Network Design Considerations for Trading Systems

Andy Myers

Brian Nigito

Nate Foster

Latency is key to competitive trading

Competitive trading strategies: a continuum

Scaling Up: Across Multiple Sites

Idea: get more sophisticated strategy by processing data from multiple exchanges

- Co-locate servers with each exchange 100s to 1000s of servers per site
- Connect colos with low-latency links Trading firms sometimes use exotic links (e.g. shortwave, microwave)
- Need packet capture and timestamps For research, tick to order, etc.

Non-standard network requirement: heavy use of multicast to deliver (normalized) market data to relevant trading strategies

Workload Trends

Growth of Market Data

- Market Data
 - Steadily growing over time
 200B / day in 2024
- Key contributors
 - New exchangesGrowth in option markets
- Impact for trading systems

 Must spread processing across multiple servers

Events per day in US markets

Zooming In: Options Contracts for One Stock

Over entire trading day Single CPU budget ≈ 600ns / event

During busiest second Single CPU budget ≈ 100ns / event

Scaling up to match the growth in workloads

Bigger network Larger multicast tables More switch hops

How have commodity switches evolved?

- Bandwidth: increased 10x 😀
- Multicast Capacity: increased, but only 80%
- Latency: increased by 20% 😥

Possible Ways Forward

Idea #1: Commodity Switches

Issue: network latency becomes significant (say, at ~500ns per hop)

Idea #2: Cloud-Hosted Trading Systems

Idea: if commodity switches are too slow, can we somehow build a fair network?

Proposals for cloud-hosted exchanges:

- DBO [SIGCOMM '23]
- CME, Nasdaq
- Cloud provider equalizes latency

Q: Do these proposals solve the problem?A: Unfortunately, not yet!

Key Requirements:

- Low-latency connectivity to remote sites
- Broad internal connectivity, including multicast

Idea #3: Layer 1 Switches

Layer 1 Switches

- "Crosspoint" switches that can realize arbitrary topologies (including multicast)
- Achieves incredible latency: single-digit nanoseconds!
- But cannot filter, split, merge traffic, so we'd need lots of NICs 💎

A Research Agenda for Low-Latency Networks

Hot Take: Over the past few decades, networking research has largely been driven by the needs of hyperscalers (and now AI).

Question: What would we do differently if we took low-latency seriously?

- Hardware: can we augment Layer 1 switches with just *slightly* more capabilities to make them more useful?
- Protocols: can we co-design protocols and hardware to enable flexible processing while keeping latency low?
- **Routing:** what would routing schemes look like if they took multicast more seriously? Is there a space for content-centric approaches?
- Cluster Management: can we control placement to optimize for latency without sacrificing flexibility and scalability

Network Design Considerations for Trading Systems

Andy Myers

Brian Nigito

Nate Foster

