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Abstract

In user-facing applications, displaying calibrated confidence measures—
probabilities that correspond to true frequency—can be as important as obtaining
high accuracy. We are interested in calibration for structured prediction problems
such as speech recognition, optical character recognition, and medical diagnosis.
Structured prediction presents new challenges for calibration: the output space is
large, and users may issue many types of probability queries (e.g., marginals) on
the structured output. We extend the notion of calibration so as to handle various
subtleties pertaining to the structured setting, and then provide a simple recalibra-
tion method that trains a binary classifier to predict probabilities of interest. We
explore a range of features appropriate for structured recalibration, and demon-
strate their efficacy on three real-world datasets.

1 Introduction

Applications such as speech recognition [1], medical diagnosis [2], optical character recognition
[3], machine translation [4], and scene labeling [5] have two properties: (i) they are instances of
structured prediction, where the predicted output is a complex structured object; and (ii) they are
user-facing applications for which it is important to provide accurate estimates of confidence. This
paper explores confidence estimation for structured prediction.

Central to this paper is the idea of probability calibration [6, 7, 8, 9], which is prominent in the
meteorology [10] and econometrics [9] literature. Calibration requires that the probability that a
system outputs for an event reflects the true frequency of that event: of the times that a system says
that it will rain with probability 0.3, then 30% of the time, it should rain. In the context of structured
prediction, we do not have a single event or a fixed set of events, but rather a multitude of events
that depend on the input, corresponding to different conditional and marginal probabilities that one
could ask of a structured prediction model. We must therefore extend the definition of calibration in
a way that deals with the complexities that arise in the structured setting.

We also consider the practical question of building a system that outputs calibrated probabilities.
We introduce a new framework for calibration in structured prediction, which involves defining
probabilities of interest, and then training binary classifiers to predict these probabilities based on a
set of features. Our framework generalizes current methods for binary and multiclass classification
[11, 12, 13], which predict class probabilities based on a single feature, the uncalibrated prediction
score. In structured prediction, the space of interesting probabilities and useful features is consid-
erably richer. This motivates us to introduce a new concept of events as well as a range of new
features—margin, pseudomargin—which have varying computational demands. We perform a thor-
ough study of which features yield good calibration, and find that domain-general features are quite
good for calibrating MAP and marginal estimates over three tasks—object recognition, optical char-
acter recognition, and scene understanding. Interestingly, features based on MAP inference alone
can achieve good calibration on marginal probabilities (which can be more difficult to compute).
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Figure 1: In the context of an
OCR system, our framework aug-
ments the structured predictor with
calibrated confidence measures for
a set of events, e.g., whether the first
letter is “l”.
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[y = “land”] 0.8

[y1 = “l”] 0.8

[y2 = “a”] 0.9

[y3 = “n”] 0.9

[y4 = “d”] 0.8

(a) Structured prediction model (b) Forecaster output

2 Background

2.1 Structured Prediction

In structured prediction, we want to assign a structured label y = (y1, . . . , yL) ∈ Y to an input
x ∈ X . For example, in optical character recognition (OCR), x is a sequence of images and y is the
sequence of associated characters (see Figure 1(a)); note that the number of possible outputs y for a
given x may be exponentially large.

A common approach to structured prediction is conditional random fields (CRFs), where we posit a
probabilistic model pθ(y | x). We train pθ by optimizing a maximum-likelihood or a max-margin
objective over a training set {(x(i), y(i))}ni=1, assumed to be drawn i.i.d. from an unknown data-
generating distribution P(x, y). The promise of a probabilistic model is that in addition to computing
the most likely output ŷ = argmaxy pθ(y | x), we can also get its probability pθ(y = ŷ | x) ∈ [0, 1],
or even marginal probabilities pθ(y1 = ŷ1 | x) ∈ [0, 1].

2.2 Probabilistic Forecasting

Probabilities from a CRF pθ are just numbers that sum to 1. In order for these probabilities to be
useful as confidence measures, we would ideally like them to be calibrated. Calibration intuitively
means that whenever a forecaster assigns 0.7 probability to an event, it should be the case that the
event actually holds about 70% of the time. In the case of binary classification (Y = {0, 1}), we say
that a forecaster F : X → [0, 1] is perfectly calibrated if for all possible probabilities p ∈ [0, 1]:

P[y = 1 | F (x) = p] = p. (1)

Calibration by itself does not guarantee a useful confidence measure. A forecaster that always
outputs the marginal class probability F (x) = P(y = 1) is calibrated but useless for accurate
prediction. Good forecasts must also be sharp, i.e., their probabilities should be close to 0 or 1.

Calibration and sharpness. Given a forecaster F : X → [0, 1], define T (x) = E[y | F (x)] to be
the true probability of y = 1 given a that x received a forecast F (x). We can use T to decompose
the `2 prediction loss as follows:

E[(y − F (x))2] = E[(y − T (x))2] + E[(T (x)− F (x))2] (2)

= Var[y]︸ ︷︷ ︸
uncertainty

−Var[T (x)]︸ ︷︷ ︸
sharpness

+E[(T (x)− F (x))2]︸ ︷︷ ︸
calibration error

. (3)

The first equality follows because y − T (x) has expectation 0 conditioned on F (x), and the second
equality follows from the variance decomposition of y onto F (x).

The three terms in (3) formalize our intuitions about calibration and sharpness [7]. The calibration
term measures how close the predicted probability is to the true probability over that region and is
a natural generalization of perfect calibration (1) (which corresponds to zero calibration error). The
sharpness term measures how much variation there is in the true probability across forecasts. It does
not depend on the numerical value of the forecaster F (x), but only the induced grouping of points;
it is maximized by making F (x) closer to 0 and 1. Uncertainty does not depend on the forecaster
and can be mostly ignored; note that it is always greater than sharpness and thus ensures that the
loss stays positive.
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input x 0 1 2 calib. sharp.
true P(y | x) 0 1 0.5 0 0.167
calibrated, unsharp pθ(y | x) 0.5 0.5 0.5 0 0
uncalibrated, sharp pθ(y | x) 0.2 0.8 0.4 0.03 0.167
balanced pθ(y | x) 0 0.75 0.75 0 0.125

Examples. To illustrate
the difference between
calibration error (lower
is better) and sharpness
(higher is better), consider
the following binary clas-
sification example: we have a uniform distribution (P(x) = 1/3) over inputs X = {0, 1, 2}. For
x ∈ {0, 1}, y = x with probability 1, and for x = 2, y is either 0 or 1, each with probability 1

2 .

Setting pθ(y | x) ≡ 0.5 would achieve perfect calibration (0) but not sharpness (0). We can get
excellent sharpness (0.167) but suffer in calibration (0.03) by predicting probabilities 0.2, 0.8, 0.4.
We can trade off some sharpness (0.125) for perfect calibration (0) by predicting 0 for x = 0 and
0.75 for x ∈ {1, 2}.

Discretized probabilities. We have assumed so far that the forecaster might return arbitrary prob-
abilities in [0, 1]. In this case, we might need an infinite amount of data to estimate T (x) = E[y |
F (x)] accurately for each value of F (x). In order to estimate calibration and sharpness from finite
data, we use a discretized version of calibration and sharpness. Let B be a partitioning of the interval
[0, 1]; for example B = {[0, 0.1), [0.1, 0.2), . . . }. Let B : [0, 1] → B map a probability p to the
interval B(p) containing p; e.g., B(0.15) = [0.1, 0.2). In this case, we simply redefine T (x) to be
the true probability of y = 1 given that F (x) lies in a bucket: T (x) = E[y | B(F (x))]. It is not hard
to see that discretized calibration estimates form an upper bound on the calibration error (3) [14].

3 Calibration in the Context of Structured Prediction

We have so far presented calibration in the context of binary classification. In this section, we extend
these definitions to structured prediction. Our ultimate motivation is to construct forecasters that
augment pre-trained structured models pθ(y|x) with confidence estimates. Unlike in the multiclass
setting [12], we cannot learn a forecaster Fy : X → [0, 1] that targets P(y | x) for each y ∈ Y
because the cardinality of Y is too large; in fact, the user will probably not be interested in every y.

Events of interest. Instead, we assume that for a given x and associated prediction y, the user is
interested in a set I(x) of events concerning x and y. An event E ∈ I(x) is a subset E ⊆ Y; we
would like to determine the probability P(y ∈ E | x) for each E ∈ I(x). Here are two useful types
of events that will serve as running examples:

1. {MAP(x)}, which encodes whether MAP(x) = argmaxy pθ(y | x) is correct.
2. {y : yj = MAP(x)j}, which encodes whether the label at position j in MAP(x) is correct.

In the OCR example (Figure 1), suppose we predict MAP(x) = “land”. Define the events of
interest to be the MAP and the marginals: I(x) = {{MAP(x)}, {y : y1 = MAP(x)1}, . . . , {y :
yL = MAP(x)L}}. Then we have I(x) = {{“land”}, {y : y1 = “l”}, {y : y2 = “a”}, {y : y3 =
“n”}, {y : y4 = “d”}}. Note that the events of interest I(x) depend on x through MAP(x).

Event pooling. We now define calibration in analogy with (1). We will construct a forecaster
F (x,E) that tries to predict P(y ∈ E | x). As we remarked earlier, we cannot make a statement
that holds uniformly for all events E; we can only make a guarantee in expectation. Thus, let E be
drawn uniformly from I(x), so that P is extended to be a joint distribution over (x, y, E). We say
that a forecaster F : X × 2Y 7→ [0, 1] is perfectly calibrated if

P (y ∈ E | F (x,E) = p) = p. (4)

In other words, averaged over all x, y and events of interest E ∈ I(x), whenever the forecaster
outputs probability p, then the event E actually holds with probability p. Note that this defini-
tion corresponds to perfect binary calibration (1) for the transformed pair of variables y′ = I[y ∈
E], x′ = (x,E). As an example, if I(x) = {{MAP(x)}}, then (4) says that of all the MAP predic-
tions with confidence p, a p fraction will be correct. If I(x) = {{y : yj = MAP(x)j}}Lj=1, then
(4) states that out of all the marginals (pooled together across all samples x and all positions j) with
confidence p, a p fraction will be correct.
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Algorithm 1 Recalibration procedure for calibrated structured prediction.
Input: Features φ(x,E) from trained model pθ, event set I(x), recalibration set S = {(xi, yi)}ni=1.
Output: Forecaster F (x,E).
Construct the events dataset: Sbinary = {(φ(x,E), I[y ∈ E]) : (x, y) ∈ S, E ∈ I(x)}
Train the forecaster F (e.g., k-NN or decision trees) on Sbinary.

The second example hints at an important subtlety inherent to having multiple events in structured
prediction. The confidence scores for marginals are only calibrated when averaged over all positions.
If a user only looked at the marginals for the first position, she might be sorely disappointed. As
an extreme example, suppose y = (y1, y2) and y1 is 0 or 1 with probability 1

2 while y2 ≡ 1. Then
a forecaster that outputs a confidence of 0.75 for both events {y : y1 = 1} and {y : y2 = 1} will
be perfectly calibrated. However, neither event is calibrated in isolation (P(y1 = 1 | x) = 1

2 and
P(y2 = 1 | x) = 1). Finally, perfect calibration can be relaxed; following (3), we may define the
calibration error to be E[(T (x,E)− F (x,E))2], where T (x,E)

def
= P(y ∈ E | F (x,E)).

4 Constructing Calibrated Forecasters

Having discussed the aspects of calibration specific to structured prediction, let us now turn to the
problem of constructing calibrated (and sharp) forecasters from finite data.

Recalibration framework. We propose a framework that generalizes existing recalibration strate-
gies to structured prediction models pθ. First, the user specifies a set of events of interest I(x) as
well as features φ(x,E), which will in general depend on the trained model pθ. We then train a
forecaster F to predict whether the event E holds (i.e. I[y ∈ E]) given features φ(x,E). We train F
by minimizing the empirical `2 loss over a recalibration set S (disjoint from the training examples):
minF

∑
(x,y)∈S

∑
E∈I(x)(F (x,E)− I[y ∈ E])2. Algorithm 1 outlines our procedure.

As an example, consider again the OCR setting in Figure 1. The margin feature φ(x,E) =

log pθ(MAP(1)(x)) − log pθ(MAP(2)(x)) (where MAP(1)(x) and MAP(2)(x) are the first and sec-
ond highest scoring labels for x according to pθ, respectively) will typically correlate with the event
that the MAP prediction is correct. We can perform isotonic regression using this feature on the
recalibration set S to produce well-calibrated probabilities.

In the limit of infinite data, Algorithm 1 minimizes the expected loss E[(F (x,E) − I[y ∈ E])2],
where the expectation is over (x, y, E). By (3), the calibration error E[(T (x,E) − F (x,E))2] will
also be small. If there are not too many features φ, we can drive the `2 loss close to zero with
a nonparametric method such as k-NN. This is also why isotonic regression is sensible for binary
recalibration: we first project the data into a highly informative one-dimensional feature space; then
we predict labels from that space to obtain small `2 loss.

Note also that standard multiclass recalibration is a special case of this framework, where we use the
raw uncalibrated score from pθ as a single feature. In the structured setting, one must invest careful
thought in the choice of classifier and features; we discuss these choices below.

Features. Calibration is possible even with a single constant feature (e.g. φ(x,E) ≡ 1), but
sharpness depends strongly on the features’ quality. If φ collapses points of opposite labels, no
forecaster will be able to separate them and be sharp. While we want informative features, we can
only afford to have a few, since our recalibration set is typically small.

Compared to calibration for binary classification, our choice of features must also be informed
by their computational requirements: the most informative features might require performing full
inference in an intractable model. It is therefore useful to think of features as belonging to one
of three types, depending on whether they are derived from unstructured classifiers (e.g. an SVM
trained individually on each label), MAP inference, or marginal inference. In Section 5, we will
show that marginal inference produces the sharpest features, but clever MAP-based features can do
almost as well.

In Table 1, we propose several features that follow our guiding principles and that illustrate the
computational tradeoffs inherent to structured prediction.
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MAP recalibration on y Marginal recalibration on yj
Type Name Definition Name Definition
none φno

1 : SVM margin minj mrgyj [s
SVM
j (yj)] φno

2 : SVM margin mrgyj [s
SVM
j (yj)]

MAP φmp
1 : Label length |yMAP| φmp

4 : Label freq. % positions j′ labeled yMAP
j

φmp
2 : Admissibility I[yMAP ∈ G(x)] φmp

5 : Neighbors % neighbors j′ labeled yMAP
j

φmp
3 : Margin mrgy[pθ(y | x)] φmp

6 : Label type I[yMAP
j ∈ L(x)]

φmp
7 : Pseudomargin mrgyj [pθ(yj | y

MAP
−j , x)]

Marg. φmg
1 : Margin minj mrgyj [pθ(yj | x)] φmg

2 : Margin mrgyj [pθ(yj | x)]
φmg
3 : Concordance I[yMG

j = yMAP
j ]

Table 1: Features for MAP recalibration (I(x) = {{yMAP(x)}}) and marginal recalibration (I(x) = {{y :
yj = yMAP(x)j}}Lj=1). We consider three types of features, requiring either unstructured, MAP, or marginal
inference. For a generic function f , define mrgaf(a) , f(a(1)) − f(a(2)), where a(1) and a(2) are the top
two inputs to f , ordered by f(a). Let yMG

j , argmaxyj pθ(yj | x); let sSVM
j (yj) be the score of an SVM

classifier predicting label yj . Features φmp
2 and φmp

6 require domain-specific knowledge: defining admissible
sets G(x),L(x). In OCR, G are all English words and L(x) are similar-looking letters. Percentages in φmp

4 and
φmp
5 are relative to all the labels in yMAP.

Region-based forecasters. Recall from (4) that calibration examines the true probability of an
event (y ∈ E) conditioned on the forecaster’s prediction F (x,E) = p. By limiting the number of
different probabilities p that F can output, we can more accurately estimate the true probability for
each p To this end, let us partition the feature space (the range of φ) into regions R, and output a
probability FR ∈ [0, 1] for each region R ∈ R. Formally, we consider region-based forecasters of
the form F (x,E) =

∑
R∈R FRI[φ(x,E) ∈ R], where FR is the fraction of points in region R (that

is, (x,E) for which φ(x,E) ∈ R) for which the event holds (y ∈ E). Note that the partitioning R
could itself depend on the recalibration set. Two examples of region-based forecasters are k-nearest
neighbors (k-NN) and decision trees.

Let us obtain additional insight into the performance of region-based forecasters as a function of
recalibration set size. Let S denote here a recalibration set of size n, which is used to derive a
partitioningR and probability estimates FR for each regionR ∈ R. Let TR , P(y ∈ E | φ(x,E) ∈
R) be the true event probability for region R, and wR , P(φ(x,E) ∈ R) be the probability mass of
region R. We may rewrite the expected calibration error (3) of FR trained on a random S of size n
(drawn i.i.d. from P) as

CalibrationErrorn = ER

[∑
R∈R

wRES [(FR − TR)2 | R]

]
. (5)

We see that there is a classic bias-variance tradeoff between having smaller regions (lower bias,
increased sharpness) and having more data points per region (lower variance, better calibration):

E[(FR − TR)2 | R] = (E[FR | R]− TR)2︸ ︷︷ ︸
bias

+E[(FR − E[FR | R])2 | R]︸ ︷︷ ︸
variance

.

If R is a fixed partitioning independent of S, then the bias will be zero, and the variance is due to
an empirical average, falling off as 1/n. However, both k-NN and decision trees produce biased
estimates FR of TR because the regions are chosen adaptively, which is important for achieving
sharpness. In this case, we can still ensure that the calibration error vanishes to zero if we let the
regions grow uniformly larger: minR∈R |{(x, y) ∈ S : φ(x,E) ∈ R,E ∈ I(x)}| P−→∞.

5 Experiments

We test our proposed recalibrators and features on three real-world tasks.

Multiclass image classification. The task is to predict an image label given an image. This setting
is a special case of structured prediction in which we show that our framework improves over exist-
ing multiclass recalibration strategies. We perform our experiments on the CIFAR-10 dataset [15],
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Figure 2: MAP recalibration in the multiclass and chain CRF settings (left and middle) and marginal
recalibration of the graph CRF (right). The legend includes the `2 loss before and after calibration.
The radius of the black balls reflects the number of points having the given forecasted and true
probabilities.

which consists of 60,000 32x32 color images of different types of animals and vehicles (ten classes
in total). We train a linear SVM on features derived from k-means clustering and that produce high
accuracies (79%) on this dataset [16]. We use 800 out of the 1600 features having the highest mu-
tual information with the label (the drop in performance is negligible). 38,000 images were used for
training, 2,000 for calibration, and 20,000 for testing.

Optical character recognition. The task is to predict the word (sequence of characters) given a
sequence of images (Figure 1). Calibrated OCR systems can be useful for automatic sorting of mail.
This setting demonstrates calibration on a tractable linear-chain CRF. We used a dataset consisting
of∼ 8-character-long words from 150 human subjects [3]. Each character is rasterized into a 16×8
binary image. We chose 2000 words for training and another 2000 for testing. The remaining words
are subsampled in various ways to produce recalibration sets.

Scene understanding. Given an image divided into a set of regions, the task is to label each region
with its type (e.g. person, tree, etc.). Calibrated scene understanding is important for building
autonomous agents that try to take optimal actions in the environment, integrating over uncertainty.
This is a structured prediction setting in which inference is intractable. We conduct experiments on
a post-processed VOC Pascal dataset [5]. In brief, we train a graph CRF to predict the joint labeling
yi of superpixels yij in an image (∼ 100 superpixels per image; 21 possible labels). The input
xi consists of 21 node features; CRF edges connect adjacent superpixels. We use 600 examples
for training, 500 for testing and subsample the remaining ∼ 800 examples to produce calibration
sets. We perform MAP inference using AD3, a dual composition algorithm; we use a mean field
approximation to compute marginals.

Experimental setup. We perform both MAP and marginal calibration as described in Section 3.
We use decision trees and k-NN as our recalibration algorithms and examine the quality of our
forecasts based on calibration and sharpness (Section 2). We further discretize probabilities into
buckets of size 0.1: B = {[ i−110 ,

i
10 ) : i = 1, . . . , 10}.

We report results using calibration curves: For each test point (xi, Ei, yi), let fi = F (xi, Ei) ∈
[0, 1] be the forecasted probability and ti = I[yi ∈ Ei] ∈ {0, 1} be the true outcome. For each
bucket B ∈ B, we compute averages fB = N−1B

∑
i:fi∈B fi and tB = N−1B

∑
i:fi∈B ti, where

NB = |{fi ∈ B}| is the number of points in bucket B. A calibration curve plots the tB as a
function of fB . Perfect calibration corresponds to a straight line. See Figure 2 for an example.

5.1 “Out-of-the-Box” Recalibration

We would first like to demonstrate that our approach works well “out of the box” with very simple
parameters: a single feature, k-NN with k = 100, and a reasonably-sized calibration set. We report
results in three settings: (i) multiclass and (ii) chain CRF MAP recalibration with the margin feature
φmg
1 (Figure 2, left, middle), as well as (iii) graph CRF marginal recalibration with the margin feature
φmg
2 (Figure 2, right). We use calibration sets of 2,000, 1,000, and 300 (respectively) and compare

to the raw CRF probabilities pθ(y ∈ E | x).

6



0.0
0.2
0.4
0.6
0.8
1.0

Uncalibrated : 30.2

0.0
0.2
0.4
0.6
0.8
1.0

Unstructured SVM scores

φno
2 : 15.8

0.0
0.2
0.4
0.6
0.8
1.0

26 character indicators

φ
mp
6 : 16.1

0.0
0.2
0.4
0.6
0.8
1.0

Marginal probabilities

φ
mg
2 : 12.0

0.0
0.2
0.4
0.6
0.8
1.0

Marginal probabilities +
Marginal/MAP agreement

φ
mg
2 , φ

mg
3 : 10.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Per-letter OCR (Chain CRF marginal recalibration);
84% per-letter accuracy using Viterbi decoding

0.0
0.2
0.4
0.6
0.8
1.0

All features : 10.8

0.0
0.2
0.4
0.6
0.8
1.0

Uncalibrated : 21.0

0.0
0.2
0.4
0.6
0.8
1.0

Unstructured SVM scores

φno
1 : 20.5

0.0
0.2
0.4
0.6
0.8
1.0

Length + Presence in dict.

φ
mp
1 , φ

mp
2 : 4.2

0.0
0.2
0.4
0.6
0.8
1.0

Margin between 1st and 2nd
best

φ
mp
3 : 13.1

0.0
0.2
0.4
0.6
0.8
1.0

Lowest marginal probability

φ
mg
1 : 20.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Per-word OCR (Chain CRF MAP recalibration);
45% per-word accuracy using Viterbi decoding

0.0
0.2
0.4
0.6
0.8
1.0

All features : 4.0

0.0
0.2
0.4
0.6
0.8
1.0

Uncalibrated : 67.0

0.0
0.2
0.4
0.6
0.8
1.0

Unstructured SVM scores

φno
2 : 14.7

0.0
0.2
0.4
0.6
0.8
1.0

Pseudomargins

φ
mp
7 : 17.0

0.0
0.2
0.4
0.6
0.8
1.0

Pseudomargins, other MAP
features

φ
mp
4 , φ

mp
5 , φ

mp
7 : 15.4

0.0
0.2
0.4
0.6
0.8
1.0

Marginals, MAP/marg.
concordance

φ
mg
2 : 15.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scene understanding (Graph CRF marginal recalibration);
78% accuracy using mean-field marg. decoding

0.0
0.2
0.4
0.6
0.8
1.0

All features : 14.0

Figure 3: Feature analysis for MAP and marginal recalibration of the chain CRF (left and middle,
resp.) and marginal recalibration of the graph CRF (right). Subplots show calibration curves for
various groups of features from Table 1, as well as `2 losses; dot sizes indicate relative bucket size.

Figure 2 shows that our predictions (green line) are well-calibrated in every setting. In the multiclass
setting, we outperform an existing approach which individually recalibrates one-vs-all classifiers and
normalizes their probability estimates [12]. This suggests that recalibrating for a specific event (e.g.
the highest scoring class) is better than first estimating all the multiclass probabilities.

5.2 Feature Analysis

Next, we investigate the role of features. In Figure 3, we consider three structured settings, and
in each setting evaluate performance using different sets of features from Table 1. From top to
bottom, the subplots describe progressively more computationally demanding features. Our main
takeaways are that clever inexpensive features do as well as naive expensive ones, that features may
be complementary and help each other, and that recalibration allows us to add “global” features to a
chain CRF. We also see that features affect only sharpness.

In the intractable graph CRF setting (Figure 3, right), we observe that pseudomarginals φmp
7 (which

require only MAP inference) fare almost as well as true marginals φmg
2 , although they lack resolution.

Augmenting with additional MAP-based features (φmp
4 , φmp

5 ) that capture whether a label is similar
to its neighbors and whether it occurs elsewhere in the image resolves this.

This synergistic interaction of features appears elsewhere. On marginal chain CRF recalibration
(Figure 3, left), the margin φmg

2 between the two best classes yields calibrated forecasts that slightly
lack sharpness near zero (points with e.g. 50% and 10% confidences will have similarly small
margins). Adding the MAP-marginal concordance feature φmg

3 improves calibration, since we can
further differentiate between low and very low confidence estimates. Similarly, individual SVM and
MAP-based features φno

2 , φ
mp
6 (the φmp

6 are 26 binary indicators, one per character) are calibrated,
but not very sharp. They accurately identify 70%, 80% and 90% confidence sets, which may be
sufficient in practice, given that they take no additional time to compute. Adding features based on
marginals φmg

2 , φmg
3 improves sharpness.

On MAP CRF recalibration (Figure 3, middle), we see that simple features (φmp
1 , φmp

2 ) can fare better
than more sophisticated ones like the margin φmp

3 (recall that φmp
1 is the length of a word; G in φmp

2
encodes whether the word yMAP is in the dictionary). This demonstrates that recalibration lets us
introduce new global features beyond what’s in the original CRF, which can dramatically improve
calibration at no additional inferential cost.
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Figure 4: Calibration error
(blue) and sharpness (green)
of k-NN (left) and decision
trees (right) as a function
of calibration set size (chain
CRF; marginal recalibration).

5.3 Effects of Recalibration Set Size and Recalibration Technique

Lastly, in Figure 4, we compare k-NN and decision trees on chain CRF marginal prediction using
feature φmg

2 . We subsample calibration sets S of various sizes N . For each N and each algorithm
we choose a hyperparameter (minimum leaf size for decision trees, k in k-NN) by 10-fold cross-
validation on S. We tried values between 5 and 500 in increments of 5.

Figure 4 shows that for both methods, sharpness remains constant, while the calibration error de-
creases with N and quickly stabilizes below 10−3; this confirms that we can always recalibrate with
enough data. The decrease in calibration error also indicates that cross-validation successfully finds
a good model for each N . Finally, we found that k-NN fared better when using continuous features
(see also right columns of Figures 2 and 3); decision trees performed much better on categorical
features.

6 Previous Work and Discussion

Calibration and sharpness provide the conceptual basis for this work. These ideas and their con-
nection to l2 losses have been explored extensively in the statistics literature [7, 9] in connection to
forecast evaluation; there exist generalizations to other losses as well [17, 10]. Calibration in the
online setting is a field in itself; see [8] for a starting point. Finally, calibration has been explored
extensively from a Bayesian viewpoint, starting with the seminal work of Dawid [18].

Recalibration has been mostly studied in the binary classification setting, with Platt scaling [11] and
isotonic regression [13] being two popular and effective methods. Non-binary methods typically
involve training one-vs-all predictors [12] and include extensions to ranking losses [19] and com-
binations of estimators [20]. Our generalization to structured prediction required us to develop the
notion of events of interest, which even in the multiclass setting works better than estimating every
class probability, and this might be useful beyond typical structured prediction problems.

Confidence estimation methods play a key role in speech recognition [21], but they require domain
specific acoustic features [1]. Our approach is more general, as it applies in any graphical model
(including ones where inference is intractable), uses domain-independent features, and guarantees
calibrated probabilities, rather than simple scores that correlate with accuracy.

The issue of calibration arises any time one needs to assess the confidence of a prediction. Its im-
portance has been discussed and emphasized in medicine [22], natural language processing [23],
speech recognition [21], meteorology [10], econometrics [9], and psychology [24]. Unlike uncali-
brated confidence measures, calibrated probabilities are formally tied to objective frequencies. They
are easy to understand by users, e.g., patients undergoing diagnosis or researchers querying a prob-
abilistic database. Moreover, modern AI systems typically consist of a pipeline of modules [23]. In
this setting, calibrated probabilities are important to express uncertainty meaningfully across differ-
ent (potentially third-party) modules. We hope our extension to the structured prediction setting can
help make calibration more accessible and easier to apply to more complex and diverse settings.
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