper calibra-
tion, we show that for sufficiently discretized predictions, weighted calibration with respect to a discretized
collection of thresholds suffices to bound the proper calibration error. LetWγ

Th denote an γ-discretization
ofWTh. That is,Wγ

Th = {sgn(v − p) : v ∈ {0, γ, 2γ, . . . , 1}}.

Lemma 3.6 (γ-discretized thresholds). For a sequence of T predictions p with values in {0, γ, 2γ, . . . , 1}
and context, outcome pairs x, y,

WTh-CalErr(p, x, y) =Wγ
Th-CalErr(p, x, y)

Proof of Lemma 3.6. Recall that

WTh-CalErr(p, x, y) = max
v∈[0,1]

∣∣∣∣∣∣∣
T∑

t=1

sgn(v − pt(xt)) · (yt − pt(xt))

∣∣∣∣∣∣∣ .
Since the predictions pt(xt) take values only in {0, γ, . . . , 1}, the sign function sgn(v − pt(xt)) can only
change at points in {0, γ, . . . , 1}. Hence, for any v ∈ [0, 1], there exists some v′ ∈ {0, γ, . . . , 1} such that:

sgn(v − pt(xt)) = sgn(v′ − pt(xt)).

This implies
T∑

t=1

sgn(v − pt(xt)) · (yt − pt(xt)) =
T∑

t=1

sgn(v′ − pt(xt)) · (yt − pt(xt)).

24

Therefore

max
v∈[0,1]

∣∣∣∣∣∣∣
T∑

t=1

sgn(v − pt(xt)) · (yt − pt(xt))

∣∣∣∣∣∣∣ = max
v′∈{0,γ,...,1}

∣∣∣∣∣∣∣
T∑

t=1

sgn(v′ − pt(xt)) · (yt − pt(xt))

∣∣∣∣∣∣∣ .
Thus

WTh-CalErr(p, x, y) =Wγ
Th-CalErr(p, x, y).

□

3.3 Algorithm for Proper Calibration in the Online Setting

In this subsection, we present an algorithm that guarantees proper calibration in the online setting at the
rate of O(

√
T log T). Algorithm 1 achieves this by ensuring proper calibration by auditing with threshold

weight functions per Lemma 3.5. Moreover, the rate of our algorithm is nearly tight; no algorithm can
guarantee expected threshold calibration error at a rate of Ω(

√
T). This lower bound is unsurprising, but

follows by Appendix A.2, where we show that U-calibration lower bounds a multiplicative factor of proper
calibration.

Overview of Algorithm 1: The algorithm is based on Blackwell’s Approachability Theorem. We define
a two player game where the adversary player selects zt = (xt, yt) ∈ X × {0, 1} and the learner selects
pt : X → [1/T]. Both players are allowed to play randomized strategies but since the learner observes xt,
we can simplify things and only consider yt ∈ {0, 1} and pt = pt(xt). We design the payoff vector of this
game to reflect our objective of threshold calibration. That is, define

uv,s(pt, yt) = s(yt − pt)sgn(v − pt) for v ∈ [1/T], s ∈ {+,−}

Observe that after T rounds of interaction,WTh-CalErr(p, x, y) = maxv,s
∑

t∈[T] uv,s(pt, zt). Therefore, we
design the learner’s target set to be the set of all vectors u with coordinates less than 1/T .

We use exponential weights update method in Line 2 to generate sequence of halfspaces wt with coor-
dinates for every v ∈ [1/T], s ∈ {+,−}. Given a halfspace wt, the algorithm computes the function f (q)
defined in Line 3 and the algorithm chooses the distribution to sample pt using the strategy described in
Line 4 to Line 10.

In all, we establish the following regret bound.

Theorem 3.7 (Proper Calibration Upper Bound). Algorithm 1 guarantees expected proper calibration error
of O

(√
T ln T

)
Formally, we leverage the following lemmas that give guarantees on the Blackwell optimal response (in
Line 4 to Line 10) and the dual player’s strategy (in Line 2).

Lemma 3.8 (Halfspace Approachability). Given a halfspace w, the strategy described in Line 4 to Line 10
outputs a distribution pt over [1/T] such that Ept [⟨w, u(pt, zt)⟩] ≤ 1/T for any choice of zt

Proof. We consider the cases in the strategy separately:

25

Algorithm 1 Proper Calibration
Input: Sequence of samples {y1, . . . , yT }

Output: Sequence of (randomized) predictors p1, . . . , pT

1: for each t ∈ [T] do
2: Let wt

v,s := exp(η∑t−1
i=1 uv,s(pi,zi))∑

v′ ,s′ exp(η∑t−1
i=1 uv′ ,s′ (pi,zi)) for all v ∈ [1/T], s ∈ {+,−}

3: Compute
f (q) =

∑
v,s

wt
v,s · s · sgn(v − q)

4: if f (0) ≤ 0 then
5: Predict pt = 0
6: else if f (1) > 0 then
7: Predict pt = 1
8: else
9: Find adjacent probabilities qi, qi+1 such that f (qi) · f (qi+1) ≤ 0

10: Predict pt = qi with prob | f (qi+1)|
| f (qi)|+| f (qi+1)| and pt = qi+1 with prob | f (qi)|

| f (qi)|+| f (qi+1)|

11: Observe xt, predict pt, and then observe yt

Case 1: If f (0) ≤ 0, predict pt = 0. Then for v ∈ [1/T], s ∈ {+,−},

wv,suv,s(pt, zt) = s(yt − pt)sgn(v − pt)wv,s = sytwv,s

Summing over values of v, s and applying the definition of f in Line 3, we get

⟨w, u(pt, zt)⟩ = yt f (0) ≤ 0 for any choice of y ∈ {0, 1}

Case 2: If f (1) > 0, predict pt = 1. Then for v ∈ [1/T], s ∈ {+,−},

wv,suv,s(pt, zt) = s(yt − pt)sgn(v − pt)wv,s = sytwv,s

Summing over values of v, s and applying the definition of f in Line 3, we get

⟨w, u(pt, zt)⟩ = (yt − 1) f (1) ≤ 0 for any choice of y ∈ {0, 1}

Case 3: Find adjacent probabilities qi, qi+1 such that f (qi) · f (qi+1) ≤ 0.
We wish to bound Ept [⟨w, u(pt, y)⟩] for both possible outcomes y ∈ {0, 1}. Let’s fix v, s and compute
Ep[wv,suv,s]

| f (qi+1)|
| f (qi)| + | f (qi+1)|

[
s(y − qi)sgn(v − qi)wv,s

]
+

| f (qi)|
| f (qi)| + | f (qi+1)|

[
s(y − qi+1)sgn(v − qi+1)wv,s

]
Summing over all pairs of (v, s) and applying the definition of f in Line 3, we obtain

| f (qi+1)|
| f (qi)| + | f (qi+1)|

[
(y − qi) f (qi)

]
+

| f (qi)|
| f (qi)| + | f (qi+1)|

[
(y − qi+1) f (qi+1)

]
(29)

≤
| f (qi)|| f (qi+1)|
| f (qi)| + | f (qi+1)|

(qi+1 − qi) (30)

≤ 1/T (since f (q) ∈ [−1, 1])

□

26

Lemma 3.9 (Exponential Weight Updates Arora et al. (2012)). The exponential weight updates in Line 2
provide a sequence of vectors wt such that

max
w:||w||1=1

〈
w,

∑
t∈[T]

u(pt, zt)
〉
≤

T∑
t=1

⟨wt, u(pt, zt)⟩ + O
(√

T ln T
)

With these lemmas in place, we can prove Theorem 3.7.

Proof of Theorem 3.7. We wish to bound the expected threshold calibration error, that is,
Ep

[
maxv,s

∑
t∈[T] uv,s(pt, zt)

]
where the expectation is over the randomness in the sampling of pt. Note

that this is the same as Ep
[
maxw:||w||1=1

〈
w,

∑
t∈[T] u(pt, zt)

〉]
.

E
p

 max
w:||w||1=1

〈
w,

∑
t∈[T]

u(pt, zt)
〉 ≤ E

p

 T∑
t=1

⟨wt, u(pt, zt)⟩

 + O
(√

T ln T
)

(by Lemma 3.9)

=

T∑
t=1

E
p
⟨wt, u(pt, zt)⟩ + O

(√
T ln T

)
(by linearity of expectation)

=

T∑
t=1

E
wt

[
E
pt
⟨wt, u(pt, zt)⟩

∣∣∣∣∣ wt
]
+ O

(√
T ln T

)
(by law of iterated expectations)

≤

 T∑
t=1

1
T

 + O
(√

T ln T
)

(by Lemma 3.8)

≤ O
(√

T ln T
)

□

In all, proper calibration is an intermediate notion: strong enough to imply omniprediction via the Loss OI
framework, but weak enough that it can be achieved asymptotically efficiently compared to ℓ1-calibration.

3.4 Augmented Proper Calibration

To aid with our goal of achieving proper calibration and multiaccuracy simultaneously, we introduce the
following augmented proper calibration problem. In the augmented proper calibration problem we are
given a sequence of samples (x1, y1), . . . , (xT , yT) and hypothesis functions q1, . . . , qT : X → [−1, 1]
and the goal is to output a sequence of predictors p1, . . . , pT : X → [0, 1] that is proper calibrated i.e
PCalErr(p, x, y) is sublinear and satisfy the following sequential multiaccuracy guarantee

∑T
t=1 qt(xt)(yt −

pt(xt)) ∈ o(T) with respect to the sequence of input hypothesis functions q1, . . . , qT : X → [−1, 1].
To solve this problem we present the algorithm, Augmented Proper Calibration (apcal), and state its
performance guarantees in both the sequential and distributional settings.

Proposition 3.10 (Augmented Proper Calibrator). Given an online sequence of samples
(x1, y1), . . . , (xT , yT) and hypothesis functions q1, . . . , qT , Algorithm 2 outputs a sequence of predic-
tors p1, . . . , pT such that with probability at least 1 − δ,

27

Algorithm 2 Augmented Proper Calibration

1: procedure APCAL(T)
2: Input: Sequence of samples (x1, y1), . . . , (xT , yT)
3: Input: Sequence of hypothesis functions q1, . . . , qT : X → [−1, 1]
4: Output: Sequence of predictors p1, . . . , pT : X → [0, 1]
5: Initialize weights w1

v,s =
1

2T+3 for v ∈ [1/T], s ∈ {+,−} ▷ for proper calibration constraints
6: Initialize weight: w1

sma =
1

2T+3 ▷ for sequential multiaccuracy constraint
7: Set η =

√
log(T)/T ▷ learning rate for exponential weight updates

8: for t = 1 to T do
9: Receive qt

10: Compute
f (x, j) = wt

sma · qt(x) +
∑
v,s

wt
v,s · s · Thv(j)

11: Compute predictor pt(x) as follows:
12: if f (x, 0) ≤ 0 then
13: Predict pt(x) = 0
14: else if f (x, 1) > 0 then
15: Predict pt(x) = 1
16: else
17: Find adjacent probabilities i

T ,
i+1
T such that f

(
x, i

T

)
· f

(
x, i+1

T

)
≤ 0

18: Predict pt(x) = i
T with prob | f (x,(i+1)/T)|

| f (x,i/T)|+| f (x,(i+1)/T))| and pt =
i+1
T with prob | f (x,i/T)|

| f (x,i/T)|+| f (xt ,(i+1)/T)|

19: Return pt

20: Observe (xt, yt)
21: Perform exponential weight updates with losses s · (yt − pt(xt)) · Thv(pt(xt)) for each v, s and

(yt − pt(xt)) · qt(xt) for the sequential multiaccuracy constraint:

W t = e−η·(yt−pt(xt))·qt(xt)wt
sma +

∑
v,s

e−η·s·(yt−pt(xt))·Thv(pt(xt))wt
v,s

wt+1
sma = e−η·(yt−pt(xt))·qt(xt)wt

sma
/

W t

wt+1
v,s = e−η·s·(yt−pt(xt))·Thv(pt(xt))wt

v,s
/

W t

1. PCalErr(p, x, y) ≤ O
(√

T ln T/δ
)

2.
∑T

t=1 qt(xt)(yt − pt(xt)) ≤ O
(√

T ln T/δ
)
.

If the samples {(xt, yt)}Tt=1 are drawn i.i.d. from a distribution D (while the functions q1, . . . , qT may still
be specified online by an adaptive adversary) then the uniform distribution p̂ = unif(p1, . . . , pT) satisfies
the following bounds with probability at least 1 − δ.

1. PCalErrD(p̂) ≤ O
(√

ln(T/δ)
T

)

28

2. 1
T

∑T
t=1 E(x,y)∼D[qt(x)(y − pt(x))] ≤ O

(√
ln(T/δ)

T

)
.

The algorithm runs in poly(T) timesteps per iteration and each pt is simply a remapping of qt i.e pt(x) =
u(qt(x)) for some (random) function u : [−1, 1]→ [1/T].

Overview of Algorithm 2: The algorithm follows the design ideas of Algorithm 1. We consider a two
player game that combines the objectives of proper calibration and sequential multiaccuracy guarantee.
The adversary selects zt = (xt, yt) ∈ X × {0, 1} and the learner selects pt : X → [1/T]. We construct a
payoff vector where the first 2T + 2 components are for the proper calibration objective

uv,s(pt, zt) = s(yt − pt(xt))Thv(pt(xt)) for v ∈ [1/T], s ∈ {+,−}

and the last component captures the sequential multiaccuracy constraint from the sequence of hypothesis
functions qt

uma(pt, zt) = (yt − pt(xt))qt(xt)

The learner’s target set is the set of vectors u whose coordinates are bounded by 0 i.e the negative orthant.
We will maintain weights for these 2T + 3 dimensions of the payoff vector using exponential weights.

Concretely, in Algorithm 2, we use exponential weights update to generate sequence of halfspaces wt ∈

R2T+3 with coordinates for every pair v ∈ [1/T], s ∈ {+,−} and the sequential multiaccuracy constraint.
Then for each timestep t, the algorithm constructs the predictor based on the strategy described from
Line 12 to Line 18.

The following lemmas are used in the proof of the proposition.

Lemma 3.11 (Halfspace Approachability). For every timestep t ∈ [T], the predictor pt(x) described from
Line 12 to Line 18 constructed from input qt satisfies the following guarantee for all x ∈ X, y ∈ {0, 1}:

E
pt

wt
sma · qt(x)(y − pt(x)) +

∑
v,s

wt
v,s · s · Thv(pt(x)) · (y − pt(x))

 ≤ 1
T

Proof of Lemma 3.11. Recall the definition of f (x, j) in Line 10. We can rewrite the objective above as
showing that for all x, y

E
j∼pt(x)

[
f (x, j) · (y − j)

]
≤ 1

T

We now consider the three cases in the strategy:

• Case 1: If f (x, 0) ≤ 0, predict pt(x) = 0: If f (x, 0) ≤ 0, then

E
j∼pt

[
f (x, j) · (y − j)

]
= f (x, 0)y

≤ max{0, f (x, 0)} (for any value of y ∈ {0, 1})

≤ 0 (by starting assumption f (x, 0) ≤ 0)

• Case 2: If f (x, 1) > 0, predict pt(x) = 1: If f (x, 1) > 0, then

E
j∼pt

[
f (x, j) · (y − j)

]
= f (x, 1)(y − 1)

≤ max{0,− f (x, 1)} (for any value of y ∈ {0, 1})

≤ 0 (by starting assumption f (x, 1) > 0)

29

• Case 3: Find adjacent probabilities i
T ,

i+1
T such that f

(
x, i

T

)
· f

(
x, i+1

T

)
≤ 0:

E
j∼pt

[
f (x, j) · (y − j)

]
=

| f
(
x, i+1

T

)
|

| f
(
x, i

T

)
| + | f

(
x, i+1

T)
)
|
· f (x, i

T)(y − i
T) +

| f (x, i
T)|

| f
(
x, i

T

)
| + | f (xt,

i+1
T)|
· f (x, i+1

T)(y − i+1
T)

≤
| f (x, i

T)|| f
(
x, i+1

T

)
|

| f
(
x, i

T

)
| + | f

(
x, i+1

T)
)
|
· (1/T)

≤ 1/T (since | f (x, j)| is bounded by 1 for all j ∈ [0, 1])

□

Lemma 3.12 (Halfspace Concentration). The following inequality holds with probability at least 1 − δ/2
for the sequence of inputs (x1, y1, q1), . . . , (xT , yT , qT), weights w1, . . . ,wT and outputs p1, . . . , pT :

T∑
t=1

wt
sma · qt(xt)(yt − pt(xt)) +

∑
v,s

wt
v,s · s · Thv(pt(xt)) · (yt − pt(xt))

 ≤ O
(√

T ln 1/δ
)

Proof of Lemma 3.12. The conclusion of the lemma can be rewritten as showing that

T∑
t=1

f (xt, pt(xt))(yt − pt(xt)) ≤ O
(√

T ln 1/δ
)

We showed in Lemma 3.11 that E j∼pt(x)
[
f (x, j) · (y − j)

]
≤ 1

T . Now we apply Azuma-Hoeffding by defin-
ing the martingale difference sequence Zt = f (xt, pt(xt))(yt − pt(xt)) − Ept(xt)

[
f (xt, pt(xt)) · (yt − pt(xt))

]
,

where the expectation is over the randomness of the sampling of pt. Note that Zt is bounded by 2. Applying
Azuma-Hoeffding, we have that with probability at least 1 − δ,

T∑
t=1

Zt ≤ O
(√

T ln 1/δ
)

Since
∑T

t=1 Ept(xt)
[
f (xt, pt(xt)) · (yt − pt(xt))

]
≤ T · 1/T = 1, we obtain the desired result. □

We conclude this subsection with the proof of Proposition 3.10.

Proof of Proposition 3.10. First, we upper bound the expected error, in the sequential setting, of the pre-
dictors the algorithm outputs. Let u(pt, zt) denote the 2T + 3 dimensional payoff vector where the first
2T + 2 coordinates correspond to the proper calibration constraints and the 2T + 3-th coordinate corre-
sponds to the sequential multiaccuracy constraint. The algorithm maintains a sequence of weight vectors
wt over these 2T + 3 constraints that ensures the following inequalities are satisfied by any weight vector

30

w ⪰ 0 with ∥w∥1 = 1.〈
w,

∑
t∈[T]

u(pt, zt)
〉

≤

T∑
t=1

⟨wt, u(pt, zt)⟩ + O
(√

T ln T
)

(by exponential weights guarantee)

=

T∑
t=1

wt
sma · qt(xt)(yt − pt(xt)) +

∑
v,s

wt
v,s · s · Thv(pt(xt)) · (y − pt(xt))

 + O
(√

T ln T
)

≤ O
(√

T ln 1/δ
)
+ O

(√
T ln T

)
(by Lemma 3.12)

≤ O
(√

T ln T/δ
)

Instantiating the inequality while setting w equal to the first 2T + 2 standard basis vectors, we obtain an
upper bound on theW1/T

Th -weighted calibration error of the sequence p, x, y. Observing that each predictor
pt takes values in the set [1/T] = {0, 1

T ,
2
T , . . . , 1} and that the proper calibration error of a [1/T]-valued

predictor is bounded by twice itsW1/T
Th -weighted calibration error Lemma 3.6, we obtain the stated upper

bound on PCalErr(p, x, y). Instantiating the inequality while setting w equal to the last standard basis
vector, we obtain the upper bound on

∑T
t=1 qt(xt)(yt − pt(xt)).

To bound the expected error of p̂ = unif(p1, . . . , pT) in the distributional setting we again use a martingale
argument. Define

Zt(v, s) = E
(x,y)∼D

[s · Thv(pt(x))(y − pt(x))] − s · Thv(pt(xt))(yt − pt(xt))

for v ∈ [1/T], s ∈ {+,−}. Observe that Zt(v, s) for t = 1, . . . ,T forms a martingale difference sequence
with bounded variance of 2. Similarly, let

Zma
t = E

(x,y)∼D
[qt(x)(y − pt(x))] − qt(xt)(yt − pt(xt)).

Zma
t for t = 1, . . . ,T forms a martingale difference sequence with bounded variance of 2. Thus, applying

Azuma-Hoeffding’s inequality together with union bound over values of v ∈ [1/T], s ∈ {+,−} and Zma
t , we

get that, with probability at least 1 − δ, for all v ∈ [1/T], s ∈ {+,−}∣∣∣∣∣∣∣ 1
T

T∑
t=1

Zt(v, s)

∣∣∣∣∣∣∣ ≤
√

ln 2T
δ

T
and

∣∣∣∣∣∣∣ 1
T

T∑
t=1

Zma
t

∣∣∣∣∣∣∣ ≤
√

ln 2T
δ

T

The distributional error bounds now follow by observing that

∀v, s
1
T

T∑
t=1

E
(x,y)∼D

[s · Thv(pt(x))(y − pt(x))] =
1
T

T∑
t=1

s · Thv(pt(xt))(yt − pt(xt)) +
1
T

T∑
t=1

Zt(v, s)

1
T

T∑
t=1

E
(x,y)∼D

[qt(x)(y − pt(x)] =
1
T

T∑
t=1

qt(xt)(yt − pt(xt)) +
1
T

T∑
t=1

Zma
t

and that we have already shown all terms on the right side of both inequalities are bounded above by

O
(√

log T/δ
T

)
.

31

The algorithm runs in poly(T) timesteps per iteration and each pt is simply a remapping of qt i.e pt(x) =
u(qt(x)) for some (random) function u : [−1, 1] → [1/T]. To see this observe that in the algorithm
pt(x) depends on x via qt(x) (see definition of f (x, j)). Additionally, the function u can be computed in
polynomial time using the weights wt by implementing the logic in Lines 10–17. □

4 Online Omniprediction

In this section, we show that online omniprediction for a class of hypothesis functions H and a class of
loss function L can be achieved using an online weak agnostic learner for ∆L ◦ H with regret that scales
with Õ

(√
T
)

and the regret of the online weak agnostic learner. Online weak agnostic learning, as studied
in (Chen et al., 2012; Brukhim et al., 2020; Beygelzimer et al., 2015), outputs a sequence of predictions
whose correlation with the outcome sequence is not much less than that of the best fixed hypothesis in
hindsight.

Definition 4.1 (Online Weak Agnostic Learner). Given a hypothesis class C ⊂ {c : X → [−1, 1]}, a
failure probability δ, and an online sequence of context-label pairs (x1, y1), . . . , (xT , yT) where xt ∈ X and
yt : [−1, 1], an online weak agnostic learner outputs a sequence of predictors q1, . . . , qT : X → [−1, 1] such
that with probability at least 1 − δ over the randomness of the learner and a possibly adaptive adversary,
the following holds:

max
c∈C

T∑
t=1

c(xt)yt ≤

T∑
t=1

qt(xt)yt + OracleRegδ
C

(T)

Using an online weak agnostic learner for ∆L◦H , we present the following algorithm for omniprediction.

Algorithm 3 Online Omniprediction
1: procedure OnlineOmniprediction(T)
2: Input: Sequence of samples (x1, y1), . . . , (xT , yT)
3: Input: A failure probability parameter, δ > 0.
4: Input: An online weak agnostic learner, Aowal, for function class C = {−1,+1} · ∆L ◦ H with

failure probability δ/2
5: Input: An augmented proper calibrator (Algorithm 2),Aapcal, with failure probability δ/2
6: Output: Sequence of predictors p1, . . . , pT : X → [0, 1]
7: Receive q1 fromAowal

8: for t = 1 to T do
9: Send qt and sample (xt, yt) toAapcal

10: Receive pt fromAapcal

11: Send sample (xt, yt − pt(xt)) toAowal

12: Receive qt+1 fromAowal

Theorem 4.1. Given an online sequence of samples (x1, y1), . . . , (xT , yT), a class of loss functions L, a
class of hypothesis functions H , an online weak agnostic learner for ∆L ◦ H , and a failure probability δ,
Algorithm 3 can be initialized to guarantee (L,H)−online omniprediction regret with probability at least
1 − δ

O
(√

T ln T/δ
)
+ OracleRegδ

C
(T)

32

Proof of Theorem 4.1. Let C = ∆L ◦ H . The online weak agnostic learner interacting with the online
sequence guarantees with probability at least 1 − δ

max
c∈C

T∑
t=1

c(xt)(yt − pt(xt)) ≤
T∑

t=1

qt(xt)(yt − pt(xt)) + OracleRegδ
C

(T)

since Algorithm 3 sets the labeling function to rt(x, y) = y − pt(x). The Augmented Proper Calibration
algorithm guarantees with probability at least 1 − δ, PCalErr(p, x, y) ≤ O

(√
T ln T/δ

)
and

∑T
t=1 qt(xt)(yt −

pt(xt)) ≤ O
(√

T ln T/δ
)

as stated in Proposition 3.10. The second guarantee is the same as the first term
RHS on the online weak agnostic learner guarantee. Thus, we obtain

max
c∈C

T∑
t=1

c(xt)(yt − pt(xt)) ≤ O
(√

T ln 1/δ
)
+ OracleRegδ

C
(T)

This allows us to conclude proper calibration and C-multiaccuracy, which together implies
(L,H)-OmniRegret ≤ O

(√
T ln 1/δ

)
+ OracleRegδ

C
(T) □

Corollary 4.2. Given a hypothesis class H and a class of loss functions L such that the composed class
∆L ◦ H has bounded sequential Rademacher complexity, then there exists a forecaster that guarantees
expected omniprediction regret bounded by

O
(√

T ln T + sradT (∆L ◦H)
)

where sradT (C) refers to the sequential Rademacher complexity of a class C.

4.1 Online Weak Agnostic Learning

In this subsection, we discuss the online weak agnostic learning problem in Definition 4.1, showing the
existence of online weak agnostic learners whose regret scales optimally with the sequential rademacher
complexity of the hypothesis class.

First, we note that when the labels are boolean valued and the hypothesis class are constrained to be
boolean functions, online weak agnostic learning is equivalent to agnostic online binary classification
problem where in each iteration the learner suffers loss of 1[ŷt , yt] and the goal is to minimize the
cummulate loss.

When C is finite, a multiplicative weights algorithm can be used to achieve online weak agnostic learning
with regret bounded by O

(√
T ln |C|

)
.

Lemma 4.3 (Multiplicative Weights). Given a finite hypothesis class C, Algorithm 4 implements an online
weak agnostic learner whose regret scales as O

(√
T ln |C|

)
with probability 1.

33

Algorithm 4 Multiplicative Weights for Online Weak Agnostic Learning

1: Input: Finite hypothesis class C, learning rate η =
√

ln |C|
T

2: Initialize weights w1(c) = 1
|C|

for all c ∈ C
3: for t = 1, . . . ,T do
4: Receive context xt

5: Output prediction qt(xt) =
∑

c∈C wt(c)c(xt)
6: Observe label yt ∈ [−1, 1]
7: Update weights: wt+1(c) = wt(c) exp(ηc(xt)yt)∑

c′∈C wt(c′) exp(ηc′(xt)yt)

For infinite hypothesis classes, the achievable regret values is characterized by the sequential Rademacher
complexity of the hypothesis class.

Theorem 4.4. Given a hypothesis class C with finite sequential Rademacher complexity, there exists an
algorithm that implements an online weak agnostic learner with regret that scales as O(T · sradT (C)).
Moreover, no algorithm can do better than Ω(T · sradT (C)).

To prove this theorem, we need to formulate the rates for online weak agnostic learning as the minimax
value of a game.

Definition 4.2 (Minimax Value of Online Weak Agnostic Learning). Given a hypothesis class C ⊂ {c :
X → [−1, 1]}. Consider randomized learners who predict a distribution qt ∈ ∆(X → [−1, 1]) and sample
pt from this distribution on every round t. We define the value of the game as

Vowal
T (C) = inf

p1∈Q
sup

(x1,y1)∈X×Y
Ep1∼q1 · · · inf

qT∈Q
sup

(xT ,yT)∈X,Y
EpT∼qT

sup
c∈C

T∑
t=1

c(xt)yt −

T∑
t=1

pt(xt)yt

 (1)

Proof of Theorem 4.4. Since the losses are linear and 1-Lipschitz in the variable yt, the upper bound result
follows by applying Theorem 8 of Rakhlin et al. (2015) to bound the sequential Rademacher complexity
of the hypothesis class. Thus,

Vowal
T (C) ≤ 2T · sradT (C)

To show the lower bound we simply choose the label sequence y1, . . . , yT to be i.i.d. Rademacher random
variables, thus, it immediately follows that for any sequence x1, . . . , xT

Vowal
T (C) ≥ E

y1,...,yT

sup
c∈C

T∑
t=1

c(xt)yt −

T∑
t=1

pt(xt)yt


Since y1, . . . , yT are i.i.d. Rademacher random variables, the second term becomes zero in expectation
regardless of the choice of pt sequence, giving us the desired result.

Vowal
T (C) ≥ T · sradT (C)

□

Remark 4.5. For a finite class C the unnormalized sequential Rademacher complexity satisfies T ·
sradT (C) ≤ O

(√
T log |C|

)
, hence Theorem 4.4 recovers the same regret bound as Lemma 4.3, albeit

without supplying an explicit algorithm.

34

Due to the linearity of the loss function and the fact that the online weak agnostic learner is allowed
to output values in the [−1, 1] interval, there exist deterministic online weak agnostic learners for any
class C that is online learnable. This is because we can always predict the expectation of the randomized
online weak agnostic learner and achieve the same guarantee. However, such deterministic online weak
agnostic learner might be more computationally difficult to implement, so we will only assume access to a
randomized online weak agnostic learner.

Online Weak Agnostic Learning for {−1,+1} × C. Our algorithms for omniprediction will actually use
an online weak agnostic learning oracle for {−1,+1} × C. However, one should think of this as equivalent
to C, because of the following lemma.

Lemma 4.6. Given an online weak agnostic learner for C, one can construct an online weak agnostic
learner for {−1,+1} × C that uses two calls to the original learner for C at each round. The resulting
algorithm’s regret satisfies

OracleRegδ
{−1,+1}×C(T) ≤ OracleRegδ

C
(T) + O

(√
T
)
.

Proof. The main idea is as follows: we run two copies of the online weak agnostic learner for C, one with
the labels unchanged (“positive sign”) and one with the labels negated (“negative sign”), and then apply
multiplicative weights to combine their predictions.

Concretely, let owal+ be the online weak agnostic learner run on the sequence {(x1, y1), . . . , (xt−1, yt−1)},
and let owal− be another instance run on {(x1,−y1), . . . , (xt−1,−yt−1)}. In each round t:

1. We query owal+ to get a predictor q+t and query owal− to get a predictor q−t .

2. We maintain an exponential-weight “score” for each of the two experts, reflecting their cumulative
performance so far. Specifically, we use a learning rate η = T−1/2, and multiply the weight of
the positive-sign expert by exp

(
η
∑t−1

u=1 q+u (xu) yu
)
, whereas the weight of the negative-sign expert is

multiplied by exp
(
−η

∑t−1
u=1 q−u (xu) yu

)
.

3. We normalize these two weights and form a convex combination:

qt = αt q+t + (1 − αt) q−t ,

where

αt =
exp

(
η

∑t−1
u=1 q+u (xu) yu

)
exp

(
η

∑t−1
u=1 q+u (xu) yu

)
+ exp

(
−η

∑t−1
u=1 q−u (xu) yu

) .
4. We output the single deterministic predictior qt for round t, and after seeing yt, update the two

experts’ weights accordingly.

By the usual analysis of multiplicative weights, the combination’s cumulative reward
∑T

t=1 qt yt is within
O(
√

T) of the better of the two experts (i.e., owal+ or owal−). Moreover, each of these two experts has
online weak agnostic regret at most OracleRegδ

C
(T) relative to the best function in C with sign fixed. Thus,

we obtain
T∑

t=1

qt(xt) yt ≥ max
s∈{+,−}

c∈C

T∑
t=1

s c(xt) yt − OracleRegδ
C

(T) − O
(√

T
)
.

Rearranging yields the stated bound on OracleRegδ
{−1,+1}×C(T). □

35

4.2 Omniprediction for Finite Classes

As an easy first application of Theorem 4.1, we assume the loss class L and hypothesis class H are
both finite, and we obtain online omnipredictors whose regret depends near-optimally on T and only
logarithmically on |L| and |H|.

Corollary 4.7 (Omniprediction for Finite Loss Classes). Given a finite class of hypothesis functions H
and a finite class of bounded loss functions L, Algorithm 3 guarantees expected omniprediction regret of
O

(√
T ln(|H| · |L| · T)

)
using Algorithm 4 as the online weak agnostic learning oracle.

The proof of the corollary is immediate by combining Theorem 4.1 with Lemma 4.3 and observing that
the cardinality of the class ∆L ◦H is bounded above by |H| · |L|.

4.3 Omniprediction for Infinite Loss Classes with Finite Approximate Basis

While achieving omniprediction for infinite loss classes might seem challenging, a key observation is that if
a class of loss functions F can be approximated by a simpler set of “basis functions”G, then multiaccuracy
for ∆G ◦ H implies multiaccuracy for ∆F ◦ H with bounded excess regret. In the sequel, we will apply
this abstract approximation result, taking our basis functions to be thresholds or ReLUs (or finite subsets
thereof) and using them to approximate important infinite classes of losses.

Definition 4.3 (Approximate Basis). Let Γ be a set and F = { f : Γ → [−1, 1]} a class of functions on Γ.
We say that a set G = {g : Γ → [−1, 1]} is an ε-basis for F with sparsity d and coefficient norm λ, if for
every function f ∈ F , there exists a finite subset {g1, . . . , gd} ⊆ G and coefficients c1, c2, . . . , cd ∈ [−1, 1]
satisfying

∀x ∈ Γ

∣∣∣∣∣∣∣ f (x) −
d∑

i=1

cigi(x)

∣∣∣∣∣∣∣ ≤ ε and
d∑

i=1

|ci| ≤ λ. (31)

In the special case when G itself has d elements, we say G is a finite ε-basis for F of size d and coefficient
norm λ.

A useful property of approximate bases is that the approximation is preserved under post-composition with
any class of functions.

Lemma 4.8 (Finite approximate bases are preserved under post-composition). Let Γ0,Γ1 be sets andH =
{h : Γ0 → Γ1} a class of functions from Γ0 to Γ1. If F = { f : Γ1 → [−1, 1]} is any class of functions on
Γ1 and G = {g : Γ1 → [−1, 1]} is an ε-basis for F with sparsity d and coefficient norm λ, then G ◦H is an
ε-basis for F ◦ H with sparsity d and coefficient norm λ.

Proof. Consider any f ∈ F . If coefficients c1, . . . , cd satisfy property (31) in the definition of ε-basis with
coefficient norm λ, then for all h ∈ H , we have

∀x ∈ Γ0

∣∣∣∣∣∣∣ f (h(x)) −
d∑

i=1

cigi(h(x))

∣∣∣∣∣∣∣ ≤ ε and
d∑

i=1

|ci| ≤ λ.

which confirms that G ◦ H is an ε-basis for F ◦ H with coefficient norm 1. □

36

Approximate bases allow us to extend multiaccuracy from the basis functions to the entire class F .

Lemma 4.9. Let F = { f : [0, 1]→ [−1, 1]} be a class of functions and G = {g1, . . . , gd : [0, 1]→ [−1, 1]}
an ε-basis for F with sparsity d and coefficient norm λ. Then for any sequence of T predictions p and
context, outcome pairs x, y

F -MAErr(p, x, y) ≤ λ · G-MAErr(p, x, y) + εT

Similarly, in the distributional setting, for any distributionD onX×[0, 1] and any predictor p : X → [0, 1],

F -MAErrD(p) ≤ λ · G-MAErrD(p) + ε.

Proof. We can write every f ∈ F as follows: f (z) =
∑

i∈[d] ci(f)gi(z) + ε(f) such that
∑

i∈[d] |ci(f)| ≤ λ,
|ε(f)| ≤ ε and g1, . . . gd ∈ G. Consequently,

max
f∈F

∣∣∣∣∣∣∣
T∑

t=1

f (xt)(yt − pt(xt))

∣∣∣∣∣∣∣ = max
f∈F

∣∣∣∣∣∣∣∣
T∑

t=1

∑
i∈[d]

ci(f)gi(xt)(yt − pt(xt))

 + ε(f)(yt − pt(xt))

∣∣∣∣∣∣∣∣ (32)

≤ max
f∈F

∣∣∣∣∣∣∣∣
∑
i∈[d]

ci(f)

 T∑
t=1

gi(xt)(yt − pt(xt))


∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
T∑

t=1

ε(f)(yt − pt(xt))

∣∣∣∣∣∣∣ (33)

≤ max
f∈F

∑
i∈[d]

|ci(f)|

∣∣∣∣∣∣∣
T∑

t=1

gi(xt)(yt − pt(xt))

∣∣∣∣∣∣∣ + εT (since |ε(f)| ≤ ε)

≤ max
f∈F

∑
i∈[d]

|ci(f)|

 max
i∈[d]

∣∣∣∣∣∣∣
T∑

t=1

gi(xt)(yt − pt(xt))

∣∣∣∣∣∣∣ + εT (34)

= λ max
g∈Fbasis

∣∣∣∣∣∣∣
T∑

t=1

g(xt)(yt − pt(xt))

∣∣∣∣∣∣∣ + εT (35)

The bound for multiaccuracy error in the distributional setting follows by an identical calculation, substi-
tuting expectations overD for sums over t ∈ {1, . . . ,T }. □

To illustrate the application of Lemma 4.9, we note the following consequence for (L,H)-online om-
niprediction when |H| < ∞ and ∆L has a finite approximate basis.

Proposition 4.10 (Omniprediction for Infinite Loss Classes and Finite Hypothesis Classes). Let H be a
finite class of hypothesis functions. Let L be a (possibly infinite) class of loss functions whose discrete
derivative class ∆L admits a finite ε-basis of size d with coefficient norm λ. There exists a forecaster that
guarantees (L,H)-OmniRegret ≤ O

(
λ
√

T ln(|H| · dT) + εT
)
.

Proof of Proposition 4.10. Let G denote the finite ε-basis of ∆L of size d and coefficient norm λ. By
Lemma 4.8, G◦H is an ε-basis of ∆L◦H with the same sparsity and coefficient norm. We run Algorithm 3
with hypothesis class G ◦ H instead of ∆L ◦H .

By Corollary 4.7, this algorithm guarantees expected proper calibration error and expected (G ◦ H)-
multiaccuracy error of O

(√
T ln(|H| · dT)

)
.

37

Now, we use Lemma 4.9 to bound the (∆L◦H)-multiaccuracy error in terms of the (G◦H)-multiaccuracy
error.

(∆L ◦H)-MAErr ≤ λ(G ◦ H)-MAErr(p, x, y) + εT

Combining these bounds gives the desired bound of O
(
λ
√

T ln(|H| · dT) + εT
)

on the (∆L ◦ H)-
multiaccuracy error of the forecaster. □

Proposition 4.11 (Omniprediction for Infinite Loss and Hypothesis Classes). For any loss class L and
hypothesis class H , if we are given an online weak agnostic learning oracle for G ◦ H where G is an ε-
basis of ∆L ◦H with coefficient norm λ, then the application of Algorithm 3 with hypothesis class G ◦H
yields an omnipredictor with (L,H)-OmniRegret ≤ O

(√
T ln T + εT + λ · OracleRegG◦H (T)

)
.

Proof. The regret bound is a direct application of Theorem 4.1 combined with Lemma 4.9. □

In Section 6.1, we will need to make use of a generalization of Definition 4.3 that allows approximating
functions in F using infinite linear combinations of elements of the function class G. For future reference,
we provide the generalization here.

Definition 4.4. Let Γ be a set and F = { f : Γ → [−1, 1]} a class of functions on Γ. Let (Ω,Σ) be a
measurable space and G = {gω : Γ→ [−1, 1] | ω ∈ Ω} a class of functions on Γ indexed by Ω. We say F
is (G, ε)-spanned with coefficient norm λ if for every f ∈ F there is a signed measure c f on (Ω,Σ) such
that ∥c f ∥ = |c f |(Ω) ≤ λ and

∀x ∈ Γ
∣∣∣∣∣ f (x) −

∫
Ω

gω(x) dc f (ω)
∣∣∣∣∣ ≤ ε.

Lemma 4.9 generalizes to (G, ε)-spanned classes under this definition, as follows.

Lemma 4.12. Let (Ω,Σ) be a measurable space and and G = {gω : Γ→ [0, 1] | ω ∈ Ω} a class of func-
tions indexed by Ω. Suppose F = { f : [0, 1] → [−1, 1]} is a class of functions that is (G, ε)-spanned with
coefficient norm λ. Then for any sequence of T predictions p and context, outcome pairs x, y

F -MAErr(p, x, y) ≤ λ · G-MAErr(p, x, y) + εT

Similarly, in the distributional setting, for any distributionD onX×[0, 1] and any predictor p : X → [0, 1],

F -MAErrD(p) ≤ λ · G-MAErrD(p) + ε.

Proof. We can write every f ∈ F as follows: f (z) =
∫
Ω

gω(z) dc f (ω)+ε f (z) such that |c|(Ω) ≤ λ, ∥ε f ∥∞ ≤ ε

38

and gω ∈ G for all ω ∈ Ω. Consequently,

sup
f∈F

∣∣∣∣∣∣∣
T∑

t=1

f (xt)(yt − pt(xt))

∣∣∣∣∣∣∣ = sup
f∈F

∣∣∣∣∣∣∣
T∑

t=1

(∫
Ω

gω(xt)(yt − pt(xt)) dc f (ω)
)
+ ε f (xt)(yt − pt(xt))

∣∣∣∣∣∣∣ (36)

≤ sup
f∈F


∣∣∣∣∣∣∣
∫
Ω

 T∑
t=1

gω(xt)(yt − pt(xt))

 dc f (ω)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣

T∑
t=1

ε f (xt)(yt − pt(xt))

∣∣∣∣∣∣∣
 (37)

≤ sup
f∈F

∫
Ω

∣∣∣∣∣∣∣
T∑

t=1

gω(xt)(yt − pt(xt))

∣∣∣∣∣∣∣ dc f (ω) + εT

(since |ε f (xt)| ≤ ε, |yt − pt(xt)| ≤ 1)

≤ sup
f∈F
∥c f ∥ · sup

ω∈Ω

∣∣∣∣∣∣∣
T∑

t=1

gω(xt)(yt − pt(xt))

∣∣∣∣∣∣∣ + εT (38)

≤ λ sup
g∈G

∣∣∣∣∣∣∣
T∑

t=1

g(xt)(yt − pt(xt))

∣∣∣∣∣∣∣ + εT (39)

The bound for multiaccuracy error in the distributional setting follows by an identical calculation, substi-
tuting expectations overD for sums over t ∈ {1, . . . ,T }.

sup
f∈F

∣∣∣∣∣∣ E
(x,y)∼D

[
f (x)(y − p(x))

]∣∣∣∣∣∣ = sup
f∈F

∣∣∣∣∣∣ E
(x,y)∼D

[(∫
Ω

gω(x)(y − p(x)) dc f (ω)
)
+ ε f (x)(y − p(x))

] ∣∣∣∣∣∣ (40)

≤ sup
f∈F

{ ∣∣∣∣∣∣
∫
Ω

E
(x,y)∼D

[
gω(x)(y − p(x))

]
dc f (ω)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ E
(x,y)∼D

[
ε f (x)(y − p(x))

] ∣∣∣∣∣∣
}

(41)

≤ sup
f∈F

∫
Ω

∣∣∣∣∣∣ E
(x,y)∼D

[
gω(x)(y − p(x))

] ∣∣∣∣∣∣ dc f (ω) + ε

(since |ε f (x)| ≤ ε, |y − p(x)| ≤ 1)

≤ sup
f∈F
∥c f ∥ · sup

ω∈Ω

∣∣∣∣∣∣ E
(x,y)∼D

[
gω(x)(y − p(x))

] ∣∣∣∣∣∣ + ε (42)

≤ λ sup
g∈G

∣∣∣∣∣∣ E
(x,y)∼D

[
g(x)(y − p(x))

] ∣∣∣∣∣∣ + ε (43)

□

5 Omniprediction for Notable Loss Classes

This section instantiates Proposition 4.10 for concrete classes of losses, by exhibiting approximate bases
with appropriate parameters. In particular, we focus on the classes of all 1-Lipschitz convex losses (Lcvx),
all 1-Lipschitz losses (Llip), and all bounded variation losses (LBV) including proper losses (Lproper). The
bases we develop in this section will also be used in developing efficient offline algorithms for omnipredic-
tion with respect to these infinite classes.

39

5.1 Online Omniprediction bounds for Notable Loss Classes

Theorem 5.1. LetH = {h : X → [0, 1]} be a hypothesis class.

1. Given an online weak agnostic learning oracle for ReLU1/T ◦H , Algorithm 3 implements an online
omnipredictor for loss class Lcvx with regret

(Lcvx,H)-OmniRegret ≤ O
(√

T ln T + OracleRegReLU◦H (T)
)
. (44)

2. Given an online weak agnostic learning oracle for Th1/T ◦ H , Algorithm 3 implements an online
omnipredictor for loss class Llip with regret

(Llip,H)-OmniRegret ≤ O
(√

T ln T + OracleRegTh1/T◦H (T)
)
. (45)

3. Suppose the hypotheses in H are Γ-valued, where Γ is a finite subset of [0, 1] containing {0, 1}.
Given an online weak agnostic learning oracle for ThΓ ◦ H , Algorithm 3 implements an online
omnipredictor for loss class LBV with regret

(LBV,H)-OmniRegret ≤ O
(√

T ln T + OracleRegThΓ◦H (T)
)
. (46)

If H is a finite hypothesis class, then the omniprediction bounds in parts 1 and 2 above are
O

(√
T ln(|H| · T)

)
, and the bound in part 3 is O

(√
T ln(|Γ| · |H| · T)

)
.

Proof. The bounds (44), (45), (46) follow directly from application of Theorem 4.1 with Corollary 5.3,
Lemma 5.4, and Lemma 5.7, respectively. The bounds for finite hypothesis classes follow by applying
Proposition 4.10. □

To aid in interpreting the regret bounds (44)-(46), we remind the reader that for any class C there
exists a (not necessarily computationally efficient) online weak agnostic learning oracle satisfying
OracleRegC(T) = O(T · sradT (C)), where srad denotes sequential Rademacher complexity.

5.2 Approximate Bases for Notable Loss Classes

In this subsection we exhibit approximate bases for the loss classes listed above. The quantitative conse-
quences for omniprediction will be detailed in the following section.

Convex Lipschitz Loss Functions. Let Fcvx be the class of all convex 1-Lipschitz functions.

Lemma 5.2 (Gopalan et al. (2024b)). For all ε > 0, Fcvx admits a finite ε-basis of ReLU functions of size
Õ(1/ε2/3) with coefficient norm 2.

Convex functions are not closed under linear combinations. This means that not all functions in ∆Lcvx

will be convex, therefore we cannot apply the result from section above. However, the fact that this class
is derived from the difference of two convex functions still allows us to derive useful upper bounds.

Corollary 5.3 (of Lemma 5.2). For all ε > 0, ∆Lcvx admits a finite ε-basis of ReLU functions of size
Õ(1/ε2/3) with coefficient norm 4.

40

Proof. Let G ⊂ ReLU be a finite ε/2-basis for Fcvx of size Õ(1/ε2/3) with coefficient norm 2. Denote the
elements of G as g1, . . . , gd where d = Õ(1/ε2/3). If f ∈ ∆Lcvx then f (x) = f1(x) − f0(x) where f0, f1 ∈
Fcvx. Let c0i, c1i (1 ≤ i ≤ d) be coefficients such that ∥ f0 −

∑d
i=1 c0igi∥∞ ≤ ε/2, ∥ f1 −

∑d
i=1 c1igi∥∞ ≤ ε/2,∑d

i=1 |c0i| ≤ 2, and
∑d

i=1 |c1i| ≤ 2. Then for the coefficients ci = c1i − c0i we have∥∥∥∥∥∥∥ f −
d∑

i=1

cigi

∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥(f1 − f0) −
d∑

i=1

(c1i − c0i)gi

∥∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥ f1 −
d∑

i=1

c1igi

∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥ f0 −
d∑

i=1

c0igi

∥∥∥∥∥∥∥
∞

≤ ε

d∑
i=1

|ci| ≤

d∑
i=1

|c0i| +

d∑
i=1

|c1i| ≤ 4,

which confirms that G is a finite ε-basis of ReLU functions for ∆Lcvx of size Õ(1/ε2/3) and coefficient
norm 4. □

Lipschitz Loss Functions. Every 1-Lipschitz loss function can be ε-approximated by a finite weighted
sum of ReLU functions, but the coefficient norm of this approximation is not bounded by a constant (in-
dependent of ε). To achieve approximation with bounded coefficient norm, it is necessary to use threshold
functions.

Definition 5.1. For θ ∈ [0, 1] let Thθ denote the {±1}-valued threshold function Thθ(v) = sgn(v − θ), with
the convention that Thθ(θ) = 1. For a subset Γ ⊆ [0, 1] let ThΓ = {Thθ | θ ∈ Γ}. When Γ(ε) is the set of
integer multiples of ε in [0, 1], we will abbreviate ThΓ(ε) as Thε. We will also abbreviate Th[0,1] as Th.

Lemma 5.4 (Threshold Basis for Lipschitz Functions). For the classLlip of 1-Lipschitz loss functions, the
class G = Thε/2 is a finite ε-basis for ∆Llip of size ⌈ 2

ε + 1⌉ and coefficient norm 4.

Proof of Lemma 5.4. To simplify notation we will prove Thε is a 2ε-basis for ∆Llip of size ⌈ 1
ε + 1⌉ and

coefficient norm 2. (The lemma follows by reinterpreting ε in this proof as ε/2 in the lemma statement.)
For ℓ ∈ Llip the function f (p) = ∆ℓ(p) = ℓ(p, 1) − ℓ(p, 0) is 2-Lipschitz and [−1, 1]-valued. We can
construct a piecewise constant function f̂ by setting f̂ (x) = f

(
⌊ x
ε ⌋ · ε

)
so that | f (x) − f̂ (x)| ≤ 2ε. We’ll

now express f̂ as a linear combination of functions in Thε. Let gi(v) denote the function Thiε ∈ Thε.

f̂ (x) = f̂ (0)g0(x) +
∑

i∈[⌈1/ε⌉]

(f̂ (iε) − f̂ ((i − 1)ε))gi(x).

To see this, observe that we can simplify the RHS to

f̂ (0)(g0(x) − g1(x)) +
∑

i∈[⌈1/ε⌉]

f̂ (iε)(gi(x) − gi+1(x))

Since (gi(x) − gi+1(x)) is 1 only when iε ≤ x < (i + 1)ε and f̂ (x) is constant in this interval, we get
the desired result. Now we need to bound the coefficient norm. We know that | f̂ (0)| ≤ 1 and since f is
1-lipschitz, |(f̂ (iε) − f̂ ((i − 1)ε))| ≤ ε for all i. Thus, the coefficient norm is bounded by 2. □

Bounded Variation Losses and Proper Losses. Let LBV denote the class of bounded variation losses,
defined as follows.

41

Definition 5.2 (Bounded Variation). A function f : [0, 1]→ R has bounded variation if the quantity

V(f) = sup

 n∑
i=1

| f (xi) − f (xi−1)|

∣∣∣∣∣∣∣ 0 = x0 < x1 < · · · < xn = 1


is finite. The class LBV of bounded variation losses consists of all loss functions ℓ(p, y) taking values in
[−1, 1] that satisfy V(∆ℓ) ≤ 2.

Bounded variation losses are an extremely general family that includes all other loss classes considered in
this paper.

Lemma 5.5. The class LBV includes all 1-Lipschitz losses, convex losses (with values in [−1/4, 1/4],
regardless of whether or not they are Lipschitz continuous), and proper losses taking values in [−1, 1].

Proof. It is clear from the definition that V(f) ≤ 2 when f is monotone and [−1, 1]-valued, and also when
f is 2-Lipschitz. Hence, the classLlip of 1-Lipschitz losses is inLBV (since ∆ℓ is 2-Lipschitz whenever ℓ is
1-Lipschitz) and the class Lproper of proper losses is in LBV (since ∆ℓ is monotone whenever ℓ is proper).
For a convex function f taking values in [−1/4, 1/4], if x∗ denotes a point in [0, 1] where f attains its
minimum, then f admits a representation of the form

f (x) = f (x∗) + f0(x) + f1(x)

where f0, f1 are monotone non-increasing and non-decreasing functions (respectively) from [0, 1] to
[0, 1/2] satisfying f0(x) = 0 for x ≥ x∗ and f1(x) = 0 for x ≤ x∗. From this representation it is clear
that V(f) ≤ V(f0) + V(f1) ≤ 1. If ℓ(p, y) is a convex loss taking values in [−1/4, 1/4] then ∆ℓ is a differ-
ence of two convex [−1/4, 1/4]-valued functions, so V(∆ℓ) ≤ 2. □

For bounded variation losses we have the following approximate basis.

Lemma 5.6. For any ε > 0, the class Th of all threshold functions on [0, 1] is a ε-basis for ∆LBV with
sparsity ⌈2/ε + 1⌉ and coefficient norm 3.

Proof. For ℓ ∈ LBV let f = ∆ℓ, and consider the sequence x0 < x1 < x2 < · · · < xn defined inductively by
setting x0 = 0 and xm+1 = inf{x > xm : | f (x) − f (xm)| > ε} for all m ≥ 0 such that the set in question is
non-empty. The sequence ends with the first element xn such that {x > xn : | f (x) − f (xn)| > ε} is empty.
For notational convenience we define xn+1 = 1. From the definition of V(f) we see that V(f) ≥ nε, from
which we deduce n ≤ 2/ε.

Define a piecewise-constant function f̂ : [0, 1] → [−1, 1] by setting f̂ (x) = f (xm) where xm is the max-
imum element of {x0, . . . , xn+1} ∩ [0, x]. By construction, the inequality | f (x) − f̂ (x)| ≤ ε holds for all
x ∈ [xm, xm+1], for all m ∈ {0, . . . , n}. The union of the intervals [xm, xm+1] equals [0, 1], so ∥ f − f̂ ∥∞ ≤ ε.

For i = 0, 1, . . . , n, let gi denote the threshold function Thxi . As in the proof of Lemma 5.4 we have

f̂ (x) = f̂ (0)g0(x) +
n+1∑
i=1

(
f̂ (xi) − f̂ (xi−1)

)
gi(x).

The coefficient norm is bounded by | f̂ (0)| +
∑n+1

i=1 | f̂ (xi) − f̂ (xi−1| ≤ 1 + V(f) ≤ 3. □

42

The approximate basis Th is unfortunately not finite. This difficulty is inherent: the class ∆Lproper includes,
for each θ ∈ (0, 1), a step function with a step of height 1 at θ. To approximate such a step function within
ε in the ∞-norm, one must use a function having a jump discontinuity at θ, provided ε < 1/2. Hence,
any ε-approximate basis for ∆Lproper must include functions with jump discontinuities at every θ ∈ (0, 1).
However, this difficulty can be overcome for the class ∆LBV ◦ H whenever H is a class of hypothesis
functions taking values in a finite subset of [0, 1].

Lemma 5.7. IfH is a class of hypothesis functions taking values in a finite set Γ with {0, 1} ⊆ Γ ⊂ [0, 1],
then for all ε > 0 the class ThΓ ◦ H is a ε-basis for ∆LBV ◦ H with sparsity ⌈2/ε + 1⌉ and coefficient
norm 3.

Proof. From Lemma 4.8 and Lemma 5.6 we know that Th ◦ H is a ε-basis for ∆LBV ◦ H with sparsity
⌈2/ε + 1⌉ and coefficient norm 3. However, for every θ ∈ [0, 1], if γ is the minimum element of Γ ∩ [θ, 1]
then Thθ ◦ h = Thγ ◦ h for every h ∈ H . Hence, ThΓ ◦ H = Th ◦ H and the lemma follows. □

Here show a closure property for the class of all thresholds that will be useful for our omniprediction
results.

Lemma 5.8 (Closure Property). If f , g : [−1, 1] → [−1, 1] are monotone non-decreasing functions, then
f ◦ g is a monotone non-decreasing function.

Proof of Lemma 5.8. Take any x1, x2 ∈ [−1, 1] such that x1 ≤ x2. Since g is monotone non-decreasing, it
follows that

g(x1) ≤ g(x2).

Next, since f is monotone non-decreasing and g(x1) ≤ g(x2), applying f to both sides preserves the order:

f (g(x1)) ≤ f (g(x2)).

Therefore, f ◦ g is monotone non-decreasing, as required. □

6 Offline Omniprediction

In this section, we show how the observation that proper calibration and multiaccuracy are sufficient for
omniprediction leads to optimal sample complexity bounds for omniprediction in the offline setting. In
particular, the algorithm we describe here will use a sample complexity that, for a given loss class L,
depends near-optimally on the sample complexity to cover ∆L◦H . In Section 6.1, we describe an online-
to-batch procedure that outputs a randomized omnipredictor by running Algorithm 3 on i.i.d. samples from
the distributionD. In all, we establish the following result.

Theorem 6.1. There exists an sample-efficient algorithm A that for any distribution D supported on
X× {0, 1}, for any class of loss functions L ⊆ LBV that is (G,T−1/2)-spanned with coefficient norm λ, any
hypothesis classH , and ε > 0, learns an (L,H , ε)-omnipredictor with the following properties:

• A returns a randomized omnipredictor that mixes over poly(1/ε) postprocessed hypotheses fromH .

43

• A uses m ≤ Õ(λ · d∆G◦H/ε2) samples drawn i.i.d. fromD, where d∆G◦H denotes the VC dimension
of ∆G ◦ H or the fat-shattering dimension at scale ε in the case of real-valued class.

In particular, for any classL ⊆ LBV of bounded-variation losses — including proper losses, convex losses,
and 1-Lipschitz losses — the sample complexity of (LBV,H)-omniprediction scales with the statistical
complexity of Th ◦ H , and the sample complexity of (Lcvx,H)-omniprediction scales with the statistical
complexity of ReLU1/T ◦ H .

This theorem follows from Theorem 6.2, using Corollary 6.3 to instantiate the online weak agnostic learner.

6.1 Learning Randomized Omnipredictors via Online-to-Batch Conversion

To establish offline omnipredictors, we prove the following technical result.

Theorem 6.2. Let H be a class of hypothesis functions. Let L and G be classes of loss functions such
that L is (G, ε)-spanned with coefficient norm λ for some ε ≤ 1√

T
. Given a online weak agnostic learner

for ∆G ◦H , failure probability δ, and a sequence of T i.i.d samples (x1, y1), . . . (xT , yT) ∼ D, Algorithm 3
outputs a sequence of predictors p1, . . . , pT such that the randomized predictor p̂ = unif{p1, . . . , pT } satis-
fies

E
p∼p̂

E
(x,y)∼D

[
ℓ(kℓ(p(x)), y)

]
≤ min

h∈H
E

(x,y)∼D

[
ℓ(h(x), y)

]
+ O

λ · radT (∆G ◦ H) + λ

√
ln T/δ

T


+
λ

T
· OracleReg∆G◦H (T)

with probability 1 − δ over the randomness of the algorithm and the sampling from D. Moreover, each
returned predictor can be represented as pt = vt ◦ qt, where q1, . . . , qT are the predictors returned by the
online weak agnostic learner and vt : [−1, 1]→ [0, 1] is a post-processing function.

This theorem is the main result that we prove across this section. We break the proof into a series of
technical lemmas. The lemmas serve to bound the online regret, which quantifies the error of p̂ at ap-
proximating the empirical statistics, and separately bound the generalization of the empirical statistics to
their distributional quantities. First, we give the proof of the theorem assuming our subsequent lemmas,
followed by technical sections to establish the lemmas.

Proof of Theorem 6.2. SinceL is (G, ε)-spanned with coefficient norm λ, then ∆L is (∆G, ε)-spanned with
coefficient norm 2λ. In Theorem 4.1, we show that, given an online weak agnostic learner for ∆G ◦ H ,
Algorithm 3 outputs a sequence of predictions p1, . . . , pT such that

E[PCalErr(p, x, y)] + E[(∆G ◦ H)-MAErr(p, x, y)] ≤ O
(√

T ln T/δ
)
+ OracleReg∆G◦H (T)

and together with Lemma 4.9, this implies

E[(L,H)-OmniRegret(p, x, y)] ≤ O
(
λ
√

T ln T/δ
)
+ λ · OracleReg∆G◦H (T)

That is, for all ℓ ∈ L, h ∈ H , 1
T

T∑
t=1

ℓ(kℓ(pt(xt)), yt) −
1
T

T∑
t=1

ℓ(h(xt), yt)

 ≤ O

λ
√

ln T/δ
T

 + λ

T
· OracleRegδ

∆G◦H
(T) (47)

44

Now we would like to show that this also implies a bound on the expected omniprediction error under the
true distribution. By Lemma 6.4 and Lemma 6.5, we know that with probability at least 1 − δ,

sup
ℓ∈L

∣∣∣∣∣∣∣ 1
T

T∑
t=1

ℓ(kℓ(pt(xt)), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[ℓ(kℓ(pt(x)), y)]

∣∣∣∣∣∣∣ ≤ 1
T
+ O


√

ln T
δ

T


since our algorithms output predictions that are multiples of 1/T and

sup
ℓ∈L,h∈H

∣∣∣∣∣∣∣ 1
T

T∑
t=1

ℓ(h(xt), yt) − E
(x,y)∼D

[ℓ(h(x), y)]

∣∣∣∣∣∣∣ ≤ O

λ · radT (∆G ◦ H) + λ

√
ln 1

δ

T

 .
Plugging into the Equation (47), we obtain that with probability at least 1 − δ,

sup
ℓ∈L, h∈H

 1
T

T∑
t=1

E
(x,y)∼D

[ℓ(kℓ(pt(x), y)] − E
(x,y)∼D

ℓ(h(x), y)

 (48)

≤ O(λ · radT (∆G ◦ H)) + O

λ
√

ln T/δ
T

 + λ

T
· OracleRegδ

∆G◦H
(T) (49)

The claim that each predictor pt can be expressed as vt ◦ qt follows the guarantees from the Augmented
Proper Calibration algorithm in Proposition 3.10. □

6.2 Implementing an Online Weak Agnostic Learner with Offline Sample Complexity

Online weak agnostic learning with i.i.d. features is a special case of the hybrid online learning problem
(Lazaric and Munos, 2009; Wu et al., 2022). These prior results establish near-optimal dependence on
the offline sample complexity of the class. In Corollary 6.3, we present this online weak agnostic learner,
which is based on a multiplicative weights algorithm over a cover of size exponential in the VC (or fat-
shattering) dimension of the class.

Corollary 6.3 (of Theorem 3 of Wu et al. (2022)). Let C be a class of hypothesis functions. Consider the
setting where x1, . . . , xT are generated i.i.d. but revealed sequentially from a fixed distribution D. There
exists a multiplicative weights algorithm that returns a sequence of hypothesis c1, . . . , cT ∈ C such that for
any sequence of y1, · · · , yT with probability at least 1 − δ,

T∑
t=1

ct(xt) · yt − inf
c∈C

T∑
t=1

c(xt) · yt ≤ Õ
(√

TdC
)
+ Õ

(√
T ln 1/δ

)
.

where dC represents the VC dimension of C in the case of a binary hypothesis class or the fat-shattering
dimension at scale 1/

√
T in the case of a real-valued hypothesis class.

The proof of Corollary 6.3 is deferred to Appendix D.

6.3 Uniform Convergence Results for Online-to-Batch Conversion

Next, we establish the generalization bounds necessary for the empirical omniprediction statistics to con-
verge to their distributional quantities.

45

Lemma 6.4 (Uniform Convergence for discretized predictors). Let p1, . . . , pT : X → {0, ε, 2ε . . . , 1} be
a sequence of T predictors and let {(x1, y1), . . . , (xT , yT)} be a sequence of i.i.d samples drawn from a
distributionD. Then for any class of loss functions L, the following holds with probability at least 1 − δ,∣∣∣∣∣∣∣ 1

T

T∑
t=1

ℓ(kℓ(pt(xt)), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[ℓ(kℓ(pt(x)), y)]

∣∣∣∣∣∣∣ ≤ ε + O


√

ln 1
εδ

T


for all ℓ ∈ L

Proof of Lemma 6.4. Observe that it suffices to show that this holds for Lproper. This is because, for any
class of loss functions L, the derived class {ℓ ◦ kℓ : ℓ ∈ L} is a subset of Lproper. Recall that for every
ℓ ∈ Lproper, there exists nonnegative coefficients cv(ℓ) such that

∫ 1
0 cv(ℓ)dv ≤ 2 and

ℓ(p, y) =
∫ 1

0
cv(ℓ)ℓv(p, y)dv

Consequently, it suffices to show that this holds for all ℓv for v ∈ [0, 1]. To see this observe that for any
ℓ ∈ Lproper ∣∣∣∣∣∣∣ 1

T

T∑
t=1

ℓ(pt(xt), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[ℓ(pt(x), y)]

∣∣∣∣∣∣∣ (50)

=

∣∣∣∣∣∣∣ 1
T

T∑
t=1

∫ 1

0
cv(ℓ)ℓv(pt(xt), yt)dv −

1
T

T∑
t=1

E
(x,y)∼D

[∫ 1

0
cv(ℓ)ℓv(pt(x), y)dv

]∣∣∣∣∣∣∣ (51)

≤

∫ 1

0
cv(ℓ)

∣∣∣∣∣∣∣ 1
T

T∑
t=1

ℓv(pt(xt), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[
ℓv(pt(x), y)

]∣∣∣∣∣∣∣ dv (52)

Now we’ll take advantage of the fact that pt(x) is in {0, ε, 2ε . . . , 1} for all x ∈ X. We’ll show that for all
v ∈ [0, 1], there exists v′ ∈ {0, ε, 2ε . . . , 1} such that for all x, y ∈ X × Y, |ℓv(p(x), y) − ℓv′(p(x), y)| ≤ ε

for all v. In particular, v′ = ε⌈ v
ε⌉. We’ll also adopt the convention that sgn(0) = 1. We’ll first make the

observation that because p(x) ∈ {0, ε, . . . , 1}, sgn(v−p(x)) = sgn(v′−p(x)) by our choice of v′. Completing
the argument, we have that

ℓv(p(x), y) − ℓv′(p(x), y) = (y − v)sgn(v − p(x)) − (y − v′)sgn(v′ − p(x)) (53)

= (y − v)sgn(v − p(x)) − (y − v′)sgn(v − p(x))
(since sgn(v − p(x)) = sgn(v′ − p(x)))

≤ (v − v′)sgn(v − p(x)) (54)

≤ ε (55)

Now we’ll show that for all v′ ∈ {0, ε, 2ε . . . , 1},∣∣∣∣∣∣∣ 1
T

T∑
t=1

ℓv(pt(xt), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[
ℓv(pt(x), y)

]∣∣∣∣∣∣∣ ≤ O


√

ln 1
εδ

T


46

Define Zt(v′) = ℓv′(pt(xt), yt)−E(x,y)∼D[ℓv′(pt(x), y)]. Observe that Zt(v′) for t = 1, . . . ,T forms a martingale
difference sequence with bounded variance of 2. Thus, applying Azuma-Hoeffding’s inequality, together
with the union bound over all v′ ∈ {0, ε, 2ε . . . , 1}, we get that with probability at least 1 − δ,

∀v′ ∈ {0, ε, 2ε . . . , 1}

∣∣∣∣∣∣∣ 1
T

T∑
t=1

Zt(v′)

∣∣∣∣∣∣∣ ≤ O


√

ln 1
εδ

T


Concluding the proof, we have that for any v ∈ [0, 1], with probability at least 1 − δ,∣∣∣∣∣∣∣ 1

T

T∑
t=1

ℓv(pt(xt), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[
ℓv(pt(x), y)

]∣∣∣∣∣∣∣ ≤ ε + O


√

ln 1
εδ

T


Consequently, for any ℓ ∈ Lproper,∣∣∣∣∣∣∣ 1

T

T∑
t=1

ℓ(pt(xt), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[ℓ(pt(x), y)]

∣∣∣∣∣∣∣ (56)

≤

∫ 1

0
cv(ℓ)

∣∣∣∣∣∣∣ 1
T

T∑
t=1

ℓv(pt(xt), yt) −
1
T

T∑
t=1

E
(x,y)∼D

[
ℓv(pt(x), y)

]∣∣∣∣∣∣∣ dv (57)

≤ 2ε + O


√

ln 1
εδ

T

 (58)

Since ℓ ◦ kℓ is in Lproper, this completes the result. □

Lemma 6.5 (Uniform Convergence for G-spanning loss classes). Let L be a (G, ε)-spanned class of loss
functions with coefficient norm λ for some ε ≤ T−1/2. Let {(x1, y1), . . . , (xT , yT)} be a sequence of i.i.d.
samples drawn from a distributionD. Then for a hypothesis classH , the following holds with probability
at least 1 − δ, ∣∣∣∣∣∣∣ 1

T

T∑
t=1

ℓ(h(xt), yt) − E
(x,y)∼D

[ℓ(h(x), y)]

∣∣∣∣∣∣∣ ≤ O (λ · radT (G ◦ H)) + O

λ
√

ln 1
δ

T


uniformly for every ℓ ∈ L and h ∈ H .

Proof of Lemma 6.5. Since every ℓ ∈ L is ε-close to the span of G ◦ H , the proof will show that uniform
convergence extends from G ◦ H to all losses ℓ ∈ L and hypotheses h ∈ H . In particular, standard
application of uniform convergence results (Chapter 26 of Shalev-Shwartz and Ben-David (2014)) show
that the following holds with probability at least 1 − δ:

∀g ◦ h ∈ G ◦ H , z ∈ {0, 1}

∣∣∣∣∣∣∣ 1
T

T∑
t=1

g(h(xt), z) − E
(x,y)∼D

[g(h(x), z)]

∣∣∣∣∣∣∣ ≤ radT (G ◦ H) + O


√

ln δ−1

T


(59)

47

and

∀g ◦ h ∈ G ◦ H z ∈ {0, 1}

∣∣∣∣∣∣∣ 1
T

T∑
t=1

yt · g(h(xt), z) − E
(x,y)∼D

[y · g(h(x), z)]

∣∣∣∣∣∣∣ ≤ radT (G ◦ H) + O


√

ln δ−1

T


(60)

By definition of (G, ε)-spanning, we know that for every ℓ ∈ L, there exists a signed measure cℓ(ω) such
that ∥cℓ∥ ≤ λ and such that the function ℓ̂ : [0, 1] × {0, 1} → R defined by

ℓ̂(p, y) =
∫
Ω

gω(p, y) dcℓ(ω)

satisfies ∥ℓ − ℓ̂∥∞ ≤ ε. Then it follows that for every ℓ ∈ L and h ∈ H∣∣∣∣∣∣∣ 1
T

T∑
t=1

ℓ(h(xt), yt) − E
(x,y)∼D

[ℓ(h(x), y)]

∣∣∣∣∣∣∣ ≤ 2ε +

∣∣∣∣∣∣∣ 1
T

T∑
t=1

ℓ̂(h(xt), yt) − E
(x,y)∼D

[ℓ̂(h(x), y)]

∣∣∣∣∣∣∣
= 2ε +

∣∣∣∣∣∣∣
∫
Ω

 1
T

T∑
t=1

gω(h(xt), yt) − E
(x,y)∼D

[gω(h(x), y)]

 dcℓ(ω)

∣∣∣∣∣∣∣
≤ 2ε +

∫
Ω

∣∣∣∣∣∣∣ 1
T

T∑
t=1

gω(h(xt), yt) − E
(x,y)∼D

[gω(h(x), y)]

∣∣∣∣∣∣∣ d|cℓ|(ω).

≤ 2ε + sup
g∈G

∣∣∣∣∣∣∣ 1
T

T∑
t=1

g(h(xt), yt) − E
(x,y)∼D

[g(h(x), y)]

∣∣∣∣∣∣∣ · ∥cℓ∥. (61)

Observe that for any g : [0, 1] × {0, 1} → R and all (p, y) ∈ [0, 1] × {0, 1} we have

g(p, y) = g(p, 0) + yg(p, 1) − yg(p, 0).

Hence, assuming (59) and (60) hold, we have that for all g ∈ G,∣∣∣∣∣∣∣ 1
T

T∑
t=1

g(h(xt), yt) − E
(x,y)∼D

[g(h(x), y)]

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ 1
T

T∑
t=1

g(h(xt), 0) − E
(x,y)∼D

[g(h(x), 0)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ 1
T

T∑
t=1

yt · g(h(xt), 1) − E
(x,y)∼D

[y · g(h(x), 1)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ 1
T

T∑
t=1

yt · g(h(xt), 0) − E
(x,y)∼D

[y · g(h(x), 0)]

∣∣∣∣∣∣∣
≤ 3 radT (G ◦ H) + O


√

ln δ−1

T

 .
Substituting this bound back into inequality (61), we obtain∣∣∣∣∣∣∣ 1

T

T∑
t=1

ℓ(h(xt), yt) − E
(x,y)∼D

[ℓ(h(x), y)]

∣∣∣∣∣∣∣ ≤ 2ε +

3radT (G ◦ H) + O


√

ln δ−1

T

 ∥cℓ∥ (62)

≤ 2ε + 3λradT (G ◦ H) + O

λ
√

ln δ−1

T

 (63)

and the result follows by our assumption that ε ≤ T−1/2. □

48

7 Oracle-Efficient Offline Omniprediction

In this final section, we describe an algorithm that achieves omniprediction in the offline setting, returning
predictors with efficient representations, in near-optimal sample complexity, using only an offline ERM
oracle. Our construction is modeled after previous algorithms, but critically, we replace the OWAL oracle
with a new abstraction that we call a Distributional Online Weak Agnostic Learner. We give an efficient
implementation of this oracle given access to an ERM oracle, via a Frank-Wolfe reduction to solve an
entropy-regularized ERM problem. except that we replace the online weak agnostic learner with a distri-
butional online weak agnostic learner, which we efficiently implement using the offline ERM oracle.

To begin, we introduce the new hybrid learning oracle.

Definition 7.1. A Distributional Online Weak Agnostic Learner (dowal) is an online algorithm initialized
with a hypothesis class C, a labeling function class R, and a failure probability δ. It is initialized with a
dataset of samples {(xt, yt)}Tt=1. Each timestep t:

1. The algorithm outputs a hypothesis function qt : X → [−1, 1]

2. The algorithm receives an adversarial labeling function rt : X ×Y → [−1, 1] ∈ R

We say an algorithm implements a dowalwith regret bound DistOracleRegm,δ
C,R

(T) if given an initial dataset
of samples (xi, yi)m

i=1 drawn i.i.d. from a fixed distributionD, it guarantees with probability at least 1 − δ

max
c∈C

T∑
t=1

E
D

[c(x)rt(x, y)] ≤
T∑

t=1

E
D

[qt(x)rt(x, y)] + DistOracleRegm,δ
C,R

(T).

For the dowal used in this paper, the relationship between the hypothesis class C and the labeling function
class R is generally as follows.

R =
{
r : X ×Y → [−1, 1] | r(x, y) = y − u(c(x)), c ∈ C, u : [−1, 1]→ [0, 1]

}
. (64)

We will use the term “dowal for C” to refer to a dowal for a pair (C,R) satisfying the relationship in
Equation (64).

Finally, we say a dowal is proper if its outputs q1, . . . , qT belong to the class C. We may denote the output
sequence of a proper dowal by c1, . . . , cT rather than q1, . . . , qT to emphasize that the outputs belong to
the function class C.

Using this oracle, we can describe our novel approach to distributional omniprediction. The resulting
algorithm, Algorithm 5, is an oracle-efficient implementation of our algorithmic framework, tailored to
the distributional setting. As before, we invoke the distributional OWAL with the multiaccuracy class
C = ∆L ◦ H , but here, we use a label class R to encompass the residual functions y − pt(x). Critically,
to prove the dowal guarantees, we need to ensure that the prediction functions {pt} live in some class of
functions about which we can reason.

Theorem 7.1. Algorithm 5 is an oracle-efficient algorithm that for any distribution D supported on X ×
{0, 1}, any class of loss functions L ⊆ LBV, and any hypothesis class H , learns an (L,H)-omnipredictor
given 2T i.i.d. samples fromD. The algorithm has the following properties:

49

Algorithm 5 Oracle-Efficient Offline Omniprediction Using dowal
1: procedure OfflineOmniprediction(T)
2: Input: A dataset of 2T samples {(xt, yt)}2T

t=1, drawn i.i.d. fromD.
3: Input: A failure probability parameter, δ > 0.
4: Split the samples into two equal-sized sets, Dapcal = {(xt, yt) | t ≤ T } and Ddowal = {(xt, yt) | t > T }.
5: Input: Initialize Algorithm 6 instance, Adowal, using function class C = {+1,−1} · Th ◦ H and

samples Ddowal.
6: Input: Initialize Algorithm 2 instance,Aapcal, with failure probability δ
7: Receive c1 fromAdowal

8: for t = 1 to T do
9: Send ct toAapcal

10: Receive pt fromAapcal

11: Send (xt, yt) ∈ Dapcal toAapcal

12: Send labeling function rt(x, y) = y − pt(x) toAdowal

13: Receive ct+1 fromAdowal

14: Output randomized predictor p̂ = unif(p1, . . . , pT).

• It returns a randomized omnipredictor that mixes over T predictors, each represented as pt = vt ◦ ht,
where ht ∈ H and vt : [−1, 1]→ [0, 1] is a postprocessing function.

• It is oracle-efficient, making O(T 5/2) calls to an offline ERM oracle for Th ◦ H .

• The error of the omnipredictor scales near-optimally with the offline Rademacher complexity:
ε(T) = O

(
log3/2(T) · radT (Th ◦ H)

)
+ O

(√
ln(T/δ)/T

)
.

We begin with a high-level proof that invokes technical lemmas proved subsequently. We justify the claims
on representation complexity, oracle-efficiency, and statistical complexity.

Proof of Theorem 7.1. The claim about the omnipredictor’s representation complexity is justified by the
following observations.

1. By Lemma 7.4,Adowal is a proper dowal, returning functions ct in C = {+1,−1} · Th ◦ H .

2. By Proposition 3.10,Aapcal returns predictors pt in U ◦C, where U is the class of all functions from
[−1, 1] to [0, 1].

3. Hence, pt belongs to the class U ◦ (±Th) ◦ H . In other words, pt = vt ◦ ht where ht ∈ H and
vt ∈ U ◦ (±Th).

The claim about oracle-efficiency is justified by the following observations.

1. Algorithm 6 is called T times. Each call involves solving an entropy-regularized ERM problem
using Algorithm 7 with parameters m = T and ε = η = T−1/2.

2. By Lemma 7.6, each call to Algorithm 7 makes O(m/ε) = O(T 3/2) calls to the ERM oracle for C.

50

3. An ERM for C = {+1,−1} · Th ◦H can be implemented using two ERM calls for Th ◦H : one with
the given coefficient vector and one with the negation of that vector.

The claim about omniprediction error is justified using Lemma 4.4 and Proposition 4.5 of Gopalan et al.
(2023), which decomposes (L,H)-omniprediction error as the sum of L-Decision-OI error and ∆L ◦ H-
multiaccuracy error. The former is bounded by PCalErrD(p̂) according to Theorem 3.1. The latter is
bounded by C-MAErrD(p̂) according to Lemmas 4.12 and 5.6. Thus, to justify the stated upper bound
on omniprediction error, it suffices to bound the distributional proper calibration error and Th ◦ H-
multiaccuracy error of p̂.

The bound PCalErrD(p̂) = O(
√

T log T/δ) is a direct consequence of Proposition 3.10. Note that the
splitting of the sample set into Dapcal and Ddowal is vital here. From the standpoint of the notation in
Section 3.4, the samples {(xt, yt)}2T

t=T+1 that constitute Ddowal are part of the adversary’s random seed radv.
Thus, the fact that qt may depend on all of the samples in Ddowal is consistent with the online restrictions
placed on the apcal and its adversary by Proposition 3.10.

The bound on C-multiaccuracy error of p̂ will follow by quantifying the oracle regret of the dowal imple-
mented by Algorithm 6. Recall from Lemma 7.4 that the algorithm with m samples and failure probability
δ satisfies the oracle regret bound

DistOracleRegm,δ
C,R

(T) = O
(√

T log 1/δ
)
+ O(T · radT (C · R)).

Below, in Lemma 7.2 we prove the Rademacher complexity bound

radT (C · R) ∈ O(log3/2(T) · radT (Th ◦ H)). (65)

Hence,

C-MAErrD(p̂) = max
c∈C

 1
T

T∑
t=1

E
D

[c(x)(y − pt(x))]


= max

c∈C

 1
T

T∑
t=1

E
D

[c(x)rt(x, y)]

 by our choice of rt

≤
1
T

T∑
t=1

E
D

[ct(x)rt(x, y)] + O
(√

ln(1/δ)
T

)
+ O(radm(C · R)) by Lemma 7.4

=
1
T

T∑
t=1

E
D

[ct(x)(y − pt(x))] + O
(√

ln(1/δ)
T

)
+ O(radm(C · R))

≤ O
(√

ln(T/δ)
T

)
+ O(log3/2(T) · radT (Th ◦ H)) by Proposition 3.10 and Eq. (65)

which justifies the stated omniprediction error bound ε(T). □

Next, we prove Lemma 7.2, which establishes the generalization bounds invoked in the proof of The-
orem 7.1. This generalization bound, while relatively short to prove, is a critical and delicate part of
our argument. In particular, to establish this lemma, we need to leverage specific properties of the class
C = {+1,−1} · Th ◦ H and the resulting R implied by Algorithm 5. This dependence on Th ◦ H leads to
the error scaling by the corresponding Rademacher complexity (even for simpler loss classes than LBV).

51

Lemma 7.2. Let H ⊆ {h : X → [−1, 1]} be a class of hypothesis functions. Let C denote the class of
thresholds onH i.e C = {+1,−1} · Th ◦ H . Let U denote the class of all functions [−1, 1]→ [0, 1]. Let R
be the class of bivariate functions r(x, y) = y − u(c(x)) for some u ∈ U, c ∈ C. Then

radm(C · R) ∈ O(log3/2(m) · radm(Th ◦ H))

Proof. Recall that the (empirical) Rademacher complexity of a class F of real-valued functions is defined
as

ˆradm(F) = Eσ
[
sup
f∈F

1
m

m∑
i=1

σi f (xi)
]
,

where σ = (σ1, . . . , σm) is a vector of i.i.d. Rademacher random variables, each taking values in {−1,+1}
with probability 1/2.

By definition, every element of C · R can be written as c′(x)(y − u(c(x))) for some c′, c ∈ C and u ∈ U.
Since c(x) ∈ {−1,+1}, we only need to consider how u maps the two discrete inputs −1 and +1 into [0, 1].
Notice that

u
(
c(x)

)
=

u(−1) + u(+1)
2

+
u(+1) − u(−1)

2
c(x).

Thus, c′(x)(y − u(c(x))) can be expanded to c′(x)y − αc′(x) − βc(x)c′(x) for some constants α, β ∈ [−1, 1].
This means that

radm(C · R) ≤ radm ({c(x) · y : c ∈ C}) + radm ({c(x) : c ∈ C}) + radm
(
{c(x)c′(x) : c, c′ ∈ C}

)
(66)

We know that radm ({Thθ(h(x)) · y : θ ∈ [−1, 1], h ∈ H}) ≤ radm(Th ◦ H). By Lemma 7.3, we have that
radm ((Th ◦ H) · (Th ◦ H)) ≤ log3/2(T) · radm(Th ◦ H). Thus, we obtain the desired result. □

Lemma 7.3 (Corollary 6 of Rakhlin et al. (2015)). For a fixed binary function b : {±1}k → {±1} and
classes G1, . . . ,Gk of {±1}-valued functions,

radT (b(G1, . . . ,Gk)) ≤ O(log3/2(T))
k∑

j=1

radT (G j)

A tighter version of this claim holds for Gaussian complexities without the additional log factors; see
Theorem 16 of Bartlett and Mendelson (2003).

7.1 Implementing a dowal using FTRL

This subsection presents and analyzes a dowal that makes use of a subroutine called an entropy-
regularized ERM oracle over C, defined as follows.

Definition 7.2. An entropy-regularized ERM oracle is initialized with a class of functions C : X → [−1, 1]
and an approximation parameter ε. The oracle takes, as input, a set of pairs (x1,w1), . . . , (xm,wm) ∈ X×R.
It outputs an explicit convex combination of elements of C, i.e. a sequence of hypotheses c1, . . . , ck ∈ C and
coefficients α1, . . . , αk ∈ [0, 1] summing up to 1, such that the weighted average c =

∑k
i=1 αici minimizes

(within ε) the function
∑m

i=1 c(xi)wi +
∑m

i=1(c(xi) + 2) log(c(xi) + 2).

52

We use c(xi) + 2 rather than c(xi) in the regularizer because c(xi) takes values in [−1, 1], whereas log(z) is
only defined when z is strictly positive.

In Section 7.2 below, we show how to use the Frank-Wolfe method to implement an ε-approximate regu-
larized ERM oracle using poly(m) calls to a standard ERM oracle.

Overview of Algorithm 6 The algorithm implements a dowal using the Follow The Regularized Leader
(FTRL) approach. At each timestep t, we call the entropy-regularized ERM oracle using a dataset that
labels the points x1, . . . , xm ∈ X with labels w1, . . . ,wm derived from the past adversarial functions
{r1, . . . , rt−1}. The oracle finds an approximate minimizer of the cumulative regularized empirical loss.
It outputs this approximate minimizer represented as a convex combination of elements of C. To select
the predictor ct at each step, we sample a single function from C according to the convex combination’s
weights. This guarantees that ct ∈ C, i.e. the algorithm is a proper dowal.

Algorithm 6 Distributional Online Weak Agnostic Learner using Exponentiated Gradient
Require: i.i.d. samples S = {(xi, yi)}mi=1 ∼ D

m, time horizon T , failure probability δ
Ensure: Sequence of predictors {ct}

T
t=1 where each ct ∈ C

1: Set η←
√

1/T
2: Initialize distribution over C by calling the entropy-regularized ERM oracle (in Algorithm 7):

c̃1 ← arg minηc∈C

 m∑
i=1

(c(xi) + 2) log(c(xi) + 2)

 .
Obtain from the oracle the convex combination {c j, α j} representing c̃1.

3: for t = 1 to T do
4: Let {(c j, α j)} be the current convex combination representing the c̃t.
5: Draw ct ∈ C by sampling according to weights {α j}.
6: Output ct.
7: Receive adversary function rt ∈ R.
8: Update the convex combination by calling the entropy-regularized ERM oracle (in Algorithm 7):

c̃t+1 ∈ arg minηc∈conv(C)

−η t∑
s=1

m∑
i=1

c(xi)rs(xi, yi) +
m∑

i=1

(c(xi) + 2) log(c(xi) + 2)


9: Obtain from the oracle the updated convex combination {(c′j, α

′
j)} representing c̃t+1.

10: return: Sequence of predictors {ct}
T
t=1

Lines 2 and 8 of the algorithm use the notation arg minη. This denotes the set of all points where the
indicated function attains a value within η of its global minimum.

Lemma 7.4 (Exponentiated Gradient dowal). Given m i.i.d samples fromD, an entropy-regularized ERM
oracle over C (implemented in Algorithm 7) and failure probability δ > 0, Algorithm 6 implements a high
probability distributional dowal using a dataset of size m and guarantees the following with probability at

53

least 1 − δ:

max
c∈C

T∑
t=1

E
D

[c(x)rt(x, y)] ≤
T∑

t=1

E
D

[ct(x)rt(x, y)] + O
(√

T ln 1/δ
)
+ O(T · radm(C · R))

where C ·R denotes the set of all functions on X×Y of the form g(x, y) = c(x)r(x, y) for c ∈ C, r ∈ R. The
algorithm runs in time O(m) per timestep, making O(1) calls to the regularized ERM oracle. Moreover, it
implements a proper dowal: each ct chosen by the algorithm is in C.

Proof of Lemma 7.4. The proof follows the regret analysis of Follow-the-Regularized-Leader (FTRL) un-
der entropy regularization combined with standard Rademacher generalization arguments, applied with
high probability.

For each c ∈ C define u(c) = (c(x1), c(x2), . . . , c(xm)) and let K denote the convex hull of the vectors
{u(c) | c ∈ C}. Define the regularizer

ψ(u) =
m∑

i=1

(ui + 2) log(ui + 2)

and the regularized objective function

gt(u) = −η
t−1∑
s=1

m∑
i=1

uirs(xi, yi) + ψ(u)

and let
ut ∈ arg min

u∈K
{gt(u)} .

Let ∇t ∈ R
m denote the vector whose ith coordinate is −rt(xi, yi). The standard analysis of FTRL,

Lemma 7.5, shows that for all u∗ ∈ K :

T∑
t=1

〈
∇t, ut − u∗

〉
≤ 2η

T∑
t=1

∥∇t∥
∗
t

2
+

ψ(u∗) − ψ(u1)
η

. (67)

Here, the norm ∥ · ∥∗t denotes the dual norm defined by the regularizer ψ at ut, i.e. ∥∇t∥
∗
t = ∥∇t∥∇−2ψ(ut). For

the entropy regularizer ψ(u), the inverse Hessian matrix ∇2ψ(u) is a diagonal matrix whose ith diagonal
entry is 1

ui+2 . Since K ⊆ [−1, 1]m, we have 1 ≤ ui + 2 ≤ 3 for any u ∈ K . This implies

∥∇t∥
2
∇−2ψ(ut)

≤ 3∥∇t∥
2
2 ≤ 3m, (68)

where the last inequality follows because each of the m coordinates of ∇t belongs to the interval [−1, 1].

The regularizer ψ attains values between 0 and m log(3), so ψ(u∗)−ψ(u1)
η ≤

m log(3)
η . Substituting this bound

and the bound (68) into (67), we obtain

T∑
t=1

⟨∇t, ut⟩ −

T∑
t=1

〈
∇t, u∗

〉
≤ 6ηmT + m log(3)

η ≤ 8m
√

T (69)

by our choice of η =
√

1/T .

54

Next we bound the regret of playing an η-approximate minimizer of gt(u) in each step, rather than the
exact minimizer. Observe that gt(u) is a linear function of u plus ψ(u), so ∇2gt(u) = ∇2ψ(u). Earlier we
calculated that for all u ∈ K , the Hessian matrix ∇2ψ(u) is a diagonal matrix with entries between 1

3 and
1, hence gt is

(
1
3

)
-strongly convex. Since ut is the global minimizer of gt, it follows from strong convexity

that

1
6∥u(c̃t) − ut∥

2
2 ≤ gt(u(c̃t) − gt(ut) ≤ η

∥u(c̃t) − ut∥
2
2 ≤ 6η

⟨∇t, u(c̃t) − ut⟩ ≤ ∥∇t∥2∥u(c̃t) − ut∥2 ≤
√

6ηm
T∑

t=1

⟨∇t, u(c̃t)⟩ −
T∑

t=1

⟨∇t, ut⟩ ≤
√

6ηm · T =
√

6mT . (70)

Now we bound the regret of playing the sampled ct instead of c̃t. We’ll do this by showing that∑T
t=1

1
m

∑m
i=1 ct(xi)rt(xi, yi) converges to

∑T
t=1

1
m

∑m
i=1 c̃t(xi)rt(xi, yi) using Azuma Hoeffding. Define the

martingale difference sequence Zt =
1
m

∑m
i=1 ct(xi)rt(xi, yi) − 1

m
∑m

i=1 c̃t(xi)rt(xi, yi). This forms a bounded
martingale difference sequence because the ct is chosen only based on information from the past and
c̃t = E[ct]. Thus, applying Azuma Hoeffding, we have that with probability 1 − δ/2,∣∣∣∣∣∣∣

T∑
t=1

1
m

m∑
i=1

ct(xi)rt(xi, yi) −
T∑

t=1

1
m

m∑
i=1

c̃t(xi)rt(xi, yi)

∣∣∣∣∣∣∣ ≤ O
(√

T ln 1/δ
)

(71)

Let us define the empirical gain for any hypothesis c ∈ C at time t:

Ĝt(c) =
1
m

m∑
i=1

c(xi)rt(xi, yi)

and let ĉ∗ = argmaxc∈C
∑T

t=1 Ĝt(c) and u∗ = u(ĉ∗). With probability at least 1 − δ/2, the following regret
bound holds:

T∑
t=1

Ĝt(ct) ≥
T∑

t=1

Ĝt(c̃t) − O
(√

T ln 1/δ
)

by (71)

= −
1
m

T∑
t=1

⟨∇t, u(c̃t)⟩ − O
(√

T ln 1/δ
)

≥ −
1
m

T∑
t=1

⟨∇t, ut⟩ − O
(√

T/m +
√

T ln 1/δ
)

by (70)

≥ −
1
m

T∑
t=1

〈
∇t, u∗

〉
− O

(√
T +

√
T/m +

√
T ln 1/δ

)
for any u∗ ∈ K , by (69)

≥ −
1
m

T∑
t=1

〈
∇t, u∗

〉
− O

(√
T ln 1/δ

)
simplifying O(·) expression

=

T∑
t=1

Ĝt(ĉ∗) − O
(√

T ln 1/δ
)
.

55

Now consider the population gain:

Gt(c) = E
(x,y)∼D

[c(x)rt(x, y)]

The population regret of playing the sampled ct can be decomposed as:

max
c∈C

T∑
t=1

Gt(c) −
T∑

t=1

Gt(ct) ≤ max
c∈C

T∑
t=1

Ĝt(c) −
T∑

t=1

Ĝt(ct)︸ ︷︷ ︸
FTRL regret

+

T∑
t=1

(Ĝt(ct) −Gt(ct)) +
T∑

t=1

(Gt(c∗) − Ĝt(c∗))︸ ︷︷ ︸
Generalization error

,

where c∗ = argmaxc∈C
∑T

t=1 Gt(c).

Using standard uniform convergence bounds based on Rademacher complexity, we have that with proba-
bility 1 − δ/2, for any c ∈ C, r ∈ R:∣∣∣∣∣∣∣ 1

m

m∑
i=1

c(xi)r(xi, yi) − E
(x,y)∼D

[c(x)r(x, y)]

∣∣∣∣∣∣∣ ≤ O


√

ln 1/δ
m

 + O(radm(C · R)) (72)

Therefore, ∣∣∣(Gt(c) − Ĝt(c))
∣∣∣ ≤ O


√

ln 1/δ
m

 + O(radm(C · R)),

where radm(C · R) is the Rademacher complexity of the product class C · R.

Combining the bounds for the regret bounds and the generalization error, we have that with probability at
least 1 − δ:

max
c∈C

T∑
t=1

Gt(c) −
T∑

t=1

Gt(ct) ≤ O
(√

T ln 1/δ
)
+ O(T · radm(C · R)).

□

Lemma 7.5 (Hazan (2023)). Given a closed, convex decision set K and a strongly convex, smooth and
twice differentiable regularizer R : K → R. For every u ∈ K , the Follow the Regularized Leader algorithm
attains the following regret bound

Reg(T) ≤ 2η
T∑

t=1

∥∇t∥
∗
t

2
+

R(u) − R(u1)
η

where ut ∈ K is the action at timestep t, ∇t is the gradient at ut of the loss function at time t, and ∥ · ∥∗t =
∥ · ∥∇−2R(ut) represents the dual norm defined by the regularizer R at ut.

7.2 Frank-Wolfe reduction to ERM oracle

In this section we explain how to implement a regularized ERM oracle over C by a sequence of calls
to a standard ERM oracle over C. The algorithm for the regularized ERM oracle is presented below as
Algorithm 7. Its analysis is summarized by the following lemma.

56

Lemma 7.6 (Frank-Wolfe with explicit convex combination). Given a dataset {(xi, yi)}mi=1, a class of func-
tions C ⊆ {c : X → [−1, 1]}, a ERM oracle for C, and parameters η, ϵ > 0, Algorithm 7 returns an
ϵ-approximate solution c∗ to the entropy-regularized ERM problem

arg min
c∈C

ε

{
−η

m∑
i=1

c(xi)yi +

m∑
i=1

(c(xi) + 2) log(c(xi) + 2)
}

after O(m/ϵ) iterations. Moreover, the returned c∗ is a convex combination of functions in C, i.e., c∗ =∑
j α jc j with

∑
j α j = 1 and α j ≥ 0, and the algorithm also provides the weights {α j}.

Overview of Algorithm 7: Each iteration of Algorithm 6 requires (approximately) solving a constrained
concave minimization problem min{g(u) | u ∈ K} where

g(u) = −η
t∑

s=1

m∑
i=1

rs(xi, yi)ui +

m∑
i=1

(ui + 2) log(ui + 2) (73)

and, as in the proof of (7.4),K denotes the convex hull of the set of vectors u(c) = (c(x1), c(x2), . . . , c(xm))
as c ranges over C. In this section we assume we are given a ERM oracle for C, that is, an algorithm for
selecting the c ∈ C that minimizes

∑m
i=1 wic(xi) for a given set of (xi,wi) pairs. This is equivalent to an

oracle for minimizing linear functions over K . Algorithm 7 below uses the ERM oracle to implement
the Frank-Wolfe method, also known as conditional gradient descent, for approximately minimizing the
convex function g(u) over K . At each iteration, the algorithm computes the gradient of the objective
function, invokes the ERM oracle to find an extreme point in the original function class C, and then updates
the current solution by forming a convex combination. After O

(m
ε

)
iterations, it returns an ε-approximate

solution to the original problem, expressed as a convex combination of functions from C, together with the
associated weights. Since Algorithm 6 calls Algorithm 7 using the parameters m = T, ε = η =

√
1/T , we

see that each such call requires O(T 3/2) iterations, hence O(T 3/2) calls to the ERM oracle.

Lemma 7.7 (Conditional Gradient Descent; (Hazan, 2023)). Let K ⊂ Rn with bounded ℓ2 diameter R. Let
f be a β-smooth function on K, then the sequence of points xt ∈ K computed by the conditional gradient
descent algorithm satisfies

f (xt) − f (x∗) ≤
2βR2

t + 1
for all t ≥ 2 where x∗ ∈ arg minx∈K f (x)

Proof of Lemma 7.6. The objective function g : K → R defined in Equation (73) is well-defined and
differentiable on K . Its gradient is

∇g(u) =


−ηz1 + log(u1 + 2) + 1
−ηz2 + log(u2 + 2) + 1

...

−ηzm + log(um + 2) + 1


where zi denotes the sum zi =

∑t
s=1 rs(xi, yi).

57

Algorithm 7 Frank-Wolfe for Entropy Regularized ERM with Explicit Convex Combination
1: procedure FrankWolfe({(xi, yi)}mi=1,C, η, ε)
2: Initialize c1 to an arbitrary function in C
3: Let α1 = 1 and let α j = 0 for all j > 1
4: for t = 1, 2, . . . ,T do
5: For each i ∈ [m], set wi = −ηyi + log(ct(xi) + 2) + 1
6: Call the ERM oracle on {(xi,wi)}mi=1 to obtain st ∈ C

7: Set γt =
2

t+1
8: Update ct+1 = (1 − γt)ct + γt st

9: Update the weights of the convex combination:

For j < t : α j ← (1 − γt)α j, αt ← αt + γt

10: Since c1 was chosen initially, we now have a convex combination:

ct+1 =

t∑
j=1

α js j +

(
1 −

t∑
j=1

α j

)
c1.

(Initially, α1 = 1 and no s j are chosen, so c1 is the starting point. After each iteration, we redistribute
weights accordingly. Note that the α j for j > 1 were initially zero and only become nonzero when
their corresponding s j appears.)

11: return c1, s1, . . . , sT and the final weights (α1, α2, . . . , αT)

Now we compute the smoothness parameter and the diameter of the domain. Over the domain [−1, 1], the
second derivative of (ui + 2) log(ui + 2) with respect to ui is at most 1. Thus, g is β-smooth with β = 2. The
ℓ2-diameter of K is at most R = 2

√
m. Applying Lemma 7.7 to g on K:

g(uT) − g(u∗) ≤
2βR2

T + 1
≤

16m
T + 1

.

Choosing T ≥ 16m
ε leads to g(uT) − g(u∗) < ε. □

58

References

Abernethy, J., Bartlett, P. L., and Hazan, E. (2011). Blackwell approachability and no-regret learning are
equivalent. In Kakade, S. M. and von Luxburg, U., editors, Proceedings of the 24th Annual Conference
on Learning Theory, volume 19 of Proceedings of Machine Learning Research, pages 27–46, Budapest,
Hungary. PMLR. 2, 6, 18

Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update method: a meta-algorithm
and applications. Theory of computing, 8(1):121–164. 27, 72

Bartlett, P. L. and Mendelson, S. (2003). Rademacher and gaussian complexities: risk bounds and struc-
tural results. J. Mach. Learn. Res., 3(null):463–482. 52

Beygelzimer, A., Kale, S., and Luo, H. (2015). Optimal and adaptive algorithms for online boosting. In
International Conference on Machine Learning, pages 2323–2331. PMLR. 7, 32

Blackwell, D. (1956). An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathe-
matics, 6(1):1 – 8. 2, 6, 17

Błasiok, J., Gopalan, P., Hu, L., and Nakkiran, P. (2023). A unifying theory of distance from calibration.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages 1727–1740. 67

Brukhim, N., Chen, X., Hazan, E., and Moran, S. (2020). Online agnostic boosting via regret minimization.
Advances in Neural Information Processing Systems, 33:644–654. 7, 32

Burhanpurkar, M., Deng, Z., Dwork, C., and Zhang, L. (2021). Scaffolding sets. arXiv preprint
arXiv:2111.03135. 7

Casacuberta, S., Dwork, C., and Vadhan, S. (2024). Complexity-theoretic implications of multicalibration.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages 1071–1082. 14

Chen, S.-T., Lin, H.-T., and Lu, C.-J. (2012). An online boosting algorithm with theoretical justifications.
arXiv preprint arXiv:1206.6422. 7, 32

Dagan, Y., Daskalakis, C., Fishelson, M., Golowich, N., Kleinberg, R., and Okoroafor, P. (2024). Breaking
the t2/3 barrier for sequential calibration. 2, 14

Dawid, A. P. (1985). Calibration-based empirical probability. The Annals of Statistics, 13(4):1251–1274.
2

Dvoretzky, A., Kiefer, J., and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribu-
tion function and of the classical multinomial estimator. The Annals of Mathematical Statistics, pages
642–669. 74

Dwork, C., Hays, C., Immorlica, N., Perdomo, J. C., and Tankala, P. (2024). From fairness to infinity:
Outcome-indistinguishable (omni)prediction in evolving graphs. 15

Dwork, C., Kim, M. P., Reingold, O., Rothblum, G. N., and Yona, G. (2021). Outcome indistinguishability.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1095–
1108. 4, 15

59

Dwork, C., Kim, M. P., Reingold, O., Rothblum, G. N., and Yona, G. (2022). Beyond bernoulli: Generating
random outcomes that cannot be distinguished from nature. In International Conference on Algorithmic
Learning Theory, pages 342–380. PMLR. 15

Foster, D. P. and Hart, S. (2018). Smooth calibration, leaky forecasts, finite recall, and nash dynamics.
Games and Economic Behavior, 109:271–293. 67

Foster, D. P. and Vohra, R. V. (1998). Asymptotic calibration. Biometrika, 85(2):379–390. 14

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139. 14

Garg, S., Jung, C., Reingold, O., and Roth, A. (2024). Oracle efficient online multicalibration and
omniprediction. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2725–2792. SIAM. 2, 14, 15

Globus-Harris, I., Gupta, V., Jung, C., Kearns, M., Morgenstern, J., and Roth, A. (2023a). Multicalibrated
regression for downstream fairness. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics,
and Society, pages 259–286. 15

Globus-Harris, I., Harrison, D., Kearns, M., Roth, A., and Sorrell, J. (2023b). Multicalibration as boosting
for regression. arXiv preprint arXiv:2301.13767. 15

Gopalan, P., Hu, L., Kim, M. P., Reingold, O., and Wieder, U. (2023). Loss minimization through the lens
of outcome indistinguishability. 2, 4, 5, 8, 9, 14, 15, 20, 21, 22, 23, 51, 73, 74, 75

Gopalan, P., Kalai, A. T., Reingold, O., Sharan, V., and Wieder, U. (2022). Omnipredictors. In Braverman,
M., editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 -
February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 79:1–79:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. 1, 9, 14, 15, 16

Gopalan, P., Kim, M., and Reingold, O. (2024a). Swap agnostic learning, or characterizing omniprediction
via multicalibration. Advances in Neural Information Processing Systems, 36. 15

Gopalan, P., Okoroafor, P., Raghavendra, P., Shetty, A., and Singhal, M. (2024b). Omnipredictors for
regression and the approximate rank of convex functions. 8, 15, 40

Hazan, E. (2023). Introduction to online convex optimization. 56, 57

Hébert-Johnson, U., Kim, M. P., Reingold, O., and Rothblum, G. (2018). Multicalibration: Calibration
for the (computationally-identifiable) masses. In International Conference on Machine Learning, pages
1939–1948. PMLR. 1, 4, 14, 15, 73

Hu, L., Navon, I. R. L., Reingold, O., and Yang, C. (2023). Omnipredictors for constrained optimization.
In International Conference on Machine Learning, pages 13497–13527. PMLR. 15

Hu, L., Tian, K., and Yang, C. (2024). Omnipredicting single-index models with multi-index models. 15

Hu, L. and Wu, Y. (2024). Calibration error for decision making. 2, 14, 62, 68

Kakade, S. M. and Foster, D. P. (2008). Deterministic calibration and nash equilibrium. Journal of
Computer and System Sciences, 74(1):115–130. 67

60

Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. (2011). Efficient learning of generalized linear and
single index models with isotonic regression. Advances in Neural Information Processing Systems, 24.
15

Kalai, A. T. and Sastry, R. (2009). The isotron algorithm: High-dimensional isotonic regression. In COLT,
volume 1, page 9. 15

Kim, M. P., Ghorbani, A., and Zou, J. (2019). Multiaccuracy: Black-box post-processing for fairness
in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages
247–254. 2, 4, 15, 73

Kim, M. P. and Perdomo, J. C. (2023). Making decisions under outcome performativity. In 14th In-
novations in Theoretical Computer Science Conference (ITCS 2023), volume 251, page 79. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. 15

Kleinberg, B., Leme, R. P., Schneider, J., and Teng, Y. (2023). U-calibration: Forecasting for an unknown
agent. In The Thirty Sixth Annual Conference on Learning Theory, pages 5143–5145. PMLR. 2, 5, 11,
14, 16, 20, 23, 65, 66

Lazaric, A. and Munos, R. (2009). Hybrid stochastic-adversarial on-line learning. In COLT. Citeseer. 10,
45

Li, Y., Hartline, J. D., Shan, L., and Wu, Y. (2022). Optimization of scoring rules. In Proceedings of the
23rd ACM Conference on Economics and Computation, pages 988–989. 5, 11, 14, 20, 23

Luo, H., Senapati, S., and Sharan, V. (2024). Optimal multiclass u-calibration error and beyond. 14

Pfisterer, F., Kern, C., Dandl, S., Sun, M., Kim, M. P., and Bischl, B. (2021). mcboost: Multi-calibration
boosting for r. Journal of Open Source Software, 6(64):3453. 73

Qiao, M. and Valiant, G. (2021). Stronger calibration lower bounds via sidestepping. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 456–466. 2

Rakhlin, A., Sridharan, K., and Tewari, A. (2015). Online learning via sequential complexities. J. Mach.
Learn. Res., 16(1):155–186. 34, 52

Roth, A. and Shi, M. (2024). Forecasting for swap regret for all downstream agents. In Proceedings of the
25th ACM Conference on Economics and Computation (EC 2024). 2

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algo-
rithms. Cambridge university press. 47

Sridharan, K. (2010). Lecture notes on fat-shattering dimension, supervised learnability. 19

Wu, C., Heidari, M., Grama, A., and Szpankowski, W. (2022). Expected worst case regret via stochastic
sequential covering. 10, 45, 76, 77

Zhao, S., Kim, M., Sahoo, R., Ma, T., and Ermon, S. (2021). Calibrating predictions to decisions: A novel
approach to multi-class calibration. Advances in Neural Information Processing Systems, 34:22313–
22324. 15

61

A Relating Proper Calibration to Existing Notions of Calibration

In this appendix, we document how Proper Calibration compares to prior notions of calibration. The stan-
dard notion of calibration, ℓ1-calibration, being the strongest notion generally considered, implies proper
calibration. While other notions previously considered do not imply proper calibration, proper calibration
implies a number of existing notions such as U-calibration, smooth calibration, and ℓ∞-calibration.

The one exception is the recent notion of Calibration Decision Loss (CDL) introduced by Hu and Wu
(2024) to guarantee swap regret simultaneously for decision-making. We show that CDL is incomparable
to bounded proper calibration, and thus, incomparable to Decision OI. In particular, CDL cannot be used
in the existing Loss OI framework to guarantee omniprediction, but it also need not be satisfied by our
omnipredictors.

We will simplify notation by dropping the contexts xt, that is, we will only consider predictions pt = pt(xt)
and outcomes yt.

A.1 Calibration is stronger than Proper Calibration

Recall, one way to define ℓ1-calibration is as weighted calibration according to all weight functions.

Definition (ℓ1-calibration). For a sequence of T predictions p and outcomes y,

ℓ1-CalErr(p, y) =

∣∣∣∣∣∣∣ sup
w:[0,1]→[−1,1]

T∑
t=1

w(pt)(yt − pt)

∣∣∣∣∣∣∣ .
From this definition, we immediately conclude that the ℓ1-calibration error upper bounds the proper cali-
bration error, asWproper ⊆ {w : [0, 1]→ [−1, 1]} is a strict subset of all functions from [0, 1] to [−1, 1].

Proper Calibration does not imply ℓ1-calibration. Here we argue that proper calibration is weaker
than ℓ1-calibration by exhibiting a sequence of predictions, where the proper calibration error is bounded
by a constant but the ℓ1-calibration error grows asymptotically with T .

Example A.1. Consider a sequence of T outcomes y that come in m = 2k epochs of equal length, for an
even k. For each i ∈ {1, 2, . . . , 2k}, in the ith epoch the prediction for each time period pt = i/m. In the first
k epochs, where i ∈ {1, . . . , k}, if i is even, the outcomes are all 0; if i is odd, then an i/k fraction are 1. In
the second k epochs where i ∈ {k + 1, . . . , 2k}, if i is even, then a (i − k)/k fraction are 1; if i is odd, the
outcomes are all 1.

In this example, the predictions and outcomes are chosen such that the sign of the difference yi − pi

alternates in each epoch.

i 1 2 3 . . . k k + 1 k + 2 . . . 2k − 1 2k
p 1/m 2/m 3/m . . . k/m (k + 1)/m (k + 2)/m . . . (2k − 1)/m 2k/m
y 1/k 0 3/k . . . 0 1 2/k . . . 1 1

yi − pi +1/m −2/m +3/m . . . −1/2 1/2 − 1/m −1/2 + 2/m . . . −1/m 0

To analyze the calibration regrets for this sequence, consider the difference between predicted values in
the ith epoch and the outcomes.

62

Upper bound on proper calibration regret. Consider the difference between the predicted values in
the ith epoch and the outcomes. For the first k epochs, where i ∈ {1, . . . , k}, the difference between yi − pi

in the ith epoch is given as:
(−1)i+1 · i

m
For the second k epochs, where i ∈ {k + 1, . . . , 2k}, the difference between yt − pt is given as:

(−1)2k−i+1 · (2k − i)
m

=
(−1) j+1 · j

m

for j = 2k − i, ranging from j = k − 1 down to 0.

The proper calibration error of this sequence can be bounded as follows.

sup
s∈{±},θ∈[0,1]

T∑
t=1

s · Thθ(pt) · (yt − pt) =
T
m
· sup

s∈{±},θ∈[0,1]

m∑
i=1

s · Thθ(pi) · (yi − pi)

=
T
m
· sup

s∈{±},θ∈[0,1]
s ·

 k∑
i=1

Thθ(pi) ·
(−1)i+1 · i

m
+

k−1∑
j=0

Thθ(p2k− j)
(−1) j+1 · j

m


≤

2T
m
·

∣∣∣∣∣∣∣
k∑

i=0

(−1)i+1 · i
m

∣∣∣∣∣∣∣
where the final inequality follows from the fact that the choice of threshold that maximizes the regret is in
between pk = k/m = 1/2 and pk+1 = k + 1/m = 1/2 + 1/m, with a negative sign s = −1.

The magnitude of
∣∣∣∑k

i=1(−1)i+1 · i
∣∣∣ scales linearly with k, so in all, the regret is bounded as follows.

2T
m
·

∣∣∣∣∣∣∣
k∑

i=0

(−1)i+1 · i
m

∣∣∣∣∣∣∣ ≤ 2T
m
·

O(k)
m
= O(T/k)

Lower Bound on ℓ1-calibration regret. To track the ℓ1-calibration error, each term from the sums above
contribute with their absolute value within the summation.

sup
w:[0,1]→[−1,1]

T∑
t=1

w(pt)(yt − pt) =
T∑

t=1

|yt − pt|

≥
2T
m
·

k−1∑
i=1

∣∣∣∣∣ i
m

∣∣∣∣∣
The magnitude of

∑k−1
i=1 |i| scales quadratically with k, so in all, the regret is bounded as follows.

2T
m
·

k−1∑
i=1

∣∣∣∣∣ i
m

∣∣∣∣∣ ≥ 2T
m
·
Ω(k2)

m
= Ω(T)

Separation. In our construction, there are at least 2k2 time steps (as each epoch needs to reason about
fractions of outcomes to precision 1/k), so taking k = Θ(

√
T), the proper calibration regret is upper

bounded by O(
√

T), whereas the ℓ1-calibration regret is lower bounded by Ω(T).

63

A.2 Proper calibration is stronger than other prior notions

Here, we show that proper calibration implies a number of prior notions of calibration, but is not implied
by them. For each of ℓ∞-calibration, U-calibration, and smooth calibration, we give examples that show
upper bounding regret with respect to any of these notions is insufficient to give the same asymptotic upper
bound for proper calibration regret.

ℓ∞-calibration

To define ℓ∞-calibration, we have to fix prediction level sets to be some discretization of the [0, 1] interval.

Definition. Fix m ∈ N and consider predictions that live in multiples of 1/m, p ∈ {0, 1/m, 2/m, . . . , 1}. For
such a sequence of T predictions p and outcomes y

ℓ∞-CalErr(p, y) = max
v∈{0,1/m,...,1}

∣∣∣∣∣∣∣
T∑

t=1

1(pt = v)(yt − pt)

∣∣∣∣∣∣∣
Proper Calibration implies ℓ∞-calibration. Fix a discretization parameter m, a predictor that predicts
values in {0, 1/m, 2/m, . . . , 1}. First we note that for any i ∈ [m]

1(p = i/m) =
1
2

(
Thi/m(p) − Th(i+1)/m(p)

)
Thus, the ℓ∞ calibration error can be bounded as follows:

max
v∈{0,1/m,2/m,...,1}

∣∣∣∣∣∣∣
T∑

t=1

1(pt = v) · (yt − pt)

∣∣∣∣∣∣∣
=

1
2
· max

p∈{0,1/m,2/m,...,1}

∣∣∣∣∣∣∣
T∑

t=1

(
Thi/m(pt) − Th(i+1)/m(pt)

)
· (yt − pt)

∣∣∣∣∣∣∣
≤ sup

s∈{±},θ∈[0,1]

T∑
t=1

s · Thθ(pt) · (yt − pt)

ℓ∞-calibration does not imply Proper Calibration. The separation between ℓ∞-calibration and proper
calibration leverages the fact that predictions that are proper calibrated cannot be consistently biased in the
same direction across prediction intervals, whereas ℓ∞-calibration only cares about the maximum deviation
over prediction intervals.

Example A.2. Consider a sequence of T outcomes y that comes in m epochs of equal length. In the ith
epoch for each i ∈ {1, . . . ,m}, an i/m fraction of the outcomes are 1 and the remainder are 0. Consider a
sequence of predictions p supported on m predictions {0, 1/m, 2/m, . . . , (m − 1)/m}, where for each time
period in the ith epoch, the prediction pt = (i − 1)/m.

64

In this example, we can lower bound the proper calibration error by the bias of the predictor. Consider the
threshold at 0, Th0(p) = 1, and consider the regret associated with this trivial threshold.

sup
s∈{±},θ∈[0,1]

T∑
t=1

s · Thθ(pt) · (yt − pt) ≥
T∑

t=1

(yt − pt)

=
T
m
·

m∑
i=1

(
i
m
−

i − 1
m

)
=

T
m
· m ·

1
m

=
T
m

In other words, the predictions are consistently biased, and proper calibration detects this bias, with regret
T/m.

The ℓ∞-calibration error, however, only detects the maximum deviation.

max
v∈{0,1/m,...,1}

∣∣∣∣∣∣∣
T∑

t=1

1(pt = v)(yt − pt)

∣∣∣∣∣∣∣ = T
m
·max

i∈[m]

(
i
m
−

i − 1
m

)
=

T
m
·

(
i
m
−

i − 1
m

)
=

T
m2

In our construction, there are at least m2 time steps (as each epoch needs to reason about fractions of
outcomes to precision 1/m), so taking m = Θ(

√
T), the ℓ∞-calibration error is upper bounded by O(1),

whereas the proper calibration error is lower bounded by Ω(
√

T).

U-Calibration

Recall that U-Calibration measures calibration in terms of the worst-case proper loss regret.

Definition (Kleinberg et al. (2023)). For a sequence of T predictions p and outcome y, let p∗ = 1
T

∑
t yt;

then,

UCal(p, y) = sup
ℓ∈Lproper

 T∑
t=1

ℓ(pt, yt) − ℓ(p∗, yt)


Proper Calibration implies U-Calibration. We bound the U-calibration error in terms of the proper
calibration error for any sequence. To do this, first consider the following equality; fixing pt, yt, for any
p ∈ [0, 1]:

E
y∼Ber(pt)

[ℓ(p, y)] − ℓ(p, yt) = (pt · ℓ(p, 1) + (1 − pt) · ℓ(p, 0)) − (yt · ℓ(p, 1) + (1 − yt) · ℓ(p, 0))

= (pt · ∆ℓ(p) + ℓ(p, 0)) − (yt · ∆ℓ(p) + ℓ(p, 0))

= (pt − yt) · ∆ℓ(p)

65

Then, consider expanding the U-calibration error as follows.

sup
ℓ∈Lproper

 T∑
t=1

ℓ(pt, yt) − ℓ(p∗, yt)

 = sup
ℓ∈Lproper

 T∑
t=1

ℓ(pt, yt) − E
y∼Ber(pt)

[ℓ(pt, y)] + E
y∼Ber(pt)

[ℓ(pt, y)] − ℓ(p∗, yt)


≤ sup

ℓ∈Lproper

 T∑
t=1

ℓ(pt, yt) − E
y∼Ber(pt)

[ℓ(pt, y)] + E
y∼Ber(pt)

[ℓ(p∗, y)] − ℓ(p∗, yt)


= sup

ℓ∈Lproper

 T∑
t=1

(yt − pt)∆ℓ(pt) + (yt − pt)∆ℓ(p∗)


≤ sup

ℓ∈Lproper

∣∣∣∣∣∣∣
T∑

t=1

(yt − pt)∆ℓ(pt)

∣∣∣∣∣∣∣ + sup
ℓ∈Lproper

∣∣∣∣∣∣∣
T∑

t=1

(yt − pt)∆ℓ(p∗)

∣∣∣∣∣∣∣
≤ 2 · sup

ℓ∈Lproper

∣∣∣∣∣∣∣
T∑

t=1

(yt − pt)∆ℓ(pt)

∣∣∣∣∣∣∣
where the final inequality follows by the fact that for all ℓ ∈ Lproper, the weight function ∆ℓ(p∗) is a
constant across all t. This constant function is realizable by some choice of proper loss applied to pt.
Thus, the U-Calibration error is upper bounded by a constant factor of the proper calibration error.

U-Calibration does not imply Proper Calibration. We present a sequence of predictions and outcomes
where the U-calibration regret is ≤ 0, but the proper calibration error grows linearly in T .

Example A.3. Consider a sequence of T predictions y where yt = 1 if t > T/2 and 0 otherwise. Also a
sequence of T predictions p where pt = 0.9 if t > T/2, and 0.1 otherwise.

First we show that the sequence of predictions are U-calibrated. To do this, we use the upper bound
in Kleinberg et al. (2023) that UCal ≤ 2VCal and bound VCal. For any v ∈ [0, 1], we show that∑T

t=1 ℓv(pt, yt) − ℓv(0.5, yt) < 0 (since 0.5 is the best fixed prediction). Plugging in the definition of
ℓv(p, y) = (y − v)sgn(v − p)

T∑
t=1

ℓv(pt, yt) =
T
2

(−v)sgn(v − 0.1) +
T
2

(1 − v)sgn(v − 0.9)

Similarly, the second term simplifies to

T∑
t=1

ℓv(0.5, yt) =
T
2

(−v)sgn(v − 0.5) +
T
2

(1 − v)sgn(v − 0.5)

Now, we consider four cases for v:

• v ≤ 0.1: In this case, all the sgn(v − p) terms have the same sign, so the difference between the two
sums is 0.

• v ∈ (0.1, 0.5): The second terms of both expressions cancel out, but the first term of the second
expression becomes positive, making the overall difference negative.

66

• v ∈ (0.5, 0.9]: Similar to case 2, the second terms cancel out, and the first term of the second
expression becomes positive, making the overall regret negative

• v > 0.9: Similar to case 1, all the sgn(v − p) terms have the same sign, so the difference is 0.

In all cases, we have shown that
∑T

t=1 ℓv(pt, yt) − ℓv(0.5, yt) < 0. Therefore, the predictor is U-calibrated.

Now, we show that the sequence of predictions has linear proper calibration error. To show this, it suffices
to consider weight functions ∆ℓv(p) = sgn(v − p) for v = 0.5. The weighted calibration error for this
weight function is

T∑
t=1

∆ℓv(pt)(yt − pt)

we can split the sum into two parts

T∑
t=1

sgn(v − pt)(yt − pt) = T/2(0 − 0.1) + T/2(−1)(1 − 0.9) = −0.1T

Taking the absolute value shows that the proper calibration error of the predictor is linear in T .

Smooth Calibration

Recall that Smooth Calibration is defined as a notion of weighted calibration using Lipschitz weight func-
tions.

Definition (Kakade and Foster (2008); Foster and Hart (2018)). For a sequence of T predictions p and
outcome y,

SmoothCal(p, y) = max
w∈WLip

∣∣∣∣∣∣∣
T∑

t=1

w(pt(xt))(yt − pt(xt))

∣∣∣∣∣∣∣
whereWLip is the set of 1-Lipschitz functions from [0, 1] to [−1, 1].

Proper Calibration implies Smooth Calibration. Proper calibration can be characterized in terms of
signed threshold functions. This characterization shows that proper calibration guarantees weighted cali-
bration with respect to weight functions defined by the difference of monotone functions, as signed thresh-
olds form a basis. All Lipschitz functions can be expressed as a difference of monotone functions, so
proper calibration implies smooth calibration.

Consequently, this implication further implies that proper calibration implies an upper bound on the lower
distance to calibration (Błasiok et al., 2023).

Smooth Calibration does not imply Proper Calibration. This separation follows from the fact that
proper calibration can encode highly non-Lipschitz tests, by the characterization in terms of threshold
functions. The following example highlights this difference.

Example A.4. Consider a sequence of T predictions y where yt = 1 if t > T/2 and 0 otherwise. Also a
sequence of T predictions p where pt = 1/2 − ε if t > T/2, and 1/2 + ε otherwise.

67

To upper bound the smooth calibration error, we consider an arbitrary weight function w ∈ Wlip and
evaluate its weighted calibration error

T∑
t=1

w(pt)(yt − pt) =
T
2

w(1/2 − ε)(1/2 + ε) +
T
2

w(1/2 + ε)(−1/2 − ε)

which simplifies to T
2 (w(1/2−ε)−w(1/2+ε))(1/2+ε). Since w is 1-lipschitz, the difference (w(1/2−ε)−

w(1/2 + ε)) is bounded by ε in magnitude. Thus, taking absolute values, we obtain that for all 1-lipschitz
weight functions w

∑T
t=1 w(pt)(yt − pt) ≤ εT

To lower bound the proper calibration error, it suffices to evaluate a single weight function w(p) = sgn(v−p)
for v = 0.5.

T∑
t=1

sgn(0.5 − pt)(yt − pt) = T/2(1/2 + ε) + T/2(−1)(−1/2 − ε) ≥ T/4

Thus, we can make the smooth calibration error arbitrarily small by setting ε appropriately, however, the
proper calibration error will always remain linear in T .

A.3 Calibration Decision Loss is incomparable to Proper Calibration

Hu and Wu (2024) introduced the notion of Calibration Decision Loss (CDL), which is a notion of swap
regret simultaneous for decision-making losses. For a sequence of predictions p and outcomes y, and a
time step t where pt = i, define the empirical swap prediction as follows.

p̂t =
1

|{s ∈ [T] : ps = i}|

T∑
s=1

ys · 1[ps = i]

CDL has a number of equivalent formulations (up to constant factors), but one is based on Bregman
divergences between the selected predictions and the empirical swap predictions. The CDL takes a worst-
case choice over Bregman divergences derived from proper losses, and specifically, the V-Shaped losses.

CDL(p, y) = sup
v∈[0,1]

T∑
t=1

Bv(pt, p̂t)

where Bv(p, q) = uv(q)− uv(p)+∇uv(p) · (p− q) is a Bregman divergence defined by the potential function
uv(p) = −Ey∼Ber(p)[ℓv(y, p)] defined as the Bayes risk for the (negative) loss of the V-shaped loss ℓv.6

Some consequences of this definition that make comparison to proper calibration possible include the
following.

• −ℓv(y, p) = (y − v) · sgn(p − v)

• −∆ℓv(p) = sgn(p − v)

• uv(p) = −p · ∆ℓv(p) − ℓv(0, p) = (p − v) · sgn(p − v)

6Note to better compare to proper calibration, we formulate these quantities in terms of our parameterization of the V-shaped
losses, whereas Hu and Wu (2024) formulate the divergence in terms of proper scoring functions. Our formulation is equivalent
to theirs up to a small constant factor.

68

• ∇uv(p) = −∆ℓv(p) = sgn(p − v)

With these facts in place, we can expand the Bregman divergence Bv(p, q) as follows.

Bv(p, q) = uv(q) − uv(p) + ∇uv(p) · (p − q)

= (q − v) · sgn(q − v) − (p − v) · sgn(p − v) + sgn(p − v) · (p − q)

=
(
sgn(q − v) − sgn(p − v)

)
· (q − v)

That is, the Bregman divergence is equal to 0 when q and p are on the same side of v, and otherwise is
equal to 2 · |q − v|.

Calibration Decision Loss does not imply Proper Calibration. This separation follows from the fact
that CDL does not detect consistent bias. In particular, Example A.2 gives a separation. As we showed
earlier, in this example, the proper calibration regret is lower bounded by Ω(

√
T). Thus, we need only to

upper bound the CDL to show a separation.

Note that every prediction pt is close to p̂t; that is, |pt − p̂t| ≤ 1/m. Further, the prediction intervals the
empirical swap intervals do not cross. Formally, consider two epochs i < j; for all s in the ith epoch and
all t in the jth epoch,

ps < p̂s ≤ pt < p̂t.

Thus, for any threshold θ ∈ [0, 1], there is at most one epoch i such that the prediction (i−1)/m and empir-
ical swap prediction i/m are on opposite sides of θ. Thus, the CDL is upper bounded by the contribution
from this epoch—matching the ℓ∞-calibration regret.

CDL(p, y) = sup
θ∈[0,1]

T∑
t=1

Bθ(pt, p̂t)

≤
T
m
· max

i∈[m], ε∈(0,1/m)
Bi/m−ε

(
i − 1

m
,

i
m

)
≤

T
m
·

1
m

=
T
m2

Again, taking m = Θ(
√

T), the Calibration Decision Loss is upper bounded by O(1), but the proper
calibration regret scales as Ω(

√
T).

Proper Calibration does not imply Calibration Decision Loss. In fact, Example A.1 shows a sepa-
ration between proper calibration error and calibration decision loss. As before, taking k = Θ(

√
T), the

proper calibration regret is upper bounded by O(
√

T). Thus, it remains to lower bound the CDL.

Consider choosing the Bregman divergence Bv for v = 1/2. When v sits between the predicted value and
the empirical swap prediction, then by the definition of Bv, we get a contribution to the CDL. In particular,

69

in the first k epochs, the odd epochs from i = k/2 + 1 to k − 1 will be split and contribute to the CDL as:

2 · |p̂t − 1/2| = 2 ·
∣∣∣∣∣ i
k
−

1
2

∣∣∣∣∣
=

2i − k
k

=
2 j
k

for j = i − k/2 from j = 1 to k/2 − 1. In the second k epochs, the even epochs from i = k + 2 to 3k/2 will
be split and contribute to the CDL as:

2 · |p̂t − 1/2| = 2 ·
∣∣∣∣∣ (i − k)

k
−

1
2

∣∣∣∣∣
=
|2(i − k) − k|

k

=
|2i − 3k|

k

=
2 j
k

for j = 3k/2 − i from j = 0 to k/2 − 2.

In combination, the CDL can be expressed as follows.

sup
v∈[0,1]

T∑
t=1

Bv(pt, p̂t) ≥
T
m
·


∑

j: odd
0< j<k/2

2 j
k
+

∑
j: even

0≤ j<k/2

2 j
k


=

T
m
·

k/2−1∑
i=0

2 j
k

The summation
∑k/2−1

i=0 j scales quadratically in k (with m = 2k), so overall, the regret is lower bounded as
follows.

T
m
·

k/2∑
i=0

2 j
k
≥

T
m
·
Ω(k2)

k
= Ω(T)

Thus, an upper bound on the proper calibration regret does not imply the same bound on the CDL.

B Online Multiaccuracy

In this section, we introduce online multiaccurary as an important primitive for our algorithms for online
omniprediction, as well as future applications. For completeness, we present algorithms for achieving on-
line multiaccuracy for finite hypothesis classes and for infinite hypothesis classes via online weak agnostic
learning oracles.

B.1 Multiaccuracy for Finite Hypothesis Classes

Theorem B.1 (Multiaccuracy). Given a finite class of hypothesis functions H , Algorithm 8 guarantees
expectedH multiaccuracy error of O

(√
T ln |H|

)
70

Overview of Algorithm 8: The algorithm is based on Blackwell’s Approachability Theorem. We define
a two player game where the adversary player selects zt = (xt, yt) ∈ X × {0, 1} and the learner selects
pt : X → [0, 1]. Both players are allowed to play randomized strategies but since the learner observes xt,
we can simplify things and only consider yt ∈ {0, 1} and pt = pt(xt). We design the payoff vector of this
game to reflect our objective ofH multiaccuracy respectively. Define

uh,s(pt, zt) = s(yt − pt)h(xt) for h ∈ H , s ∈ {+,−}

Observe that after T rounds of interaction, H-MAErr(p, x, y) = maxh,s
∑

t∈[T] uh,s(pt, zt). Therefore, we
design the learner’s target set to be the set of all vectors u whose coordinates is bounded by 0.

We use exponential weights update method in Line 2 to generate sequence of halfspaces wt with coordi-
nates for every h ∈ H , s ∈ {+,−}. Given a halfspace wt, the algorithm follows the strategy described from
Line 4 to Line 7.

Algorithm 8 Multiaccuracy Algorithm
Input: Hypothesis classH ⊆ {h : X → [0, 1]}
Input: Sequence of samples {(x1, y1), . . . , (xT , yT)}
Output: Sequence of (randomized) predictors p1, . . . , pT

1: for each t ∈ [T] do
2: Let wt

h,s := exp(η∑t−1
i=1 uh,s(pi,zi))∑

h′ ,s′ exp(η∑t−1
i=1 uh′ ,s′ (pi,zi)) for all h ∈ H , s ∈ {+,−}

3: Compute
f (xt) =

∑
h,s

wt
h,s · s · h(xt)

4: if f (xt) ≤ 0 then
5: Predict pt(xt) = 0
6: else if f (xt) > 0 then
7: Predict pt(xt) = 1

8: Observe xt, predict pt(xt), and then observe yt

Lemma B.2 (Halfspace Approachability). Given a halfspace w, the strategy described in Line 4 to Line 7
outputs pt such that ⟨w, u(pt, zt)⟩ ≤ 0 for any choice of zt

Proof of Lemma B.2. We consider the cases in the strategy separately:

• Case 1: If f (xt) ≤ 0, predict pt(xt) = 0. Thus, for h ∈ H , s ∈ {+,−}

wh,suh,s(pt, zt) = s(yt − pt)h(xt)wh,s = syth(xt)wt
h,s

Summing over values of h, s, we get

⟨w, u(pt, zt)⟩ = yt f (xt) ≤ 0 for any choice of y ∈ {0, 1}

• Case 2: If f (xt) > 0, predict pt(xt) = 1. Thus, for h ∈ H , s ∈ {+,−}

wh,suh,s(pt, zt) = s(yt − pt)h(xt)wh,s = syt(h(xt))wh,s

Summing over values of h, s, we get

⟨w, u(pt, zt)⟩ = (yt − 1) f (xt) ≤ 0 for any choice of y ∈ {0, 1}

71

□

Lemma B.3 (Exponential Weight Updates Arora et al. (2012)). The exponential weight updates in Line 2
provide a sequence of vectors wt such that

max
w:||w||1=1

〈
w,

∑
t∈[T]

u(pt, zt)
〉
≤

T∑
t=1

⟨wt, u(pt, zt)⟩ + O
(√

T ln |H|
)

Proof of Theorem B.1. We wish to bound the multiaccuracy error, that is, maxh,s
∑

t∈[T] uh,s where
the expectation is over the randomness in the sampling of pt. Note that this is at most
maxw:||w||1=1

〈
w,

∑
t∈[T] u(pt, zt)

〉
.

max
w:||w||1=1

〈
w,

∑
t∈[T]

u(pt, zt)
〉
≤

T∑
t=1

⟨wt, u(pt, zt)⟩ + O
(√

T ln |H|
)

(by Lemma B.3)

=

T∑
t=1

⟨wt, u(pt, zt)⟩ + O
(√

T ln |H|
)

(by linearity of expectation)

≤

 T∑
t=1

0

 + O
(√

T ln |H|
)

(by Lemma B.2)

≤ O
(√

T ln |H|
)

□

B.2 Achieving Online Multiaccuracy using Online Weak Agnostic Learner

Theorem B.4 (Multiaccuracy with Online Weak Agnostic Learner). Given a possibly infinite class of
hypothesis functions C, and an online weak agnostic learner for C with failure probability δ and regret
bound OracleRegδ

C
(T), Algorithm 9 guarantees, with probability at least 1 − δ, a C-multiaccuracy error

bound of OracleRegδ
C

(T).

Algorithm 9 Multiaccuracy with an online weak agnostic learner
Input: Hypothesis class C ⊆ {c : X → [−1, 1]}
Input: Online Weak Agnostic Learner for {−1,+1} · C, denotedAOWAL

Input: Sequence of samples {(x1, y1), . . . , (xT , yT)}
Output: Sequence of (randomized) predictors p1, . . . , pT

1: Initialize OWAL, q1 ← AOWAL

2: for t = 1 to T do
3: Compute predictor pt(x) = I[qt(x) > 0]
4: Observe xt, Predict pt(xt), Observe yt

5: Obtain qt+1 ← AOWAL(xt, yt − pt(xt)) ▷ execute one timestep of the OWAL

Lemma B.5 (Halfspace Approachability). For every timestep t ∈ [T], the predictor pt(x) = I
[
qt(x) > 0

]
constructed from the OWAL output qt satisfies the following guarantee for all x ∈ X, y ∈ {0, 1}:

q(x)(y − pt(x)) ≤ 0

72

Proof of Lemma B.5. We consider two cases based on the sign of qt(x):

• qt(x) > 0. In this case pt(x) = 1.

– If y = 1, then y − pt(x) = 0, so qt(x) (y − pt(x)) = 0.

– If y = 0, then y − pt(x) = −1, so qt(x) (y − pt(x)) < 0.

In both subcases, qt(x) (y − pt(x)) ≤ 0.

• qt(x) ≤ 0. In this case pt(x) = 0.

– If y = 0, then y − pt(x) = 0, so qt(x) (y − pt(x)) = 0.

– If y = 1, then y − pt(x) = 1, so qt(x) (y − pt(x)) ≤ 0.

In both subcases, qt(x) (y − pt(x)) ≤ 0.

Hence, for all x and all y ∈ {0, 1}, we have qt(x) (y − pt(x)) ≤ 0 □

Proof of Theorem B.4. The online weak agnostic learner outputs sequence of predictors for {+1,−1} · C
q1, . . . , qT such that with probability at least 1 − δ

max
c∈C,s∈{+,−}

T∑
t=1

s · c(xt)(yt − pt(xt)) ≤
T∑

t=1

q(xt)(yt − pt(xt)) + OracleRegδ
C

(T) (OWAL guarantee)

≤

T∑
t=1

0 + OracleRegδ
C

(T) (by Lemma B.5)

≤ OracleRegδ
C

(T)

The claim follows by observing that C-MAErr(p, x, y) = maxc∈C,s∈{+,−}
∑T

t=1 s · c(xt)(yt − pt(xt)) □

C Proper Calibrated Multiaccuracy Boosting

The work of Gopalan et al. (2023) established the efficiency of the Loss OI omniprediction framework
via boosting for simultaneous (ℓ1-)calibration and multiaccuracy, drawing on the original algorithms for
multi-group fairness (Hébert-Johnson et al., 2018; Kim et al., 2019; Pfisterer et al., 2021). In this appendix,
we show that proper calibration auditing can replace ℓ1-calibration auditing within this framework with
immediate efficiency gains. While the algorithm only achieves ε−4 dependence on the approximation
parameter, it produces deterministic omnipredictors, which may be desirable in comparison to the near-
optimal omnipredictors we learn via Algorithm 5.

Before presenting the novel variant of the algorithm, we account for the sample complexity achieved by
the algorithm presented in (Gopalan et al., 2023).

73

Theorem C.1 (Sample Complexity bound in (Gopalan et al., 2023)). Given a class of loss functions L, a
hypothesis class H and a weak agnostic learning oracle for C = (∆L ◦ H), there exists an algorithm that
outputs a (L,H , ε)-omnipredictor with probability 1 − δ

O
(
dC + ln(1/δ)

ε4 +
ln(1/ε)
ε10

)
where dC represents the VC (or fat-shattering) dimension of the class C

As mentioned, the sample complexity improvement comes from designing an algorithm that achieves mul-
tiaccuracy and low proper calibration error instead of low ℓ1-calibration error. Core to this improvement
is an efficient test for proper calibration.

Testing Proper Calibration via CDF estimation. Unlike ℓ1-calibration error, we can measure the
proper calibration error of an arbitrary predictor p regardless of the fact that we have infinitely many
test weight functions. The key idea is to estimate the CDF of the predictor F(v) = E(x,y)∼D I[p(x) ≥ v].
Because the weight functions are monotone functions, the CDF contains all the relevant information for
estimating E(x,y)∼D[w(p(x))]. We can also express the threshold calibration error as

max
v∈[0,1]

E
(x,y)∼D

[(y − p(x))(2I[p(x) ≥ v] − 1)]

Lemma C.2 (Testing Proper Calibration via CDF estimation). Given a predictor p, sample access to a
distributionD, and an error probability δ, there exists an algorithm that returns True with probability 1− δ
if PCalErrD(p) ≤ ε. The algorithm uses

O
(
ln(1/δ)
ε2

)
Proof of Lemma C.2. The algorithm first collects ln(1/δ)

ε2 samples to estimate the CDF F(v) =

E(x,y)∼D[I[p(x) ≥ v]]. Then the algorithm identifies the set Q of the δ/2-quantiles of the CDF. Then
the algorithm collects fresh samples ln(1/δ)

ε2 and estimates E(x,y)∼D[wq(p(x))(y − p(x))] for each quantile
q ∈ Q from the samples where wq(p) = sgn(q − p). Then the algorithm returns True if any estimate is
greater than δ and False otherwise.

Now we show that the algorithm is correct. By DKW Inequality (Dvoretzky et al., 1956), we know the
empirical CDF is close in infinity distance to the true CDF i.e ∥F̂ − F∥∞ ≤ δ/2. This implies that the value
E(x,y)∼D[wv(p(x))(y − p(x))] for any v ∈ [0, 1] is δ/2 close to E(x,y)∼D[wq(p(x))(y − p(x))] for some q ∈ Q.
The rest of the claim follows by uniform convergence of the estimates for q ∈ Q. □

Testing Proper Calibration using a Weak Learner for One Dimensional Thresholds. As de-
fined in the first section, proper calibration can be equivalently captured by weighted calibration over
{−1, 1}−threshold functions. In the next lemma, we show how to test if a function is proper-calibrated
using a weak agnostic learner for one dimensional threshold functions.

Lemma C.3 (Testing Proper Calibration via Weak Learning). Given a predictor p, sample access to a
distribution D, and an error probability δ, there exists an algorithm uses a weak agnostic learner for
WTh : {q → sgn(v − q) : v ∈ [0, 1]} and returns True with probability 1 − δ if PCalErrD(p) ≤ ε. The
algorithm uses

O
(
ln(1/δ)
ε2

)
74

Proof of Lemma C.3. We first describe the algorithm. The algorithm simply collects m = O
(

ln(1/δ)
ε2

)
sam-

ples from D. Then the algorithm feeds the weak agnostic learner pairs (ui, vi)m
i=1 where ui = p(xi) and

vi = (yi − p(xi)) and returns True if the weak learner does not return ⊥, False otherwise. Now we prove
the correctness of the algorithm. Recall that the VC dimension of one dimensional threshold functions
is 1. Therefore a weak learner for 1d threshold class only needs O

(
ln(1/δ)
ε2

)
samples for this hypothe-

sis class. If the weak learner does not return ⊥, then there exists a weight function in WTh such that
E(x,y)∼D[w(p(x))(y − p(x))] ≥ ε/2, then the proper calibration error is at least that amount. □

Overview of Algorithm 10. The algorithm follows the same boosting-style of (Gopalan et al., 2023).
Starting with a constant predictor q0(x) = 1

2 , it iteratively updates this predictor until it is both C-
multiaccurate and proper calibrated (up to an additive error of ε). In each iteration t, the algorithm draws
fresh samples from D and calls the weak agnostic learning oracle for C to check if qt is multiaccurate.
If such a c exists, then it updates qt using c, then terminates the iteration. If not, then the algorithm pro-
ceeds to check if qt is proper calibrated by calling the weak agnostic learning oracle for one dimensional
thresholds. If there exists a threshold function w that correlates with y− qt(x) using qt(x) as input, then the
algorithm updates qt using w. If not, the algorithm terminates.

We improve the dependence on ε in this result significantly and obtain the following bound.

Theorem C.4 (Improved Sample Complexity Upper Bound). Given a class of loss functions L, a hypoth-
esis class H and a weak agnostic learning oracle for C = (∆L ◦ H), Algorithm 10 outputs a (L,H , ε)-
omnipredictor with probability 1 − δ

O
(
dC + ln(1/δ)

ε4

)
where dC represents the VC (or fat-shattering) dimension of the class C (as determined by the WAL oracle).

Proof of Theorem C.4. First we show that when Algorithm 10 terminates, then qT is an (L,H , ε)-
omnipredictor with probability at least 1 − δ. This follows from the weak agnostic learning guarantee.
For the algorithm to terminate, both weak agnostic learners must return ⊥. Since the weak agnostic learner
for C returns ⊥, then every hypothesis in C has correlation less than ε with qT . Since the weak agnostic
learner for one dimensional thresholds returns ⊥, the proper calibration error of qT is at most ε.

Now we show that Algorithm 10 terminates after 8/ε2 iterations. We do this by using the expected square
distance of qt to the Bayes-optimal predictor q∗ as a potential function. We show that after each iteration,
the squared distance reduces by O(ε2). The change in potential from the t-th iteration to the t + 1-iteration
can be expressed as follows:

E[(q∗(x) − qt(x))2] − E[(q∗(x) − qt+1(x))2]

Since qt+1 = qt +
ε
2 · f where f is either a c ∈ C or w ◦ qt for some w ∈ WTh, we have

E[(q∗(x) − qt(x))2] − E[(q∗(x) − qt(x) + ε
2 · f (x))2]

= ε · E[(q∗(x) − qt(x)) f (x)] − ε2

4 · E[f (x)2]

By the weak agnostic learning assumption, we know that E[(q∗(x) − qt(x)) f (x)] ≥ ε
2 . We also know that

E[f (x)2] ≤ 1 since f ∈ [−1, 1]. Thus, the change in potential is at least ε2

4 . Since the expected squared
distance at the start is less than 2, the total number of iterations T is at most 8/ε2.

75

Algorithm 10 PCal+MABoost
Input: Error parameters ε, δ ∈ [0, 1], Sample access toD
Oracle access to a Weak Agnostic learner for C = (∆L ◦H), denoted WALC,ε
Oracle access to a Weak Agnostic learner for one dimensional thresholds, denoted WALTh,ε

Output: Predictor qT .
t ← 0
q0(·)← 1

2 ▷ the algorithm can be initialized with an arbitrary predictor
ma← false
pc← false
while ¬ma or ¬pc do

ct+1 ← WALC,ε
(
{xi, yi − qt(xi)}mi=1

)
▷ where (xi, yi)m

i=1 are fresh samples fromD
if ct+1 = ⊥ then

ma← true
else

ma← false
ht+1(·)← qt(·) + ε

2 · ct+1(·).
qt+1(·)← Π(ht+1(·)) ▷ where Π projects ht+1 onto [−1, 1]
t ← t + 1.
break

wt+1 ← WALTh,ε
(
{qt(xi), yi − qt(xi)}mi=1

)
▷ where (xi, yi)m

i=1 are fresh samples fromD
if wt+1 = ⊥ then

pc← true
else

pc← false
ht+1(·)← qt(·) + ε

2 · wt+1(qt(·)).
qt+1(·)← Π(ht+1(·)) ▷ where Π projects ht+1 onto [−1, 1].
t ← t + 1.

return qt.

The algorithm collects at most VC+ln(1/δ)
ε2 fresh samples in each iteration. Generalization from this number

of samples is guaranteed by the semantics of the weak agnostic learning oracle. Since the number of
iterations T is at most 8/ε2, the total sample complexity is bounded by

O
(
VC(C) + ln(1/δ)

ε4

)
□

D Implementing an OWAL with Offline Sample Complexity

The goal of this section is to recapitulate some key definitions and results from Wu et al. (2022) and
explain how they imply the existence of an online weak agnostic learner with regret that scales with the
offline sample complexity.

Definition D.1 (Definition 2 of Wu et al. (2022)). We say a class G of functions X → [0, 1] is a stochastic
global sequential cover of a class C ⊆ [0, 1]X with respect to the class P of joint distributions over

76

x1, . . . , xT at scale α > 0 and confidence δ > 0, if for all µ ∈ P, we have

Pr
x1,...,xT∼µ

[
∃c ∈ C,∀g ∈ G,∃t ∈ [T] s.t. |c(xt) − g(xt)| > α

]
≤ δ.

We define the minimal size of G to be the stochastic global sequential covering number of C.

Wu et al. (2022) show that bounds on the stochastic global sequential covering number imply bounds on
the regret for arbitraty convex, lipschitz losses.

Lemma D.1 (Theorem 3 of Wu et al. (2022)). Let ℓ(·, y) be convex, L-Lipschitz, and bounded by 1 for
any y ∈ [0, 1], and let C be a set of functions X → [0, 1]. Let Gδ

α be a stochastic global sequential covering
ofH at scale α and confidence δ with respect to a class of distributions P. Then there exists an algorithm
that outputs a sequence of predictions ŷ1, . . . , ŷT such that

sup
µ∈P
Ex1,...,xT∼µ

 sup
y1,...,yT

 T∑
t=1

ℓ(ŷt, yt) − inf
c∈C

T∑
t=1

ℓ(c(xt), yt)


 ≤ inf

0≤α≤1

αLT +

√
T
2

log |Gδ
α| + 1

 .
The theorem follows from running a multiplicative weights algorithm over the stochastic cover of the
hypothesis class. Now we state how the size of the cover scales with the combinatorial dimensions of the
class.

Lemma D.2 (Theorem 6 of Wu et al. (2022)). For any binary-valued class C with finite VC-dimension,
there exists a global sequential covering set G of C with respect to the class of all i.i.d. distributions over
x1, . . . , xT at scale α = 0 and confidence δ such that for T ≥ e9, we have

log |G| ≤ 5 VC(C) log2 T + log T log(1/δ) + log T.

Lemma D.3 (Theorem 17 of Wu et al. (2022)). Let C be a class of functions X → [0, 1] with the α-fat
shattering number d(α). Then there exists a stochastic global sequential covering set G of C with respect
to the class of all i.i.d. distributions over x1, . . . , xT at scale α and confidence δ such that

log |G| ≤ 8d(α/32)(log T log(1/α))4 + log T log(log T/δ) + O(1),

where O(1) hides absolute constants that are independent of α, T , and δ.

Note that these bounds cannot be improved up to log factors. See Wu et al. (2022) for more.

Proof of Corollary 6.3. The proof of the claim follows mainly from Theorem 3 of Wu et al. (2022), stated
in Lemma D.1. We can apply this theorem since our loss function is convex and 1-Lipschitz. The algorithm
runs a multiplicative weights algorithm over a set of experts indexed by a stochastic global sequential
covering (Definition D.1). The statement of the claim requires the outputs of the algorithm to be in C.
Given an arbitrary stochastic covering G of C at scale α, it is straightforward to construct a stochastic
covering G′ ⊂ C at scale 2α. Finally, the regret guarantee in Lemma D.1 scales with the VC (or fat-
shattering dimension) of the class C after plugging the bounds on the stochastic global sequential covering
to the guarantees of Lemma D.1. To ensure that each output hypothesis is in C 7, at each timestep, the
multiplicative weights algorithm samples ct from a distribution over G′ instead of predicting the weighted
combination

∑
i wt(i)ci. This only adds a factor of Õ

(√
T ln 1/δ

)
to the regret term due to an application

of Azuma-Hoedding to show that
∑T

t=1 ct(xt) · yt converges to
∑T

t=1 E[ct(xt)] · yt.

□

7C may not be closed under convex combinations

77

	Introduction
	Overview of Contributions
	Decision OI as Proper Calibration
	Blackwell Approachability for Online Omniprediction
	Oracle-Efficient Online Omniprediction
	Near-Optimal Offline Omnipredictors

	Discussion of Results and Related Works
	Acknowledgements

	Model and Preliminaries
	Proper Calibration
	Omniprediction via Proper Calibration and Multiaccuracy
	Approximating Proper Calibration with Weighted Calibration over Thresholds
	Algorithm for Proper Calibration in the Online Setting
	Augmented Proper Calibration

	Online Omniprediction
	Online Weak Agnostic Learning
	Omniprediction for Finite Classes
	Omniprediction for Infinite Loss Classes with Finite Approximate Basis

	Omniprediction for Notable Loss Classes
	Online Omniprediction bounds for Notable Loss Classes
	Approximate Bases for Notable Loss Classes

	Offline Omniprediction
	Learning Randomized Omnipredictors via Online-to-Batch Conversion
	Implementing an Online Weak Agnostic Learner with Offline Sample Complexity
	Uniform Convergence Results for Online-to-Batch Conversion

	Oracle-Efficient Offline Omniprediction
	Implementing a dowal using FTRL
	Frank-Wolfe reduction to ERM oracle

	Relating Proper Calibration to Existing Notions of Calibration
	Calibration is stronger than Proper Calibration
	Proper calibration is stronger than other prior notions
	Calibration Decision Loss is incomparable to Proper Calibration

	Online Multiaccuracy
	Multiaccuracy for Finite Hypothesis Classes
	Achieving Online Multiaccuracy using Online Weak Agnostic Learner

	Proper Calibrated Multiaccuracy Boosting
	Implementing an OWAL with Offline Sample Complexity

