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Abstract. We propose a new incomplete algorithm for the Maximum
Satisfiability (MaxSAT) problem on unweighted Boolean formulas, fo-
cused specifically on instances for which proving unsatisfiability is al-
ready computationally difficult. For such instances, our approach is often
able to identify a small number of what we call “bottleneck” constraints,
in time comparable to the time it takes to prove unsatisfiability. These
bottleneck constraints can have useful semantic content. Our algorithm
uses a relaxation of the standard backtrack search for satisfiability testing
(SAT) as a guiding heuristic, followed by a low-noise local search when
needed. This allows us to heuristically exploit the power of unit propa-
gation and clause learning. On a test suite consisting of all unsatisfiable
industrial instances from SAT Race 2008, our solver, RelaxedMinisat,
is the only (MaxSAT) solver capable of identifying a single bottleneck
constraint in all but one instance.

1 Introduction

In recent years, we have seen tremendous progress in the area of Boolean Satis-
fiability (SAT) solvers. Current solvers can handle instances with over a million
variables and millions of clauses. These advances have led to an ever growing
range of applications, particularly in hardware and software verification, and
planning. In fact, the technology has matured from being a largely academic en-
deavor to an area of research with strong academic and industrial participation.
The current best SAT solvers for handling “structured” instances are based on
Davis-Putnam-Logemann-Loveland (DPLL) style complete search.

Determining whether a Boolean formula is satisfiable or not is a special case
of the maximum satisfiability (MaxSAT) problem, where the goal is to find an
assignment that satisfies as many clauses as possible. Even though MaxSAT is a
natural generalization of SAT, and thus closely related, progress has been much
slower on the MaxSAT problem. There is a good explanation as to why this
is the case. Two of the key components behind the rapid progress for DPLL-
based SAT solvers are highly effective unit propagation and clause learning.
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Both techniques in a sense focus on avoiding local inconsistencies: when a unit
clause occurs in a formula, one should immediately assign the appropriate truth
value to the variable so that it satisfies the clause, and when a branch reaches a
contradiction, a no-good clause can be derived which captures the cause of the
local inconsistency. In a MaxSAT setting, these strategies can be quite counter-
productive and inaccurate. For example, for an unsatisfiable instance, the best
assignment, i.e., one satisfying the most clauses, may be the one that violates
several unit clauses. Also, when a contradiction is reached, the best solution may
be to violate one of the clauses that led to the contradiction rather than adding
a no-good clause which effectively steers the search away from the contradiction.
So, neither unit propagation nor clause learning appear directly suitable for a
MaxSAT solver.1 Unfortunately, taking such mechanisms out of DPLL search
dramatically reduces its effectiveness. This is confirmed when one considers the
performance of exact solvers for MaxSAT that, in effect, employ a branch-and-
bound search but do not have unit propagation or clause learning incorporated.
The MaxSAT instances that can be solved by exact solvers in practice are gen-
erally much smaller than instances that can be handled by SAT solvers [cf. 6].

The question we ask in this work is the following: can traditional SAT solver
techniques like unit propagation and clauses learning be directly used as effective
heuristics for an incomplete MaxSAT algorithm? Our results demonstrate that
the answer is clearly affirmative, as long as the instances are not too easy to
prove unsatisfiable. Specifically, we consider a relaxation of the standard DPLL-
based solver where it is allowed to essentially ignore the first ` conflicts. We
show that this strategy is able to solve challenging industrial MaxSAT instances
that are hard to prove unsatisfiable, specifically all unsatisfiable instances from
SAT Race 2008 [10], better than currently available exact as well as approximate
alternative techniques. In a few of these instances where the candidate MaxSAT
solution found by this approach is sub-optimal, we show that performing a low-
noise (and hence very greedy and fast) local search initiated at this candidate
solution is often results in an optimal MaxSAT solution within seconds.2

Bottleneck Constraints: Interestingly, our approach revealed that the op-
timal solutions for all but one of the unsatisfiable industrial instances from
SAT Race 2008 have only one violated clause. Note that, in contrast, all other
MaxSAT solvers incorrectly suggest that these very instances have hundreds, if
not thousands, of violated clauses in the best MaxSAT solutions. This one clause
can be thought of as a bottleneck constraint whose semantics can sometimes be
used to guide the problem designer towards appropriate additional resources that
may be acquired to turn the instance into a feasible one. Of course, it is unclear
that a bottleneck constraint always provides meaningful semantic information
about additional resources that are realistic to acquire; the violated constraint

1 Unit propagation is used indirectly in many exact MaxSAT solvers to generate good
lower bounds [cf. 6, 8], and so are resolution-based inference mechanisms [6]. We
compare our results against these approaches as well as local search methods.

2 Performing local search also works for instances that are too easy to prove unsatis-
fiable and thus not ideal for us; here our method falls back to pure local search.



could, in principle, be a “frame axiom” or “consistency constraint” enforcing
that the encoding is meaningful.

To investigate this further, we conducted experiments on AI planning in-
stances for which we have full knowledge of the variable and clause semantics.
Specifically, we considered the TPP (Traveling Purchase Problem) domain from
the IPC-5 Competition [3], giving the planner one fewer time step than what it
needs to solve the instance. We translated instances of this infeasible problem
into unsatisfiable SAT formulas following the SatPlan framework [4]. Our solver,
RelaxedMinisat, was able to identify a single violated clause in instances thus
generated. With different random seeds, we obtained a number of different “ex-
planations” of the unsatisfiability of each instance, in the form of a bottleneck
constraint. As an example, in an instance involving 10 goods to be purchased in
various quantities and transported, 1 storage depot, 3 markets, and 3 trucks, a
violated bottleneck constraint had the following precondition-style semantics: “in
order to drive truck-3 from depot-1 to market-2 at time-step-7, truck-3 must be
at depot-1 at the end of time-step-6.” One thing this bottleneck constraint sug-
gests is that there is a plan that “almost” works if the post condition achieved
by the action under consideration is somehow made to hold, i.e., if we could
somehow make a truck available at market-2 at the end of time-step-7. Indeed,
if we add a fourth truck as a new resource at market-2 as part of the initial
conditions, the instance becomes satisfiable in the given time steps.

This suggests that the small number of bottleneck constraints identified by
our approach can provide useful semantic information about potential additional
resources that can make the problem feasible. This information is complemen-
tary to that provided by, for example, “minimal unsatisfiable cores” and related
concepts [cf. 8]. For the specific example discussed above, the minimal unsat core
returned by the zChaff solver involves 522 clauses. For a more detailed discussion
of this motivation, we refer the reader to our recent related work [5].

2 Using Relaxed DPLL as a Heuristic for MaxSAT

Due to lack of space we assume familiarity with Boolean formulas in conjunc-
tive normal form (CNF), the satisfiability testing problem (SAT), the maximum
satisfiability problem (MaxSAT), the standard DPLL style systematic backtrack
search for SAT with conflict clause learning, and basic local search. The reader
may want to refer to the Handbook of Satisfiability [1] for a review.

The idea behind our solver, RelaxedMinisat, is relatively simple: use a state-
of-the-art DPLL solver such as Minisat [2] but relax it to “ignore” a fixed number
` of conflicts on each search branch, and quit once a truth assignment violating
at most ` clauses is found. If necessary, run a low-noise local search initiated at
the partial assignment found by the DPLL solver.

We chose Minisat [2] as the DPLL solver to build on. To implement the one
extra feature we need—allowing up to ` conflicts on a search branch—we slightly
modify the routine performing unit propagation. When a conflict is detected
on a search branch b and it is amongst the first ` conflicts along b, the clause



causing the conflict is silently ignored until the solver later backtracks the closest
branching decision made before getting to this point. All other functionality of
the solver is left intact, including clause learning. If ` conflicts are reached on
the branch b, conflict directed backtracking is performed as usual. It is not hard
to see that the conflict clause C learned at this point has the following property:
if any truth assignment σ satisfies all clauses except the ` conflict generating
clauses seen on branch b, then σ also satisfies C. Adding C as a learned clause
therefore preserves the soundness of the technique. (But C could, in principle,
rule out other potential solutions that violate a different set of ` or fewer clauses;
adding C therefore does not preserve completeness.) If a solution is found before
reaching ` conflicts, this solution is reported as a candidate MaxSAT solution;
this provides an upper bound for the optimal MaxSAT solution. Alternatively,
RelaxedMinisat can return the “UNSAT” status, in which case we increase the
parameter ` to attempt to find some other truth assignment. (The “UNSAT”
status of RelaxedMinisat does not mean that there is no assignment violating
at most ` clauses.) Using binary search, one can find the smallest value of ` for
which RelaxedMinisat does report an assignment; for nearly satisfiable instances
such as the ones with very few bottleneck constraints that we focus on, this is
very quick as ` is small. Experiments suggest that rapid restarting improves the
performance of RelaxedMinisat. We restart after every 100 conflicts.

For some of the harder formulas, the candidate solution found by
RelaxedMinisat was not clearly optimal (i.e., had more than one violated clause).
In this case, we ran the local search solver Walksat [9] (without any modification)
with the search initiated at this candidate truth assignment, looking for a better
solution. Empirically, we observed that rapid restarts are again beneficial, along
with very low noise to make the local search extremely greedy and focused.

3 Experimental Results

We conducted experiments on all 52 unsatisfiable formulas from the SAT-Race
2008 suite [10], which are all non-trivial to prove unsatisfiable and, as we will
see, often beyond the reach of existing MaxSAT solvers. The solvers used in
the comparison were from four families: exact MaxSAT solvers maxsatz [6] and
msuf [8]; local search SAT solvers saps [11] and adaptg2wsat+p [7]; our previous
hybrid approach MiniWalk [5] which tries to combine the power of DPLL and
local search methods; and RelaxedMinisat. We used a cluster of 3.8 GHz Intel
Xeon computers running Linux 2.6.9-22.ELsmp with a time limit of 1 hour (see
two exceptions discussed below) and a memory limit to 2 GB.

The exact MaxSAT solvers selected were those that performed exceptionally
well in MaxSAT Evaluation 2007, especially on industrial instances. The local
search algorithms were selected as the best performing ones on our suite from
a wide pool of choices offered by the UBCSAT solver [12]. Three runs for each
problem and local search algorithm were performed with default parameters (or
those used in the accompanying papers for the solvers, e.g., α = 1.05 for saps),
and the best run is reported.



For RelaxedMinisat, we first run the modified DPLL part allowing at most
one conflict (` = 1), and increase this relaxation parameter when necessary. We
report in Table 1 the final number of unsatisfied clauses reached, followed by, in
parentheses, the relaxation parameter, the time taken by the DPLL part, and
the additional time taken to run the local search part afterwards (if applicable).
In fact, in only 8 instances the DPLL part alone did not find the sure optimum
solution; for these instances we increase ` (not necessarily by one) to the number
reported in the table so that a candidate truth assignment is found. The table
reports the time for the last run of RelaxedMinisat, with the appropriate value
of ` (often 1). On only two instances did RelaxedMinisat require more than one
hour (ibm-2002-22r-k60 and post-c32s-gcdm16-23). For local search, we use the
default quick restarts of Walksat every 100,000 flips. (However, for post-c32s-
col400-16 and post-c32s-gcdm16-23 instances, this was increased to 1 million.)
In all cases the noise parameter for Walksat was set to a low value of 5%.

Table 1 shows that RelaxedMinisat is the only solver able to solve 51 of out 52
instances to optimality. (For aloul-chnl11-13, we know that the optimum is not
1.) Moreover, 39 of these instances, i.e. 76%, were solved in under one minute. In
contrast, the best local search approaches often could not find a solution violating
less than a few hundred or thousand clauses in one hour of computation time.
The hybrid method, MiniWalk, showed better performance but was still unable
to solve to optimality 16 instances out of 52 (i.e., 30% of the instances). These
results demonstrate that our relaxed DPLL solver is able to efficiently identify
bottleneck constraints in challenging unsatisfiable problem instances.
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Table 1. Comparison of MaxSAT results for exact, local search, hybrid, and currently
proposed methods. Timelimit: 1 hour (except for two instance which took two hours).
If a sure optimum was achieved (i.e., one unsatisfied clause), the time is reported in
parenthesis. The RelaxedMinisat column shows the final number of unsatisfied clauses
reached, and in parenthesis the number of allowed conflicts `, time for the DPLL part,
and, if applicable, time for local search.

Exact Local Search Hybrid Relaxed DPLL
#unsat best #unsat best #uns best #unsat

Instance #vars #cls maxsatz Adapt- SAPS MiniWalk RelaxedMinisat
or msuf g2wsat+p

babic-dspam-vc1080 118K 375K — 728 306 20 1 (1,35s,–)
babic-dspam-vc973 274K 908K — 2112 1412 267 1 (4,100s,44s)
ibm-2002-22r-k60 209K 851K — 198 409 10 1 (3,115m,1s)
ibm-2002-24r3-k100 148K 550K — 205 221 2 1 (1,7m,–)
manol-pipe-f7nidw 310K 923K — 810 797 7 1 (1,3m,–)
manol-pipe-f9b 183K 547K — 756 600 177 1 (1,8s,–)
manol-pipe-g10nid 218K 646K — 585 727 27 1 (1,12s,–)
manol-pipe-g8nidw 121K 358K — 356 336 7 1 (1,6s,–)
post-c32s-col400-16 286K 840K — 88 111 698 1 (50,1m,8s)
post-c32s-gcdm16-23 136K 404K — 25 225 127 1 (3,100m,1m)
post-cbmc-aes-ele 277K 1601K — 864 781 2008 1 (1,14s,–)
simon-s03-fifo8-400 260K 708K — 89 289 13 1 (1,11m,–)
aloul-chnl11-13 286 1742 — 4 4 4 4 (4,3s,×)
anbul-dated-5-15-u 152K 687K — 12 22 1 (15m) 1 (1,8s,–)
een-pico-prop05-75 77K 248K — 2 47 1 (4s) 1 (1,2m,–)
fuhs-aprove-15 21K 74K — 35 31 1 (0s) 1 (1,0s,–)
fuhs-aprove-16 52K 182K — 437 246 1 (1s) 1 (1,0s,–)
goldb-heqc-dalumul 9426 60K — 11 10 1 (0s) 1 (1,1s,–)
goldb-heqc-frg1mul 3230 21K — 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
goldb-heqc-x1mul 8760 56K — 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
hoons-vbmc-lucky7 8503 25K — 1 (0s) 3 9 1 (7,27s,36s)
ibm-2002-25r-k10 61K 302K — 111 95 1 (9s) 1 (1,2s,–)
ibm-2002-31 1r3-k30 44K 194K — 78 101 1 (2s) 1 (1,6s,–)
ibm-2004-29-k25 17K 78K — 14 12 1 (6m) 1 (1,5s,–)
manol-pipe-c10nid i 253K 751K — 678 695 1 (20m) 1 (1,13s,–)
manol-pipe-c10nidw 434K 1292K — 1013 1363 1 (16s) 1 (1,37m,–)
manol-pipe-c6bidw i 96K 284K — 239 274 1 (24s) 1 (1,3s,–)
manol-pipe-c8nidw 269K 800K — 697 742 1 (7s) 1 (1,6m,–)
manol-pipe-c9n i 35K 104K — 214 66 1 (3s) 1 (1,0s,–)
manol-pipe-g10bid i 266K 792K — 723 822 1 (103s) 1 (1,18s,–)
post-c32s-ss-8 54K 148K — 1 (2s) 1 (8s) 1 (0s) 1 (1,0s,–)
post-cbmc-aes-d-r2 278K 1608K — 834 734 1 (69s) 1 (1,8s,–)
post-cbmc-aes-ee-r2 268K 1576K — 839 760 1 (37s) 1 (1,12s,–)
post-cbmc-aes-ee-r3 501K 2928K — 1817 1822 1 (37m) 1 (1,47s,–)
schup-l2s-abp4-1-k31 15K 48K — 7 16 1 (0s) 1 (1,2s,–)
schup-l2s-bc56s-1-k391 561K 1779K — 5153 26312 1 (168s) 1 (1,11m,–)
simon-s02-f2clk-50 35K 101K — 1 (110s) 32 1 (12s) 1 (1,17s,–)
velev-vliw-uns-2.0-iq1 25K 261K — 1 (40m) 4 1 (0s) 1 (1,0s,–)
velev-vliw-uns-2.0-iq2 44K 542K — 2 2 1 (1s) 1 (1,1s,–)
velev-vliw-uns-2.0-uq5 152K 2466K — 40 11 1 (18s) 1 (1,4s,–)
velev-vliw-uns-4.0-9-i1 96K 1814K — 12 10 1 (23s) 1 (1,4s,–)
velev-vliw-uns-4.0-9 154K 3231K — 2 3 1 (10s) 1 (1,3s,–)
babic-dspam-vc949 113K 360K 1 (315s) 797 216 250 1 (2,10s,0s)
cmu-bmc-barrel6 2306 8931 1 (19m) 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
cmu-bmc-longmult13 6565 20K 1 (171s) 5 12 1 (1s) 1 (1,0s,–)
cmu-bmc-longmult15 7807 24K 1 (137s) 6 4 1 (5s) 1 (1,0s,–)
een-pico-prop00-75 94K 324K 1 (4m) 23 108 276 1 (2,2m,1s)
goldb-heqc-alu4mul 4736 30K 1 (14m) 1 (105s) 1 (47m) 1 (1s) 1 (1,0s,–)
jarvi-eq-atree-9 892 3006 1 (158s) 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
marijn-philips 3641 4456 1 (336) 1 (0s) 1 (0s) 1 (0s) 1 (1,0s,–)
post-cbmc-aes-d-r1 41K 252K 1 (177s) 7 10 1 (1s) 1 (1,1s,–)
velev-engi-uns-1.0-4nd 7000 68K 1 (76s) 1 (3s) 2 1 (0s) 1 (1,0s,–)


