
Exploiting Schemas in
Data Synchronization

Nate Foster (Penn)
Michael B. Greenwald (Lucent)
Christian Kirkegaard (BRICS)
Benjamin C. Pierce (Penn)

Alan Schmitt (INRIA)



Optimistic Replication

• Many copies of distributed data stored on often

disconnected hosts

• Any copy may be updated at any time

• Hosts occasionally synchronize

– Merging updates that they agree on

– Resolving conflicting updates

Exploiting Schemas in Data Synchronization - 1 NEPLS XV



Optimistic Replication

• Many copies of distributed data stored on often

disconnected hosts

• Any copy may be updated at any time

• Hosts occasionally synchronize

– Merging updates that they agree on

– Resolving conflicting updates

• Many advantages: availability, scalability, quality control

• Main challenge: synchronization

“...based on the optimistic presumption that conflicting updates

are rare, and that the contents are consistent enough with those

on other replicas.” —Saito & Shapiro (2002)

Exploiting Schemas in Data Synchronization - 2 NEPLS XV



Project

Research goal: Facilitate optimistic replication by building a

generic synchronization framework for heterogeneous,

tree-structured data.

This talk: Focus on Harmony’s synchronization algorithm.

• Local: intuitive, easy to predict behavior

• Schema-aware: preserves structural invariants

Exploiting Schemas in Data Synchronization - 3 NEPLS XV



Running Example



XML Address Book

<xcard>

<vcard>

<n>Steve</n>

<org>Stanford</org>

<email>freunds@cs.stanford.edu</email>

</vcard>

<vcard>

<n>Kim</n>

<org>Williams</org>

<email>kim@cs.williams.edu</email>

</vcard>

</xcard>

Exploiting Schemas in Data Synchronization - 4 NEPLS XV



Updated Address Book

<xcard>

<vcard>

<n>Steve</n>

<org>Williams</org>

<email>freund@cs.williams.edu</email>

</vcard>

<vcard>

<n>Kim</n>

<org>Williams</org>

<email>kim@cs.williams.edu</email>

</vcard>

</xcard>

Exploiting Schemas in Data Synchronization - 5 NEPLS XV



Another Update

<xcard>

<vcard>

<n>Kim</n>

<org>Pomona</org>

<email>kim@cs.pomona.edu</email>

</vcard>

<vcard>

<n>Steve</n>

<org>Stanford</org>

<email>freunds@cs.stanford.edu</email>

</vcard>

</xcard>

Exploiting Schemas in Data Synchronization - 6 NEPLS XV



Goal: Synchronized Address Book

<xcard>

<vcard>

<n>Steve</n>

<org>Williams</org>

<email>freund@cs.williams.edu</email>

</vcard>

<vcard>

<n>Kim</n>

<org>Pomona</org>

<email>kim@cs.pomona.edu</email>

</vcard>

</xcard>

Exploiting Schemas in Data Synchronization - 7 NEPLS XV



Data Model



Trees

Harmony’s data model is unordered, edge-labeled trees where

every child of a node has a distinct name.

Equivalently, a tree is a partial function from names to trees.



















email 7→
{

kim@cs.williams.edu 7→{}
}

n 7→
{

Kim 7→{}
}

org 7→
{

Williams 7→{}
}



















Within a tree, we’ll abbreviate k 7→{} as k.

Exploiting Schemas in Data Synchronization - 8 NEPLS XV



Trees

Harmony’s data model is unordered, edge-labeled trees where

every child of a node has a distinct name.

Equivalently, a tree is a partial function from names to trees.



















email 7→
{

kim@cs.williams.edu 7→{}
}

n 7→
{

Kim 7→{}
}

org 7→
{

Williams 7→{}
}



















Within a tree, we’ll abbreviate k 7→{} as k.

Exploiting Schemas in Data Synchronization - 8 NEPLS XV



Lists

Lists are encoded as “cons cells”; the list

[

t1, t2, . . . , tn

]

is represented by



























hd 7→ t1

tl 7→















hd 7→ t2

tl 7→







. . . 7→







hd 7→ tn

tl 7→
{

nil

}





















































Exploiting Schemas in Data Synchronization - 9 NEPLS XV



XML

The XML element

<tag>

subelt1 ... subeltn

</tag>

is represented by the tree



















tag 7→











〈subelt1〉
...

〈subeltn〉





























Exploiting Schemas in Data Synchronization - 10 NEPLS XV



Encoded Address Book

The original XML address book, encoded as a tree:























































xcard 7→





























vcard 7→











n 7→
[

Steve 7→[]
]

org 7→
[

Stanford 7→[]
]

email 7→
[

freunds@cs.stanford.edu 7→[]
]











vcard 7→











n 7→
[

Kim 7→[]
]

org 7→
[

Williams 7→[]
]

email 7→
[

kim@cs.williams.edu 7→[]
]





























































































Exploiting Schemas in Data Synchronization - 11 NEPLS XV



Synchronization: Simple Algorithm



Notation

• names, ranged over by k

• a path p is a sequence of names

• a tree is a finite map from names to trees

• the contents of a tree t at some name k, written t(k), is

either a tree or ⊥

• write T for the set of all trees

• write T⊥ = T ∪ {⊥}

• X is a special tree that marks conflicts in the archive

Exploiting Schemas in Data Synchronization - 12 NEPLS XV



Simple Algorithm

sync ∈ (TX⊥ × T⊥ × T⊥) −→ (TX⊥ × T⊥ × T⊥)

sync(o, a, b) =

if a = b then(a, a, b) – equal replicas: done

else if a = o then (b, b, b) – no change to a

else if b = o then (a, a, a) – no change to b

else if o = X then (o, a, b) – unresolved conflict

else if a = ⊥ then (X , a, b) – delete/modify conflict

else if b = ⊥ then (X , a, b) – delete/modify conflict

else – proceed recursively...

let (o′(k), a′(k), b′(k)) = sync(o(k), a(k), b(k))

∀k ∈ dom(a) ∪ dom(b) in

(o′, a′, b′)

Exploiting Schemas in Data Synchronization - 13 NEPLS XV



Uh oh...

Two problems: (1) entries are not aligned

correctly; (2) synchronizer doesn’t preserve schemas!















































































xcard 7→









































vcard 7→























n 7→
[

Kim 7→[]
]

org 7→





Pomona 7→[]

Williams 7→[]





email 7→





freunds@cs.williams.edu 7→[]

kim@cs.pomona.edu 7→[]



























vcard 7→











n 7→
[

steve 7→[]
]

org 7→
[

Stanford 7→[]
]

email 7→
[

freunds@cs.stanford.edu 7→[]
]

































































































































Exploiting Schemas in Data Synchronization - 14 NEPLS XV



Alignment and Lenses



Alignment

Alignment consists of identifying the parts of each replica that

represent the “same data”. Two approaches:

• Global alignment strategies analyze the entire replica to

come up with a “best alignment”. Usually heuristic (e.g.,

minimizing “edit distance”).

Examples: Diff-based tools.

• Local alignment strategies are simpler; e.g., align the the

children with the same name.

– To be effective, we must pre-align the replicas so that

the common structure is exposed.

Exploiting Schemas in Data Synchronization - 15 NEPLS XV



Alignment

Alignment consists of identifying the parts of each replica that

represent the “same data”. Two approaches:

• Global alignment strategies analyze the entire replica to

come up with a “best alignment”. Usually heuristic (e.g.,

minimizing “edit distance”).

Examples: Diff-based tools.

• Local alignment strategies are simpler; e.g., align the the

children with the same name.

– To be effective, we must pre-align the replicas so that

the common structure is exposed.

Exploiting Schemas in Data Synchronization - 15 NEPLS XV



Lenses

• Can pre-align replicas by transforming them before

synchronization.

– E.g., for XML address books encoded as trees, can

discard order and lift up a key from each entry.

• After synchronization, we must “undo” the transform to

recover the original format.

• Harmony includes a domain-specific language for writing

bi-directional transformations on trees, called lenses.

– Every well-typed program is “well-behaved”.

• (Also facilitates heterogeneous data synchronization.)

Exploiting Schemas in Data Synchronization - 16 NEPLS XV



Synchronization Architecture

Each replica is passed through a lens before and after

synchronization.

S yn c
O r i g BA

A' B'O r i g

Exploiting Schemas in Data Synchronization - 17 NEPLS XV



Pre-aligning with lenses























































xcard 7→





























vcard 7→











n 7→
[

Steve 7→[]
]

org 7→
[

Stanford 7→[]
]

email 7→
[

freunds@cs.stanford.edu 7→[]
]











vcard 7→











n 7→
[

Kim 7→[]
]

org 7→
[

Williams 7→[]
]

email 7→
[

kim@cs.williams.edu 7→[]
]





























































































hoist "xcard"

Exploiting Schemas in Data Synchronization - 18 NEPLS XV



Pre-aligning with lenses





























vcard 7→











n 7→
[

Steve 7→[]
]

org 7→
[

Stanford 7→[]
]

email 7→
[

freunds@cs.stanford.edu 7→[]
]











vcard 7→











n 7→
[

Kim 7→[]
]

org 7→
[

Williams 7→[]
]

email 7→
[

kim@cs.williams.edu 7→[]
]







































hoist "xcard";

List.map (hoist "vcard")

Exploiting Schemas in Data Synchronization - 18 NEPLS XV



Pre-aligning with lenses







































n 7→
[

Steve 7→[]
]

org 7→
[

Stanford 7→[]
]

email 7→
[

freunds@cs.stanford.edu 7→[]
]





















n 7→
[

Kim 7→[]
]

org 7→
[

Williams 7→[]
]

email 7→
[

kim@cs.williams.edu 7→[]
]







































hoist "xcard";

List.map (hoist "vcard";

List.flatten; map(List.hd []; List.hd []))

Exploiting Schemas in Data Synchronization - 18 NEPLS XV



Pre-aligning with lenses















































email 7→
{

freunds@cs.stanford.edu 7→[]
}

n 7→
{

Steve 7→[]
}

org 7→
{

Stanford 7→[]
}





































email 7→
{

kim@cs.williams.edu 7→[]
}

n 7→
{

Kim 7→[]
}

org 7→
{

Williams 7→[]
}















































hoist "xcard";

List.map (hoist "vcard";

List.flatten; map(List.hd []; List.hd [];

map (const {} [])))

Exploiting Schemas in Data Synchronization - 18 NEPLS XV



Pre-aligning with lenses















































email 7→
{

freunds@cs.stanford.edu

}

n 7→
{

Steve

}

org 7→
{

Stanford

}





































email 7→
{

kim@cs.williams.edu

}

n 7→
{

Kim

}

org 7→
{

Williams

}















































hoist "xcard";

List.map (hoist "vcard";

List.flatten; map(List.hd []; List.hd [];

map (const {} []));

pivot "n")

Exploiting Schemas in Data Synchronization - 18 NEPLS XV



Pre-aligning with lenses

















Steve 7→







email 7→
{

freunds@cs.stanford.edu

}

org 7→
{

Stanford

}







Kim 7→







email 7→
{

kim@cs.williams.edu

}

org 7→
{

Williams

}























hoist "xcard";

List.map (hoist "vcard";

List.flatten; map(List.hd []; List.hd [];

map (const {} []));

pivot "n");

List.flatten; map(List.hd [])

Exploiting Schemas in Data Synchronization - 18 NEPLS XV



Pre-aligning with lenses































Kim 7→







email 7→
{

kim@cs.williams.edu

}

org 7→
{

Williams

}







Steve 7→







email 7→
{

freunds@cs.stanford.edu

}

org 7→
{

Stanford

}





































hoist "xcard";

List.map (hoist "vcard";

List.flatten; map(List.hd []; List.hd [];

map (const {} []));

pivot "n");

List.flatten; map(List.hd [])

Exploiting Schemas in Data Synchronization - 18 NEPLS XV



Schema-Aware Synchronization



Mangled Results

The synchronization algorithm is still a bit too eager: it will

often merge changes in ways that yield mangled results.

o =
{

org 7→
{

Williams

}}

a =
{

org 7→
{

UC Santa Cruz

}}

b =
{

org 7→
{

Pomona

}}

a′ = b′ =







org 7→







Pomona

UC Santa Cruz













Exploiting Schemas in Data Synchronization - 19 NEPLS XV



More Difficulties

Similarly, suppose we want every address book entry to contain

either an email address or an organization.

• start with a record containing both email and org

• delete email in one replica

• delete org in the other replica

• note that all three variants satisfy

• now synchronize...

• both deletions get propagated, yielding an ill-formed

result.

Exploiting Schemas in Data Synchronization - 20 NEPLS XV



A Simple Schema-Aware Synchronizer

bettersync(S, o, a, b) =

let (o′, a′, b′) = sync(o, a, b) in

if (a′ 6∈ S) or (b′ 6∈ S)

then (X , a, b) – schema conflict

else (o′, a′, b′)

Exploiting Schemas in Data Synchronization - 21 NEPLS XV



A step too far...

This algorithm is too coarse-grained: A schema conflict

anywhere results in a synchronization failure everywhere!

We need to detect schema violations locally...

Exploiting Schemas in Data Synchronization - 22 NEPLS XV



Final Algorithm

sync(S, o, a, b) =

if a = b then(a, a, b) – equal replicas: done

else if a = o then (b, b, b) – no change to a

else if b = o then (a, a, a) – no change to b

else if o = X then (o, a, b) – unresolved conflict

else if a = ⊥ then (X , a, b) – delete/modify conflict

else if b = ⊥ then (X , a, b) – delete/modify conflict

else – proceed recursively...

let (o′(k), a′(k), b′(k)) = sync(S(k), o(k), a(k), b(k))

∀k ∈ dom(a) ∪ dom(b) in

if (dom(a′) 6∈ doms(S)) or (dom(b′) 6∈ doms(S))

then (X , a, b) – schema conflict

else (o′, a′, b′)

Exploiting Schemas in Data Synchronization - 23 NEPLS XV



Path Consistency

To ensure that we can “project” a schema one a given name,

we need to consider only schemas of a restricted form.

Definition: A schema S is path consistent iff, for all trees

t, t′ ∈ S and paths p, we have

t(p) 6= ⊥ ∧ t′(p) 6= ⊥ =⇒ t[p 7→ t′(p)] ∈ S,

where t[p 7→ t′(p)] is the tree obtained by replacing the subtree

of t at p by the corresponding subtree of t′.

Path-consistent schemas are a “semantic analog” of single-type

tree grammars used in W3C Schema. They are expressive

enough to describe a wide range of examples.

Exploiting Schemas in Data Synchronization - 24 NEPLS XV



Path Consistency

To ensure that we can “project” a schema one a given name,

we need to consider only schemas of a restricted form.

Definition: A schema S is path consistent iff, for all trees

t, t′ ∈ S and paths p, we have

t(p) 6= ⊥ ∧ t′(p) 6= ⊥ =⇒ t[p 7→ t′(p)] ∈ S,

where t[p 7→ t′(p)] is the tree obtained by replacing the subtree

of t at p by the corresponding subtree of t′.

Path-consistent schemas are a “semantic analog” of single-type

tree grammars used in W3C Schema. They are expressive

enough to describe a wide range of examples.

Exploiting Schemas in Data Synchronization - 24 NEPLS XV



Specification

A good synchronizer should...

1. Never “back out” changes

2. Never “make up” contents

3. Stop at conflicting paths (leaving replicas in their current

states)

4. Always leave the replicas in a well-typed form

safety conditions

5. Propagate as many changes as possible without violating

above rules

maximality condition

Exploiting Schemas in Data Synchronization - 25 NEPLS XV



The (Theoretical) Punchline

Theorem: The final (schema-aware) synchronization algorithm

is safe and maximal.

Proof: See paper.

Exploiting Schemas in Data Synchronization - 26 NEPLS XV



The (Practical) Punchline

Bookmark Synchronizer Demo

Exploiting Schemas in Data Synchronization - 27 NEPLS XV



Implementation Status

• Core implementation and several demos running:

– bookmarks (Mozilla, Safari, Internet Explorer)

– XML address books

– structured text

• Unison integration coming soon.

• Public release this summer!

Exploiting Schemas in Data Synchronization - 28 NEPLS XV



Acknowledgments

Collaborators on this work: Michael Greenwald, Christian

Kirkegaard, Benjamin Pierce, and Alan Schmitt.

Other Harmony contributors: Malo Denielou, Owen Gunden,

Sanjeev Khanna, Christian Kirkegaard, Keshav Kunal, Stéphane

Lescuyer, Jonathan Moore, Thang Nguyen, and Zhe Yang.

http://www.cis.upenn.edu/∼bcpierce/harmony

Exploiting Schemas in Data Synchronization - 29 NEPLS XV


