
Tiered	Memory	Management:	
Access	Latency	is	the	Key!

Midhul	Vuppalapat Rachit	Agarwal

Classical	memory	architecture	in	servers

Modern	applications	demand	larger	memory	capacity	and	bandwidth

In-memory	caches,	graph	processing	engines,	ML	frameworks,	…….

Memory	contributes	to	large	fractions	of	datacenter	cost

37%	of	Meta’s	server	costs

50%	of	Microsoft	Azure	server	costs

DDR	Memory	
Interconnect

DRAM

Classical	memory	architecture:	DRAM	connected	via	DDR	memory	interconnect

Processor Memory	
Controller

Classical	memory	architecture	has	reached	scaling	limits

DDR	memory	interconnect	bandwidth	is	difficult	to	scale

Processor	pin	and	signaling	limitations

Memory	bandwidth

AMD	Genoa	(2023):		9.37x

Processor	core	counts,	concurrency-per-core	are	increasing

Total	memory	load	
processor	can	generate

Maximum	per-core	
load

#	of	cores

1x

2x

3x

4x

5x

Cascade	Lake	(2019) Ice	Lake	(2021) Sapphire	Rapids	(2023)

Intel	processors

Cascade	Lake	
(2019)

Ice	Lake	
(2021)

Sapphire	Rapids	
(2023)

Memory	interconnect	is	increasingly	oversubscribed

DDR	Memory	
Interconnect

DRAM
Processor Memory	

Controller

CXL	Interconnect	
(PCIe	physical	layer)

Example	alternate	interconnect:	Compute	Express	Link	(CXL)

Transparent,	cache-coherent	access	to	memory	(via	standard	load/store)

Memory	tiers	have	different	performance	characteristics

Example:	CXL-attached	memory	(compared	to	DDR-attached	memory)

- Upto	1.04x	additional	bandwidth

- 2x	higher	access	latency

Emergence	of	tiered	memory	architectures

Default	tier

Alternate	tier

CXL	memory	
controller

CXL-attached	
memory

New	memory	tiers	via	alternate	interconnects

CXL	Interconnect	
(PCIe	physical	layer)

Example	alternate	interconnect:	Compute	Express	Link	(CXL)

Transparent,	cache-coherent	access	to	memory	(via	standard	load/store)

Memory	tiers	have	different	performance	characteristics

Example:	CXL-attached	memory	(compared	to	DDR-attached	memory)

- Upto	1.04x	additional	bandwidth

- 2x	higher	access	latency

Emergence	of	tiered	memory	architectures

Default	tier

Alternate	tier

CXL	memory	
controller

CXL-attached	
memory

Data	placement	across	tiers	critically	impacts	applications	performance

New	memory	tiers	via	alternate	interconnects

[MemStrata,	OSDI’24]
Upto	1.61x

[Demystifying	CXL,	MICRO’23]
Upto	1.85x

[Pond,	ASPLOS’23]
Upto	2x

Software-based	tiered	memory	management
Goal:	Transparently	adapt	page	placement	across	tiers	to	maximize	application	performance

Default	tier

Alternate	tier

Page	access	probability

Design	dimensions

Access	tracking

Identify	hot/cold	pages

Page	migration

Relocate	pages	between	tiers

Page	size	determination

Pages	vs	hugepages

Page	placement

Which	set	of	pages	to	place	in	each	tier

Existing	systems

HeMem	

[SOSP’21]

TPP	

[ASPLOS’23]

MEMTIS	
[SOSP’23]

Pack	hottest	pages	in	the	default	tier

Place	remaining	pages	in	the	alternate	tier

Do	existing	systems	perform	optimal	page	placement?

Default	tier

Alternate	tier

Memory-intensive	application
Randomly	access	objects	(1KB	size)

Hot	set Cold	set

90%

Fits	in	default	tier

Does	not	fit	in	default	tier

10%

Run	on	1/2	the	cores	of	server

Best-case	placement

Manual	sweep	of	different	possible	page	placements

0

100

200

300

ns

Default	tier

Alternate	tier

Memory-intensive	application

0

60

120

180

0x

HeMem Best-case

GB/s

1.31x	gap

HeMem	[SOSP’21]

Identifies	and	places	all	hot	pages	in	default	tier

Implicit	assumption:	default	tier	access	latency	<	alternate	tier	access	latency

Despite	default	tier	serving	the	hottest	pages

Application	throughput

Do	existing	systems	perform	optimal	page	placement?

Default	tier

Alternate	tier

Access	Latency

Best-case	placement

Manual	sweep	of	different	possible	page	placements

Access	Latency

0

60

120

180

0x

HeMem Best-case

GB/s

1.31x	gap

HeMem	[SOSP’21]

Identifies	and	places	all	hot	pages	in	default	tier

Implicit	assumption:	default	tier	access	latency	<	alternate	tier	access	latency

Despite	default	tier	serving	the	hottest	pages

Application	throughput

Best-case	placement

Manual	sweep	of	different	possible	page	placements

Do	existing	systems	perform	optimal	page	placement?

Default	tier

Alternate	tier

Memory-intensive	application

0

100

200

300

ns

Default	tier

Alternate	tier

Access	Latency

0

60

120

180

0x

HeMem Best-case

GB/s

1.31x	gap

HeMem	[SOSP’21]

Identifies	and	places	all	hot	pages	in	default	tier

Implicit	assumption:	default	tier	access	latency	<	alternate	tier	access	latency

Despite	default	tier	serving	the	hottest	pages

Application	throughput

Best-case	placement

Manual	sweep	of	different	possible	page	placements

Do	existing	systems	perform	optimal	page	placement?

Default	tier

Alternate	tier

Memory-intensive	application

0

100

200

300

ns

Default	tier

Alternate	ti

Queueing	at	
Memory	Controller La
te
nc
y	
(n
s)

0

100

200

300

400

Number	of	cores

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2x	inflation	with	just	18%	of	cores

Up	to	5.4x	inflation

Reasons	for	access	latency	>	

Queueing	of	requests	in	the	CPU-to-memory	datapath

Interconnect	bandwidth	saturation

Contention	within	internal	hierarchy	of	memory	modules

Latency	under	multiple	
in-flight	requests

Latency	under	one	
in-flight	request

unloaded	latency

Access	Latency

0

60

120

180

0x

HeMem Best-case

GB/s

1.31x	gap

HeMem	[SOSP’21]

Identifies	and	places	all	hot	pages	in	default	tier

Implicit	assumption:	default	tier	access	latency	<	alternate	tier	access	latency

Despite	default	tier	serving	the	hottest	pages

Application	throughput

Best-case	placement

Manual	sweep	of	different	possible	page	placements

Do	existing	systems	perform	optimal	page	placement?

Default	tier

Alternate	tier

Memory-intensive	application

0

100

200

300

ns

Default	tier

Alternate	tier

Queueing	at	
Memory	Controller

Access	Latency	is	the	key!

Application	performance:	function	of	memory	access	throughput

Minimize	average	access	latency	=>	maximize	access	throughput

- Throughput	directly	related	to	latency

Limited	by	hardware	buffer	sizes

(e.g	Line	Fill	Buffer)

Default	tier

Alternate	tier

Memory-intensive	application

#	in-flight	requests
Average	access	latency

Per-core	Throughput	=

Default	tier
Sum	of	access	
probabilities

P

Access	
latency

Access	
latency

Alternate	tier
Sum	of	access	
probabilities

(1-P)

Packing	hottest	pages	in	default	tier	is	no	longer	optimal

Colloid	overview

Key	principle:	Principle	of	balancing	access	latencies

Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Access	latency	with	nanosecond	precision

Low-overhead	mechanism	to	measure	per-tier	access	latency

Page	placement	algorithm

Decide	which	set	of	pages	to	place	in	each	tier

Integration	with	existing	systems

Leverages	existing	memory	management	innovations

Evaluation

Understand	effectiveness	over	wide	range	of	workloads

Colloid	overview

Key	principle:	Principle	of	balancing	access	latencies

Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Access	latency	with	nanosecond	precision

Low-overhead	mechanism	to	measure	per-tier	access	latency

Page	placement	algorithm

Decide	which	set	of	pages	to	place	in	each	tier

Integration	with	existing	systems

Leverages	existing	memory	management	innovations

Evaluation

Understand	effectiveness	over	wide	range	of	workloads

Principle	of	balancing	access	latencies
Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Default	tier
Sum	of	access	
probabilities

P

Access	
latency

Access	
latency

Alternate	tier
Sum	of	access	
probabilities

(1-P)

Place	more	hot	pages	in	the	default	tier

Default	tier

Alternate	tier

Memory-intensive	application
Goal:	Minimize	average	access	latency

Principle	of	balancing	access	latencies
Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Default	tier
Sum	of	access	
probabilities

P

Access	
latency

Access	
latency

Alternate	tier
Sum	of	access	
probabilities

(1-P)

Place	more	hot	pages	in	the	alternate	tier

Default	tier

Alternate	tier

Memory-intensive	application
Goal:	Minimize	average	access	latency

Principle	of	balancing	access	latencies
Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Default	tier
Sum	of	access	
probabilities

P

Access	
latency

Access	
latency

Alternate	tier
Sum	of	access	
probabilities

(1-P)

Do	not	adapt	page	placement

Default	tier

Alternate	tier

Memory-intensive	application
Goal:	Minimize	average	access	latency

State	of	balanced	access	latencies:	ideal	equilibrium	point

Colloid	overview

Key	principle:	Principle	of	balancing	access	latencies

Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Access	latency	with	nanosecond-scale	precision

Low-overhead	mechanism	to	measure	per-tier	access	latency

Page	placement	algorithm

Decide	which	set	of	pages	to	place	in	each	tier

Integration	with	existing	systems

Leverages	existing	memory	management	innovations

Evaluation

Understand	effectiveness	over	wide	range	of	workloads

Access	latency	with	nanosecond-scale	precision
Fundamental	design	aspects	of	CPU-to-memory	datapath	enable	fine-grained	visibility	into	per-tier	access	latency

Default	tier

Alternate	tier

Understanding	the	host	network

SIGCOMM’24

Default	tier

Alternate	tier

Insight	#1:	Transparent	routing	of	requests	to	tiers	provides	vantage	point

Insight	#2:	Requests	remain	queued	until	they	are	serviced	from	tierTransparent	routing

Access	latency	with	nanosecond-scale	precision
Fundamental	design	aspects	of	CPU-to-memory	datapath	enable	fine-grained	visibility	into	per-tier	access	latency

Understanding	the	host	network

SIGCOMM’24

Default	tier

Alternate	tier

Transparent	routing

Access	latency	with	nanosecond-scale	precision
Fundamental	design	aspects	of	CPU-to-memory	datapath	enable	fine-grained	visibility	into	per-tier	access	latency

Clock	cycle	(sub-nanosecond)

Per-tier	queue	occupancy	and	request	arrival	rates

Measurement	enabled	by	hardware	counters

(As	low	as	a	microsecond)
Measurement	interval

Apply	Little’s	Law	to	compute	access	latency

Average	queue	occupancy

Average	request	arrival	rate
Average	access	latency		=

Understanding	the	host	network

SIGCOMM’24

Insight	#1:	Transparent	routing	of	requests	to	tiers	provides	vantage	point

Insight	#2:	Requests	remain	queued	until	they	are	serviced	from	tier

Colloid	overview

Key	principle:	Principle	of	balancing	access	latencies

Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Access	latency	with	nanosecond	precision

Low-overhead	mechanism	to	measure	per-tier	access	latency

Page	placement	algorithm

Decide	which	set	of	pages	to	place	in	each	tier

Integration	with	existing	systems

Leverages	existing	memory	management	innovations

Evaluation

Understand	effectiveness	over	wide	range	of	workloads

Colloid	page	placement	algorithm

Default	tier

Alternate	tier

Principle	of	balancing	access	latencies

- Whether	to	increase	or	decrease	P

By	how	much	to	change	P	(ΔP)?

Maintain	low	watermark	and	high	watermark

Invariant	#2:	Gap	between	watermarks	reduces

Invariant	#1:	P	and	equilibrium	point	between	low	and	high	watermark

Executes	periodically	at	fixed	time	intervals	(quanta)	and	adapts	page	placement	based	on	access	latencies

Equilibrium	point

Time
0

1 High	watermark

Low	watermark

Sum	of	access	probabilities	
of	pages	in	default	tier

P

Equilibrium	point

Colloid	page	placement	algorithm

Default	tier

Alternate	tier

Desired	change	in	P	
(ΔP)

Sum	of	access	probabilities	
of	pages	in	default	tier

P

Time
0

1

Principle	of	balancing	access	latencies

- Whether	to	increase	or	decrease	P

By	how	much	to	change	P	(ΔP)?

Maintain	low	watermark	and	high	watermark

Invariant	#2:	Gap	between	watermarks	reduces

Invariant	#1:	P	and	equilibrium	point	between	low	and	high	watermark

Executes	periodically	at	fixed	time	intervals	(quanta)	and	adapts	page	placement	based	on	access	latencies

Illustrative	example	(static	workload)

Colloid	page	placement	algorithm

Default	tier

Alternate	tier

Handling	dynamic	changes	in	workload

Change	in	memory	access	pattern

- Abrupt	change	in	access	probabilities	of	pages

Change	in	memory	interconnect	contention

- Abrupt	change	in	equilibrium	point

Sum	of	access	probabilities	
of	pages	in	default	tier

P

Time
0

1

Equilibrium	point

Colloid	page	placement	algorithm

Default	tier

Alternate	tier

Handling	dynamic	changes	in	workload

Change	in	memory	access	pattern

- Abrupt	change	in	access	probabilities	of	pages

Change	in	memory	interconnect	contention

- Abrupt	change	in	equilibrium	point

Sum	of	access	probabilities	
of	pages	in	default	tier

P

Time
0

1

Equilibrium	point

Watermarks	close	and	access	latencies	not	close Reset	watermark

Colloid	overview

Key	principle:	Principle	of	balancing	access	latencies

Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Access	latency	with	nanosecond	precision

Low-overhead	mechanism	to	measure	per-tier	access	latency

Page	placement	algorithm

Decide	which	set	of	pages	to	place	in	each	tier

Integration	with	existing	systems

Leverages	existing	memory	management	innovations

Evaluation

Understand	effectiveness	over	wide	range	of	workloads

Colloid	integrates	with	existing	systems
Implemented	on	top	of	three	state-of-the-art	tiered	memory	management	systems

Default	tier

Alternate	tier

Design	dimensions

Access	tracking

Page	migration

Page	size	determination

Access	latency	measurement

Page	placement

Existing	systems

HeMem	

[SOSP’21]

TPP	

[ASPLOS’23]

MEMTIS	
[SOSP’23]

Colloid

Colloid

Lines	of	code 520 411 315

Colloid	overview

Key	principle:	Principle	of	balancing	access	latencies

Adapt	page	placement	to	balance	(loaded)	access	latencies	of	tiers

Access	latency	with	nanosecond	precision

Low-overhead	mechanism	to	measure	per-tier	access	latency

Page	placement	algorithm

Decide	which	set	of	pages	to	place	in	each	tier

Integration	with	existing	systems

Leverages	existing	memory	management	innovations

Evaluation

Understand	effectiveness	over	wide	range	of	workloads

Colloid	evaluation

Default	tier

Alternate	tier

Memory-intensive	application
Randomly	access	objects	(1KB	size)

Hot	set Cold	set

90%

Fits	in	default	tier

Does	not	fit	in	default	tier

10%

Run	on	1/2	the	cores	of	server

Colloid	enables	existing	systems	to	achieve	near-optimal	performance

0

100

200

300

ns

Default	tier

Alternate	tier

Memory-intensive	application

0

60

120

180

0x

HeMem Best-case

GB/s

1.31x	gap

Application	throughput
Default	tier

Alternate	tier

Access	Latency

Colloid	evaluation
Colloid	enables	existing	systems	to	achieve	near-optimal	performance

Without	Colloid

0

60

120

180

0x

HeMem Best-case

GB/s

Application	throughput

0

100

200

300

ns

Default	tier

Alternate	tier

Access	Latency

With	Colloid

Default	tier

Alternate	tier

Colloid	evaluation
Colloid	benefits	translate	to	end-to-end	performance	improvements	for	real	applications

PageRank	algorithm

Twitter	graph

16	iterations

Run	on	1/2	the	server	cores

1

1.4

1.8

2.2

0x 1x 2x 3x

HeMem+Colloid TPP+Colloid MEMTIS+Colloid

Speedup

Load	on	memory	interconnect

0x 1x 2x 3x

(Controlled	load	on	default	tier	memory	interconnect	generated	via	memory	antagonist)

Colloid	evaluation

Varying	alternate	tier	unloaded	latency

Colloid	provides	benefits	even	with	larger	alternate	tier	unloaded	latencies

Colloid	consistently	enables	benefits	for	a	wide	variety	of	workloads	and	hardware	parameters	

Varying	object	size,	core	count,	read/write	ratio

Colloid	continues	to	achieve	near-optimal	performance	

Dynamic	workloads

Colloid	does	not	impact	timescale	for	reaction	to	change	in	access	patterns

Enables	reacting	to	change	in	memory	interconnect	contention	as	similar	timescale

Real	applications

Colloid	achieves	up	to	2.1x	improvement	in	end-to-end	performance	

SiloGraph	processing	
engine

In-memory	
transactional	database

In-memory	key-value	
cache

Default	tier

Alternate	tier

Access	latency	is	the	key!

https://github.com/host-architecture/colloid

Access	latency	!=	unloaded	latency

La
te
nc
y	
(n
s)

0

100

200

300

400

Number	of	cores
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Principle	of	balancing	access	latencies

Minimize	average	access	latency

P (1-P)

Colloid:	Tiered	memory	management	mechanism

Enables	existing	systems	to	realize	the	principle	of	balancing	access	latencies

Default	tier

Alternate	tier

