
Network Design Considerations for Trading Systems
Andy Myers

Jane Street
New York, NY, USA

amyers@janestreet.com

Brian Nigito
Jane Street

New York, NY, USA
bnigito@janestreet.com

Nate Foster
Cornell and Jane Street

Ithaca, NY, USA
jnfoster@cs.cornell.edu

ABSTRACT
The quest to build scalable data center networks has driven
much of the innovation in the networking community in
recent decades. But the one-size-fits-all service model offered
by these networks does not meet the needs of every appli-
cation. In response, cloud providers have started to design
custom clusters to support the specialized workloads used in
finance, AI, high-performance computing, and other areas.
This paper pulls back the curtain on one such area: the

low-latency networks used for algorithmic trading systems.
We present requirements and architectures, and discuss im-
plementation approaches that make different trade-offs in
terms of performance, hardware requirements, and ease of
management. We identify concrete steps for making it easier
to design low-latency networks in the future.

CCS CONCEPTS
• Networks→ Network design principles; Bridges and
switches.

KEYWORDS
Network architecture, low-latency, trading systems.
ACM Reference Format:
Andy Myers, Brian Nigito, and Nate Foster. 2024. Network Design
Considerations for Trading Systems. In The 23rd ACM Workshop
on Hot Topics in Networks (HOTNETS ’24), November 18–19, 2024,
Irvine, CA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3696348.3696890

1 INTRODUCTION
Over the past few decades, the networking community has
developed powerful techniques for implementing scalable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696890

data center networks. Building on ideas like Clos topologies,
commodity switches, and software-defined control planes,
modern data center networks are able to deliver increasing
amounts of bandwidth to hosts, while keeping cost, power
utilization, and operational complexity manageable [23, 25].

But while data center networks are an undeniable success,
their one-size-fits-all service model does not meet the needs
of every application. For instance, the networks used in the
finance industry require low latency and features that go
beyond what data center networks provide. Financial ex-
changes need fair networks that deliver market data to all
participants simultaneously. Trading firms need low-latency
networks to implement competitive trading strategies, as
well as large numbers of multicast groups and precise times-
tamps. But rather than evolving to provide these features,
equipment vendors have been shifting toward larger, more
programmable pipelines that sacrifice latency and determin-
ism to obtain bandwidth and flexibility, driven by large equip-
ment purchases by hyperscalers. Hence, there is a growing
gap between the requirements of the finance industry and
the capabilities of commodity network hardware.
To better understand the unique challenges that arise in

financial networks, consider typical algorithmic trading sys-
tems. At a high level, they use custom, proprietary strategies
to process the market data feeds coming from one or more
exchanges and submit orders to those exchanges. There are
many ways to implement a trading system, but the most im-
portant requirement is to be fast—the likelihood that an order
will be profitable rapidly decays as the market data it was
based on becomes stale. Some firms build trading systems
that operate at the physical limits for communication—e.g.,
deploying algorithms on specialized hardware directly con-
nected to exchanges. These systems are limited mostly by
the speed of light, and can execute trades in 10s to 100s
of nanoseconds. Other firms build systems that operate at
slower timescales but are nevertheless profitable, being based
on a deeper analysis of current market conditions. But even
for these slower trading systems, latency matters.
The unique requirements of trading systems illustrates

some fundamental challenges for network designers. Most
firms use multiple machines to perform trading, with each
machine implementing a potentially different strategy. Some
strategies only analyze a subset of the feed—e.g., orders in-
volving a certain symbol—while others consume market data

282

https://orcid.org/0009-0006-9966-6559
https://orcid.org/0009-0009-5027-8573
https://orcid.org/0000-0002-6557-684X
https://doi.org/10.1145/3696348.3696890
https://doi.org/10.1145/3696348.3696890
https://doi.org/10.1145/3696348.3696890


HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Andy Myers, Brian Nigito, and Nate Foster

from several feeds. Hence, it is helpful to have a network that
can split and merge feeds from several exchanges. To mini-
mize processing time, some trading firms filter and normalize
the raw feeds coming from each exchange so each machine
can execute its strategy directly on the relevant market data.
Normalizing the market data also avoids having to perform
certain common processing steps redundantly on multiple
machines. To determine whether market data from a remote
exchange is up to date, strategies often rely on precise times-
tamps. Timestamps are also used for conducting simulations
after the trading day has ended, and for analyzing the per-
formance of new strategies being developed.
This paper pulls back the curtain on architectures and

requirements for trading systems. We present three possible
network designs: one using commodity switches, another
using cloud-hosted infrastructure, and a third using layer-1
switches. Our goal is to draw attention to some of the unique
challenges that arise in this domain and help identify direc-
tions for future work. We believe these insights will be of
broad interest as cloud networks are gradually shifting away
from one-size-fits-all service models, which have driven in-
novation in architectures, hardware, and protocols over the
past few decades, to new models that better accommodate
the specific requirements of emerging domains.

Our focus in this paper is on the low-latency networks that
support trading systems, rather than financial exchanges, for
a few reasons. First, exchanges are primarily concerned with
fairness rather than latency—i.e., a “slow” exchange that
operates at the higher latency guarantees offered by public
clouds will generally work fine, provided it delivers market
data to and accepts orders from all participants in the same
manner. Second, the design space for networks to support
trading is larger—trading firms are willing to experiment
with non-standard approaches and bleeding-edge hardware
if it gives them an advantage. Finally, network support for
financial exchanges has already been well-studied in prior
work [14, 15].

The rest of this paper is structured as follows. We present
an in-depth overview to the design and implementation of
trading systems (§ 2) and study trends in workloads and
commodity hardware (§ 3). We explore three designs for
trading networks, as summarized above (§ 4). Finally, we
analyze pain points, suggest opportunities for the research
community, discuss related work, and conclude (§ 5).

2 BACKGROUND ON TRADING SYSTEMS
There are a wide range of techniques used to execute trades
in the finance industry, but in this paper we will focus on
highly-automated, algorithmic trading. The algorithms that
execute trades, which we will call “strategies,” choose prices
to buy and sell based on market data from the exchanges as

well as other inputs. It is common to use strategies that ana-
lyze combined market data received from many exchanges
and send orders to many exchanges. Being able to perform
these operations quickly is critical to implementing effective
strategies. Opportunities in the market are fleeting, in part
because many firms often compete to make the same trades.
Repricing orders as quickly as possible is also critical because
exchanges will continue matching with an old order’s price
until it is updated, making trades that are no longer desired.

Competitive latencies vary from strategy to strategy. Sim-
pler strategies tend to be more latency sensitive—at nanosec-
ond timescales, with only a small number of possible oper-
ations, there are few ways other than latency to compete.
As Deutsche Börse group has observed, some strategies re-
spond to events within 10’s to 100’s of nanoseconds [10].
Other strategies tend to involve more complex decisions on
more inputs, which can move the competitive frontier from
nanoseconds to microseconds and beyond.
Trading firms buy and sell various financial instruments

(e.g. stocks, ETFs, futures, and options) on hundreds of ex-
changes worldwide. In the United States, there are currently
16 equities exchanges [8], 18 options exchanges [22], as well
as a number of other exchanges for futures and other asset
classes. Exchanges receive orders from participants, match
up compatible buy and sell orders (“trades”), and disseminate
a real-time feed of orders and trades (“market data”).

To minimize speed-of-light delays, trading firms co-locate
their servers in the same data centers as the exchanges’ sys-
tems. Trading on all U.S. equities markets requires placing
servers in three different co-location facilities (“colos”) that
are tens of miles apart (see Figure 1(a)). Space in these co-
los is often over-subscribed (see Figure 1(b)) so it is usually
important to minimize a firm’s total hardware footprint.
Strategies often analyze market data from different ex-

changes, many of which are in remote colos. To transport
data between colos, trading firms operate private WANs
and carefully manage circuits to minimize latency. Some
firms employ microwave or laser links to reduce latency
further [20]. Microwave links are used even though they
are both less reliable (e.g., rain can cause packet loss) and
offer less bandwidth than corresponding fiber links. Feeds
are not particularly bandwidth intensive, but they can and
do burst to full line rate. Bursts across different feeds are
often correlated because the underlying market conditions
are related—e.g., the announcement of a new government
regulation might cause the value of symbols in a sector to
shift, in both equities and options markets.
Within a co-location facility (see Figure 1(b)), there are

areas ("cages") dedicated to the exchange as well as the vari-
ous trading firms. Each trading firm has one or more private,
dedicated connections ("cross-connects") to the exchange,

283



Network Design Considerations for Trading Systems HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

Carteret
NASDAQ, PSX, BX,

ISE, GEMX, MRX

Mahwah
NYSE, AMEX, ARCA,

National, Chicago

Secaucus
CBOE, Box, MEMX

LTSE, MIAX

Wall Street

Links to exchange 
and other sites

Servers

Patch panel & 
spine switches

Metropolitan Region
(a)

Colocation Facility
(b)

Cage
(c)

Server
(d)

Operating
System

Trading
Strategy #1

Trading
Strategy #2

Trading
Strategy #3

SSH & 
Management

Normalized
Market Data

Orders

Exchange

Firm A
Cage

Firm C
Cage

Firm B
Cage

Firm D
Cage

Firm E
Cage

Firm F
Cage

Firm G
Cage

Market Data
Normalizers

Order
Gateways

Trading
Strategies

Figure 1: Architecture of a typical trading system. (a) Exchanges are located in “co-location facilities” around the world. Even
exchanges in the same region are often miles apart. (b) Co-location facilities allow trading firms to rent one or more “cages”
and connect directly to the exchange. (c) Within a cage, a trading firm has racks of servers and switches. Availability of space
and power impose practical restrictions. (d) Separate server cores are used for the operating system and for strategies and other
functions and separate NICs are used for remote management, market data, and orders.

usually via 10 Gbps Ethernet. Usually the exchange guaran-
tees that all connections will be latency-equalized so that the
location of a firm’s cage in the data center does not affect the
latency of its connection to the exchange. This connection
is managed via standard routing protocols (e.g., BGP).

The cross-connects contain both the market data feed for
the exchange as well as the orders that the trading firm sends
to the exchange. Both use highly-optimized, stateful proto-
cols to minimize delays caused by queueing or serialization.
Market data is sent via UDP over IP multicast, often with
multiple individual update messages packed into each packet
for efficiency—e.g. PITCH [9]. Often exchanges will partition
this feed across multiple multicast groups. Each exchange
chooses its own binary formats and multicast partitioning
scheme. Some exchanges partition based on the name of the
instrument (e.g. alphabetical by stock ticker’s first letter),
while others partition based on the type of instrument (e.g.
equities on one group, ETF’s on another).

Orders are sent via long-lived (e.g., 6+ hours) TCP connec-
tions initiated from the trading firm’s servers to endpoints
on servers inside the exchange’s infrastructure. Again, each
exchange can choose its own format and protocol for this (e.g.
BOE [7]). The protocols allow for operations such as entering
a new order, canceling an existing order, or modifying the
price or size of an order. The exchange sends back acknowl-
edgements for state changes, rejects for invalid requests (e.g.
sending an order with an invalid ticker), and fills to indi-
cate that an open order has traded with another participant.
These protocols often exhibit races—e.g. if a firm’s request
to cancel an order is sent at the same time as a notification
that the order has been filled.

Within a cage (see Figure 1(c)), trading firms divide their
trading applications into multiple components, partitioning
both by the instruments being traded and by function. A
potential decomposition would be to have three types of
functions: market data normalizers, strategies, and order en-
try gateways. The normalizer’s purpose is to convert from
each exchange’s format to an internal standard format, and
also to re-partition the data, again according to some stan-
dard. To scale to a large number of recipients, normalizers
send the data via IP multicast. Strategies subscribes to nor-
malizers and implement the custom algorithms that decide
which orders to send. Each strategy has a TCP connection
to one or more gateways. The purpose of the gateway is to
translate from internal order entry formats back to the proto-
cols that the exchanges use. Because the strategy algorithms
can be computationally expensive, there are many more
servers dedicated to strategies than to either normalizers or
gateways. The servers (see Figure 1(d)) have dedicated cores
for each type of system, and separate NICs for management,
market data feeds, and orders.
For both monitoring and research, trading firms want to

record their network traffic with precise timestamps. Times-
tamps are used to calculate a strategy’s latency by subtracting
the time at which the strategy sends an order from the time
at which the strategy’s most recent input event arrived. For
research, precise timestamps are necessary for understand-
ing the ordering of market data events. Some trading firms
desire precision below 100 picoseconds [27].

3 WORKLOAD & HARDWARE TRENDS
Due to the competitive nature of the finance industry, specific
details about the inner-workings of trading systems, such as

284



HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Andy Myers, Brian Nigito, and Nate Foster

Feed min avg median max
Exchange A 73 92 89 1514
Exchange B 64 113 76 1067
Exchange C 81 151 101 1442

Table 1: Frame lengths from market data feeds

architectures, hardware, and latency, are generally hard to
obtain. Nevertheless, this section presents some broad trends
that are relevant to the design of trading systems. We begin
by covering some aspects of market data workloads and dis-
cussing how these workloads have affected trading system
design. We then discuss the evolution of switches with re-
spect to their latency and support for multicast—aspects that
have a direct bearing on trading system performance.

Growth of Market Data. Trading systems process large
volumes of data—millions of transactions per second from
each exchange. Figure 2(a) depicts the growth in market
data events for US equities and options markets over the
last 5 years. We focus on these markets in particular because
they have exhibited dramatic growth in data volumes, but
we have observed similar growth elsewhere. Note that the
arrival rates are variable, even at the granularity of individual
days, but also high in absolute terms. The plot shows tens
of billions of events per day, which works out to an average
rate of more than 500k events per second. We have observed
burst rates over smaller timescales that are at least an order
of magnitude larger. Also, the number of events has been
growing over time. A trading system must be designed for
current workloads and also have capacity to grow.
The bandwidth required for market data is surprisingly

small. As discussed earlier, market data is encoded using
efficient binary formats. Table 1 shows typical packet sizes
for a sample of frame lengths from the middle of the trading
day. Though each feed is slightly different, all encode their
data efficiently. Note that lengths in the table are inclusive of
Ethernet, IP, and UDP headers. Across all feeds, 40 bytes of
network headers (plus another 8-16 bytes of protocol-specific
headers) represent 25%-40% of the data sent.

Figure 2(b) zooms in to show options market data events
for a single stock on a single day. The market data events
have been filtered to just those that affect the best bid and
offer prices or sizes on any of the 18 options exchanges.
Each point represents a count of events in a 1 second long
window. Options on this stock trade from 9:30am to 4:00pm,
with little to no activity outside of this range. The median
second has over 300k events, and the busiest second contains
1.5M events. During that busy second, to be able to process
a single second’s events as quickly as they arrive, a trading
systemwould need to be able to process each event in around

650 nanoseconds—a feasible performance target, though a
challenge for even well-tuned software implementations.
Figure 2(c) again shows market data events for just the

busiest second from the previous figure, aggregating events
into 100microsecondwindows. Themedian 100microsecond
interval contains 129 events, and the busiest interval contains
1066 events. For a trading system to keep up with this peak
workload requires processing at 100 nanoseconds per event—
i.e., a software system would have little time to perform any
operations beyond copying data into memory.

Implications for trading systems. To handle the burstywork-
loads associated with market data, trading system are par-
titioned so that no single component needs to process all
events. A variety of partitioning schemes are possible—e.g.
dividing the workload by asset class, exchange, stock, or
combinations thereof. A key design choice is where to fil-
ter out the market data that will not be used by a partition.
One option is to filter in the same process as the trading sys-
tem itself. Intuitively, if the combined time spent discarding
data and the time spent processing data is larger than the
arrival rate, then filtering should happen outside the trading
system—either on another core on the same server or on a
middlebox. When several systems employ the same parti-
tioning scheme, middleboxes can be more efficient in terms
of the number of cores used. IP multicast is often used as the
transport for the partitioned data as it scales well with the
number of receivers.
Partitioning allows a strategy to scale with changes in

market data load. The number of partitions can be scaled
up as the volume of market data increases—e.g. because of
growth in events, the opening of a new exchange [21], or
as new functionality is incorporated into a strategy. The
number of partitions may also decrease when the strategy is
optimized or simplified. However, the recent trend has been
toward larger numbers of partitions—e.g., for one represen-
tative strategy, the number of partitions roughly doubled
from around 600 to over 1300 over the past two years.

Next we will discuss how recent trends in switch hardware
are at odds with the desire to scale via partitioning.

Latency Trends. Scaling to process high volumes of data
while achieving low-latency imposes tight constraints on net-
work hardware. However, while commodity switches have
roughly doubled the amount of bandwidth with each suc-
cessive generation, they have not made significant improve-
ments in latency. In fact, latency has been slowly increasing,
which is not surprising: as vendors have created more so-
phisticated and flexible hardware pipelines to provide the
features used in data centers, minimum latency has gone
up, even for simple pipelines in cut-through mode. While
some vendors do offer specialized low-latency switches, they
often have reduced table sizes or lack other features, which

285



Network Design Considerations for Trading Systems HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

(a) U.S. options and equities event
count by day

(b) Options events for a single stock on
a single day

(c) Options events in busiest second of
the day (single stock)

makes them unsuitable for trading systems. Compared to
the models of switches that were deployed a decade ago,
switches today have around 20% higher latency, at roughly
500 nanoseconds. Meanwhile, latency for a hop through a
software host has been decreasing over time and is now
below 1 microsecond [11]—i.e., for an empty “ping pong”
application. Hence, network latency is a large and increasing
share of total system latency.

Multicast Trends. Support for multicast has also not im-
proved in recent network devices. This fact is not surprising—
implementing multicast in hardware is fundamentally hard.
Switchesmustmaintain a hop-by-hop flow table (the “mroute
table”) using dedicated memory on the switch ASIC to avoid
creating loops. Internal, ASIC-specific tables are often not
well-documented, and can sometimes overflow, even when
using the configuration APIs endorsed by vendors. When
a table overflows, switches generally fall back to software
forwarding, which cripples performance and induces heavy
packet loss. Experience with several generations of switches
from multiple vendors has shown that while bandwidth is
steadily increasing, the number of multicast groups is flat
or increasing marginally. As Figure 2(a) shows, market data
has increased 500% over the last 5 years. However, the latest
generation of switches supports only 80% more mulitcast
groups than earlier generations. Finally, alternatives such as
end-system multicast [16] are not applicable to trading sys-
tems as the cost of receiving and re-forwarding data would
be prohibitively high.

4 DESIGNS FOR TRADING NETWORKS
This section explores the design space for low-latency trad-
ing networks. To keep the discussion grounded, we focus on
three concrete designs that can be realized on current hard-
ware. The first uses the traditional building blocks for data

centers: spine-leaf topologies and commodity switches. This
design is flexible and can support a large number of hosts,
but has shortcomings in terms of latency. The second uses
public cloud infrastructure, enhanced to equalize latency
across all tenants. The cloud has obvious advantages, but
current proposals lack the ability to aggregate information
across multiple servers and remote exchanges. The third uses
Layer-1 switches, which trade off the ability to implement
certain forms of packet processing for better latency.

In terms of scale, our aim will be to support a network of
roughly 1,000 servers running normalizers, gateways and
strategies. Each function is implemented using a subset of
the servers: a few dozen each for normalizers and gateways
and the rest for strategies. We will assume that the average
latency of each function is less than 2 microseconds.1

4.1 Design 1: Traditional Switches
Consider a standard leaf-and-spine topology, where each
rack of servers has a top-of-rack (ToR) switch and there is
another layer of switches to connect the ToRs. We will dedi-
cate one ToR to connect to the exchanges, so every host on
the network is equidistant from the exchange. This ToR also
provides a convenient place to enforce policy such as fire-
wall rules. To calculate routes, we will use a standard Layer-3
protocol. As is well known, this design can be scaled out to
essentially arbitrary sizes, while providing ample bandwidth
to each host [2, 25]. The major issue is that the latency in-
curred by the network is high. A reasonable design would
group servers with common functions by rack, in which
case, a round trip (exchange, normalizer, strategy, gateway,
and back to the exchange) would involve 12 switch hops
and 3 software hops. Assuming each switch hop incurs 500
nanoseconds of latency, half of the overall time through the
1Of course, tail latency matters too, but we’ll focus on average latency.

286



HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Andy Myers, Brian Nigito, and Nate Foster

system is spent in the network!We could try to reduce switch
hops by placing servers in more optimal ways, but in our sys-
tem, the distribution of normalizers, trading strategies, and
order gateways is not uniform, so we could only optimize
placement for a few strategies and the majority would not
benefit. And, as we have remarked, the number of multicast
groups that the switches support would be lower than we
would want for partitioning strategies.

4.2 Design 2: The Cloud
Another approach is to rely on cloud networks that have
been carefully engineered to equalize latency, thereby en-
suring fairness for all tenants. As discussed in recent pa-
pers [14, 15], these networks assume a model in which (i) the
cloud provider manages the network, (ii) the connections
to/from the exchange support multicast and can be effec-
tively equalized with respect to latency, (iii) virtual latency
equalization (for machines owned by the cloud provider)
and physical latency equalization (for co-located machines
owned by a trading firm) are approximately equivalent.
However, while cloud-based designs are a reasonable ap-

proach for smaller, isolated trading systems, it is still unclear
how to use them at scale. Large-scale trading systems re-
quire support for broad internal communication, both to
disseminate market data to strategies, and to satisfy regu-
lations associated with equities and options. For instance,
the US Security and Exchange Commission (SEC) imposes
rules that prohibit advertising prices that “lock” (i.e., where
a bid on one exchange equals the asking price on another
exchange) or “cross” (i.e., where a bid on one exchange is
higher than the asking price on another exchange), as well
as “trading through” (i.e., trading at prices worse than those
advertised at other markets). Firms also track metrics akin
to a firm-wide net position, for regulatory reasons and to
assess risk.
So while the cloud offers impressive flexibility and scala-

bility, current proposals for relocating exchanges and trading
systems to clouds have significant challenges at scale. On the
one hand, if both exchanges and the machines used for trad-
ing are hosted in the cloud and connected via fair networks
that offer latency equalization, then latency for communica-
tion beyond the cloud will be excessive. On the other hand,
if the cloud only hosts the exchange and trading firms co-
locate their own infrastructure, then each firm will still need
to build a separate network to support trading—i.e., using one
of the designs considered in this section. Overall, the need
for broad internal communication, regulatory requirements,
and performance considerations make traditional network-
ing solutions more suitable for trading networks. Of course,
as technology evolves, hybrid solutions that better address
these challenges may emerge.

4.3 Design 3: Layer-1 Switches
If designs based on commodity switches are too slow, it’s
natural to consider Layer-1 switches (L1Ses), which operate
at the opposite end of the functionality vs. latency spectrum.
Devices such as the Arista 7130 [3] are essentially circuit
switches and cannot implement packet classification and
filtering, nor can they split traffic across multiple paths.2
Despite these limitations, L1Ses have several attractive fea-
tures relevant to trading systems: (i) they can forward traffic
from any input port to any set of output ports with only
5-6 nanoseconds of latency; (ii) they have built-in accurate
timestamping; and (iii) they can merge traffic from multiple
input interfaces onto a single output interface, at the expense
of an additional 50 nanoseconds of latency.
To use L1Ses in a trading system, one would essentially

construct four different networks between each of: exchanges
and normalizers, normalizers and strategies, strategies and
gateways, and gateways and exchanges. Such a network can
be configured to deliver traffic in nanoseconds to essentially
arbitrary sets of hosts, at two orders of magnitude lower
latency than commodity switches. The main issue that arises
with L1S-based networks is interface proliferation: it is fea-
sible to deliver each normalizer’s output to every rack or
even every strategy server. If a strategy wants to process the
digested feeds coming from the normalizers, then it either
needs a separate NIC for each feed, or the feeds must be
merged into a feed that can be consumed by a single NIC.
Either approach has limitations: adding extra NICs to

servers does not scale, while merging feeds creates bottle-
necks. Recall that market data is bursty, so merged feeds
can easily exceed the available bandwidth, leading to latency
from queuing or packet loss. An analogous problem arises
with commodity switches—e.g., suppose a trading strategy
subscribes to too many multicast groups, resulting in conges-
tion. The difference is that with L1Ses, the feeds are coarser-
grained, and cannot be as easily reconfigured. A practical
workaround for NIC proliferation is to restrict the total num-
ber of normalizers each trading strategy can subscribe to. But
the effect of limiting subscriptions would be that the normal-
izers cannot be partitioned as widely, leading to increased
latency and reduced performance.

5 OPEN PROBLEMS AND RELATED WORK
As we have seen, none of the current approaches to build-
ing networks fully satisfy the requirements of trading firms.
Prior work has investigated some aspects of this problem [1,
5, 6, 13, 19], but we argue that solving it requires a more com-
prehensive effort, rethinking the design of the entire network

2Some commercial L1Ses include an FPGA that can implement additional
features such as packet classification and filtering, at the cost of increased
latency.

287



Network Design Considerations for Trading Systems HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

from the bottom up. Taking inspiration from the push toward
deep programmability [12] motivated by the requirements
of the cloud—e.g., SDN controllers, programmable switches
and NICs, custom transport protocols, etc.—we present some
possible directions for future work on low-latency networks.

Hardware. The attractive latency characteristics of L1Ses
are a promising foundation for trading systems, even though
their features are limited compared to commodity switches.
Are there capabilities we could add to L1Ses to increase their
functionality without slowing them down too much? Any
feature that results in queueing is unlikely to be helpful, but it
is possible to add support for filtering and splitting feeds, and
load balancing across multiple forwarding paths. Already
several commercial L1Ses take advantage of accelerators
based on reconfigurable hardware [26]. These devices appear
to offer the best of both worlds—100-nanosecond latency
and standard IP forwarding and multicast—although they
tend to have small forwarding tables. Such switches could
also be configured to combine data arriving on multiple
interfaces, thereby reducing the proliferation of interfaces.
Applied naively, merging would lead to queueing or packet
loss. But when combined with other ideas, such as header
compression or data filtering, it should be possible to safely
merge feeds while avoiding these issues.

Protocols. Most trading systems rely on standard trans-
port protocols, as they have ubiquitous support in hardware
and software, and are well-understood by network opera-
tors. However, at 10Gbps, processing the Ethernet, IP, and
TCP headers costs 40 nanoseconds, even though strategies
routinely ignore most if not all of the data in these headers.
Similarly, orders are usually just a few bytes long—26 bytes
for a new order and 14 bytes for an order cancellation on
PITCH [9]—so the overhead of standard protocol headers
is excessive. It seems fruitful to consider designing custom
transport protocols for use in trading systems. One could
also imagine designing custom transport protocols with the
constraints of L1Ses in mind—e.g., exposing information that
can be used for filtering or load balancing.

Routing. Routing is one of the oldest areas in networking,
but the heavy use of multicast based on application-level data
in trading networks brings new dimensions to consider. How
can we design routing schemes that deliver relevant market
data to strategies? By co-designing the algorithm used to
transform raw market data to normalized feeds as well as
the mapping from feeds to multicast groups, can we achieve
a more efficient design? In situations where the optimal solu-
tions are not feasible how can we approximate? How can we
incorporate the constraints induced by the placement of taps
and capture appliances? There are potential synergies with
some work in pub-sub systems [18], and in content-centric

and named-data networking [17], although the latency con-
straints in trading networks suggest that the underlying
mechanisms would look different. Wide-area routing based
on speed-of-light networking is also relevant [4].

Cluster Management. Cloud computing has shown that
it is beneficial to automate provisioning, placement, and
scaling of network services [24]. Can we develop the same
kinds of systems for trading networks? Such a system would
need to optimize latency above other criteria, but would also
need to take into account bandwidth as well as constraints
induced by the application level (e.g., connecting a strategy
to a particular normalized feed). A related problem is how
to migrate a given job from one server to another. The jobs
in trading networks run on bare metal servers, so there are
likely to be subtle differences compared to to prior work on
virtual machines and containers.

Outlook. It is not surprising that the technologies devel-
oped for cloud computing do not meet the needs of trad-
ing systems. We argue it is time to explore a new research
agenda focused on the constraints in low-latency networks,
cutting across layers to redesign hardware, protocols, routing
schemes, cluster management, and more.

ACKNOWLEDGMENTS
The authors wish to thank the HotNets reviewers, Jasper
Chapman-Black, Al Esposito, Oliver Gugenheim, Andrew
Redmon, and Yaron Minsky for helpful feedback. We are
also grateful to Dave Maltz and Jennifer Rexford for early
discussions on designing networks for trading systems.

REFERENCES
[1] Andrew Addison, Charles Andrews, Newas Azad, Daniel Bardsley,

John Bauman, Jeffrey Diaz, Tatiana Didik, Komoliddin Fazliddin, Maria
Gromoa, Ari Krish, Ryan Prins, Larry Ryan, and Nicole Villette. 2019.
Low-Latency Trading in the Cloud Environment. In IEEE International
Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing (EUC).
272–282. https://doi.org/10.1109/CSE/EUC.2019.00060

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.
A Scalable, Commodity Data Center Network Architecture. In ACM
SIGCOMM Conference on Data Communication (SIGCOMM). 63–74.
https://doi.org/10.1145/1402958.1402967

[3] Arista Networks. 2021. The Arista 7130 Series. https://www.arista.
com/assets/data/pdf/7130-product-overview.pdf Retrieved June 24,
2024.

[4] Debopam Bhattacherjee, Waqar Aqeel, Sangeetha Abdu Jyothi,
Ilker Nadi Bozkurt, William Sentosa, Muhammad Tirmazi, Anthony
Aguirre, Balakrishnan Chandrasekaran, P. Brighten Godfrey, Gre-
gory Laughlin, Bruce Maggs, and Ankit Singla. 2022. cISP: A Speed-
of-Light Internet Service Provider. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). 1115–1133. https:
//www.usenix.org/conference/nsdi22/presentation/bhattacherjee

[5] Debopam Bhattacherjee, Waqar Aqeel, Gregory Laughlin, Bruce M.
Maggs, and Ankit Singla. 2020. A Bird’s Eye View of the World’s

288

https://doi.org/10.1109/CSE/EUC.2019.00060
https://doi.org/10.1145/1402958.1402967
https://www.arista.com/assets/data/pdf/7130-product-overview.pdf
https://www.arista.com/assets/data/pdf/7130-product-overview.pdf
https://www.usenix.org/conference/nsdi22/presentation/bhattacherjee
https://www.usenix.org/conference/nsdi22/presentation/bhattacherjee


HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Andy Myers, Brian Nigito, and Nate Foster

Fastest Networks. In ACM Internet Measurement Conference (IMC).
521–527. https://doi.org/10.1145/3419394.3423620

[6] Andrew Brook. 2015. Low-latency Distributed Applications in Finance.
Communications of the ACM (CACM) 58, 7 (June 2015), 42–50. https:
//doi.org/10.1145/2747303

[7] Cboe Global Markets. 2024. US Equities Exchange Binary Order Spec-
ification. https://cdn.cboe.com/resources/membership/Cboe_US_
Equities_BOE_Specification.pdf

[8] Cboe Global Markets. 2024. US Equities Market Share. https://www.
cboe.com/us/equities/market_share/

[9] Cboe Global Markets. 2024. US Equities/Options Mul-
ticast Depth of Book (PITCH) Specification. https:
//cdn.cboe.com/resources/membership/US_EQUITIES_OPTIONS_
MULTICAST_PITCH_SPECIFICATION.pdf

[10] Deutsche Börse Group. 2023. Insights into Trading System
Dynamics. https://www.eurex.com/resource/blob/48918/
e8d4df56f75c9a96fb0f6fff6b18a14f/data/presentation_insights-
into-trading-system-dynamics_en.pdf Retrieved June 24, 2024.

[11] Advanced Micro Devices. 2023. Onload User Guide. https://docs.amd.
com/r/en-US/ug1586-onload-user Version UG1586.

[12] Nate Foster, Nick McKeown, Jennifer Rexford, Guru Parulkar, Larry
Peterson, and Oguz Sunay. 2020. Using Deep Programmability to Put
Network Owners in Control. ACM SIGCOMM Compututer Communi-
cations Review (CCR) 50, 4 (Oct. 2020), 82–88. https://doi.org/10.1145/
3431832.3431842

[13] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosunblum, and Amin Vahdat. 2018. Exploiting a Natural Network
Effect for Scalable, Fine-grained Clock Synchronization. In SENIX
Conference on Networked Systems Design and Implementation (NSDI).
81–94. https://www.usenix.org/conference/nsdi18/presentation/geng

[14] Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenxingyu Zhao,
Radhika Mittal, and Ranveer Chandra. 2023. DBO: Fairness for
Cloud-Hosted Financial Exchanges. In ACM SIGCOMM Conference
on Data Communication (SIGCOMM). 550–563. https://doi.org/10.
1145/3603269.3604871

[15] Muhammad Haseeb, Jinkun Geng, Ulysses Butler, Xiyu Hao, Daniel
Duclos-Cavalcanti, Anirudh Sivaraman, and Srinivas Narayana. 2024.
Design and Implementation of a Scalable Financial Exchange in the
Public Cloud. https://arxiv.org/abs/2402.09527

[16] Yang hua Chu, S.G. Rao, S. Seshan, and Hui Zhang. 2002. A Case for
End-system Multicast. IEEE Journal on Selected Areas in Communi-
cations (JSAC) 20, 8 (2002), 1456–1471. https://doi.org/10.1109/JSAC.
2002.803066

[17] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. 2009. Networking Named
Content. In International Conference on Emerging Networking Exper-
iments and Technologies (CoNEXT). Association for Computing Ma-
chinery, New York, NY, USA, 1–12. https://doi.org/10.1145/1658939.

1658941
[18] Theo Jepsen, Ali Fattaholmanan, Masoud Moshref, Nate Foster, Anto-

nio Carzaniga, and Robert Soulé. 2022. Forwarding and Routing With
Packet Subscriptions. IEEE/ACM Transactions on Networking (ToN) 30,
6 (May 2022), 2464–2479. https://doi.org/10.1109/TNET.2022.3172066

[19] John W. Lockwood, Adwait Gupte, Nishit Mehta, Michaela Blott,
Tom English, and Kees Vissers. 2012. A Low-Latency Library in
FPGA Hardware for High-Frequency Trading (HFT). In IEEE An-
nual Symposium on High-Performance Interconnects (HOTI). 9–16.
https://doi.org/10.1109/HOTI.2012.15

[20] McKay Brothers. 2024. Low Latency Microwave. https://www.mckay-
brothers.com/

[21] Miami International Holdings. 2024. Miami International Hold-
ings Announces Successful Launch of MIAX Sapphire Options Ex-
change. https://www.miaxglobal.com/news/miami-international-
holdings-announces-successful-launch-miax-sapphire

[22] Options Clearing Corporation. 2023. Participant Exchanges & Fu-
tures Markets. https://www.theocc.com/clearance-and-settlement/
participant-exchanges

[23] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukar-
ram Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Con-
ner, Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong
Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei Urata,
Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou, and
Amin Vahdat. 2022. Jupiter Evolving: Transforming Google’s Data-
center Network via Optical Circuit Switches and Software-Defined
Networking. In ACM SIGCOMM Conference on Data Communication
(SIGCOMM). Association for Computing Machinery, New York, NY,
USA, 66–85. https://doi.org/10.1145/3544216.3544265

[24] Kexin Rong, Mihai Budiu, Athinagoras Skiadopoulos, Lalith Suresh,
and Amy Tai. 2023. Scaling a Declarative Cluster Manager Archi-
tecture with Query Optimization Techniques. Proceedings of the
VLDB Endowment (VLDB) 16, 10 (June 2023), 2618–2631. https:
//doi.org/10.14778/3603581.3603599

[25] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In ACM SIGCOMM Conference on
Data Communication (SIGCOMM). 183–197. https://doi.org/10.1145/
2785956.2787508

[26] Greg Stitt, Wesley Piard, and Christopher Crary. 2024. Low-Latency,
Line-Rate Variable-Length Field Parsing for 100+ Gb/s Ethernet. In
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA). 12–21. https://doi.org/10.1145/3626202.3637559

[27] Zuotian Tatum. 2020. From Instant to Eternity - Challenges in Data
Engineering. https://www.youtube.com/watch?v=pe6Gh_fi3Wc
YouTube video.

289

https://doi.org/10.1145/3419394.3423620
https://doi.org/10.1145/2747303
https://doi.org/10.1145/2747303
https://cdn.cboe.com/resources/membership/Cboe_US_Equities_BOE_Specification.pdf
https://cdn.cboe.com/resources/membership/Cboe_US_Equities_BOE_Specification.pdf
https://www.cboe.com/us/equities/market_share/
https://www.cboe.com/us/equities/market_share/
https://cdn.cboe.com/resources/membership/US_EQUITIES_OPTIONS_MULTICAST_PITCH_SPECIFICATION.pdf
https://cdn.cboe.com/resources/membership/US_EQUITIES_OPTIONS_MULTICAST_PITCH_SPECIFICATION.pdf
https://cdn.cboe.com/resources/membership/US_EQUITIES_OPTIONS_MULTICAST_PITCH_SPECIFICATION.pdf
https://www.eurex.com/resource/blob/48918/e8d4df56f75c9a96fb0f6fff6b18a14f/data/presentation_insights-into-trading-system-dynamics_en.pdf
https://www.eurex.com/resource/blob/48918/e8d4df56f75c9a96fb0f6fff6b18a14f/data/presentation_insights-into-trading-system-dynamics_en.pdf
https://www.eurex.com/resource/blob/48918/e8d4df56f75c9a96fb0f6fff6b18a14f/data/presentation_insights-into-trading-system-dynamics_en.pdf
https://docs.amd.com/r/en-US/ug1586-onload-user
https://docs.amd.com/r/en-US/ug1586-onload-user
https://doi.org/10.1145/3431832.3431842
https://doi.org/10.1145/3431832.3431842
https://www.usenix.org/conference/nsdi18/presentation/geng
https://doi.org/10.1145/3603269.3604871
https://doi.org/10.1145/3603269.3604871
https://arxiv.org/abs/2402.09527
https://doi.org/10.1109/JSAC.2002.803066
https://doi.org/10.1109/JSAC.2002.803066
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1109/TNET.2022.3172066
https://doi.org/10.1109/HOTI.2012.15
https://www.mckay-brothers.com/
https://www.mckay-brothers.com/
https://www.miaxglobal.com/news/miami-international-holdings-announces-successful-launch-miax-sapphire
https://www.miaxglobal.com/news/miami-international-holdings-announces-successful-launch-miax-sapphire
https://www.theocc.com/clearance-and-settlement/participant-exchanges
https://www.theocc.com/clearance-and-settlement/participant-exchanges
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.14778/3603581.3603599
https://doi.org/10.14778/3603581.3603599
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/3626202.3637559
https://www.youtube.com/watch?v=pe6Gh_fi3Wc

	Abstract
	1 Introduction
	2 Background on Trading Systems
	3 Workload & Hardware Trends
	4 Designs for Trading Networks
	4.1 Design 1: Traditional Switches
	4.2 Design 2: The Cloud
	4.3 Design 3: Layer-1 Switches

	5 Open Problems and Related Work
	Acknowledgments
	References

