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We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific

language for specifying the behavior of network data planes. Our results extend the techniques obtained in

prior work on symbolic automata and provide a framework for building efficient and scalable verification

tools. We present KATch, an implementation of these ideas in Scala, featuring an extended set of NetKAT

operators that are useful for expressing network-wide specifications, and a verification engine that constructs

a bisimulation or generates a counter-example showing that none exists. We evaluate the performance of

our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and

slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than

previous approaches. Our advancements underscore NetKAT’s potential as a practical, declarative language

for network specification and verification.
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1 INTRODUCTION
In the automata-theoretic approach to verification, programs and specifications are each encoded as

automata, and verification tasks are reduced to standard questions in formal language theory—e.g.,
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membership, emptiness, containment, etc. [44]. The approach became popular in the mid-1980s,

driven by use of temporal logics and model checking in hardware verification, and it remains a

powerful tool today. In particular, automata provide natural models of phenomena like transitive

closure, which arises often in programs but is impossible to express in pure first-order logic.

NetKAT, a domain-specific language for specifying and verifying the behavior of network data

planes, is a modern success story for the automata-theoretic approach. NetKAT programs denote

sets of traces (or “histories”) where a trace is the list of packets “seen” at each hop in the network.

The NetKAT language specifies these traces using a regular expression-like syntax, as follows:

𝑝, 𝑞 F ⊥ | ⊤ | 𝑓 =𝑣 | 𝑓 ≠𝑣 | 𝑓 �𝑣 | dup | 𝑝 + 𝑞 | 𝑝 · 𝑞 | 𝑝★

Unlike ordinary regular expressions, which are stateless, NetKAT programs manipulate state

in packets. Accordingly, NetKAT’s atoms are not letters, but actions that either drop or forward

the current packet (⊥ or ⊤), modify a header field (𝑓 � 𝑣), test a header field against a value (𝑓 =𝑣 ,

𝑓 ≠ 𝑣), or append the current packet to the trace (dup). The regular expression operations copy

and forward a packet to two different programs (𝑝 + 𝑞), sequence two programs (𝑝 · 𝑞), or loop a

program (𝑝★ ≡ ⊤ + 𝑝 + 𝑝 ·𝑝 + 𝑝 ·𝑝 ·𝑝 + · · · ).
A NetKAT program thus gives a declarative specification of the network’s global behavior in

terms of sets of traces. Specifically, we can model the location of a packet in the network using

a special header field (usually named sw for “switch”), that we can update (sw� ℓ) to logically

move the packet from its current location to a new location ℓ . Given a declarative description of the

intended behavior, the NetKAT compiler generates a set of local forwarding tables for individual

switches that together realize the global behavior [20, 37].

Moreover, NetKAT not only plays a role as an implementation language, but also as a language for

expressing verification queries, analogous to verification tools powered by SMT solvers [3, 31, 43].

In particular, as NetKAT includes a union operator (“+”), containment can be reduced to program

equivalence—i.e., 𝑝 ⊑ 𝑞 if and only if 𝑝 + 𝑞 ≡ 𝑞. Hence, unlike other contemporary tools, which

rely on bespoke encodings and algorithms for checking network properties like reachability, slice

isolation, etc. [19, 26, 27, 46], NetKAT allows a wide range of practical verification questions to be

answered using the same foundational mechanism, namely program equivalence. For example,

• Network Reachability: Are there any packets that can go from location 121 to 543 in the

network specified by the NetKAT program net? Formally: (sw�121) · net★ · (sw = 543) ?≡ ⊥
• Slice Isolation: Are slices net1 and net2 logically disjoint, even though their implementation

on shared infrastructure uses the same devices? Formally: net
★
1
+ net★

2

?≡ (net1 + net2)★

NetKAT’s dup primitive is a key construct that enables reducing a wide range of network-specific

properties to program equivalence. Recall that dup appends the headers of the current packet to the

trace. Hence, to verify properties involving the network’s internal behavior, we add intermediate

packets to the trace using dup, making them relevant for program equivalence. Conversely, if

we only care about the input-output behavior of the entire network, we can omit dup from the

specification, so intermediate packets are not considered by the check for program equivalence.

The story so far is appealing, but there is a major fly in the ointment. To decide program

equivalence, the automata-theoretic approach relies on the translation from NetKAT programs to

automata. But standard NetKAT automata have an enormous space of potential transitions—i.e., the

“alphabet” has a “character” for every possible packet. So using textbook algorithms for building

automata and checking equivalence would clearly be impractical. In fact, NetKAT equivalence is

PSPACE-complete [1]. Instead, what’s needed are symbolic techniques for encoding the state space

and transition structure of NetKAT automata that avoid combinatorial blowup in the common case.
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Prior work on symbolic automata provides a potential solution to the problems that arise when

workingwith large (or even infinite) alphabets. The idea is to describe the transitions in the automata

using logical formulas [16, 17] or Binary Decision Diagrams (BDDs) [36] rather than concrete

characters. Algorithms such as membership, containment, and equivalence can then be reformulated

to work with these symbolic representations. Symbolic automata have been successfully applied

to practical problems such as building input sanitizers for Unicode, which has tens of thousands

of characters [24]. However, NetKAT’s richer semantics precludes the direct adoption of standard

notions of symbolic automata. In particular, NetKAT’s transitions describe not only predicates but

also transformations on the current packet. As Pous writes, it “seems feasible” to generalize his

work to NetKAT, but “not straightforward” [36].

In this paper, we close this gap and develop symbolic techniques for checking program equiva-

lence for NetKAT. In doing so, we address three key challenges:

Challenge 1: Expressive but Compact Symbolic Representations. The state space and transitions

of NetKAT automata are very large due to the way the “alphabet” is built from the space of all

possible packets. Orthogonally, these characters also encode packet transformations, as reflected in

NetKAT’s packet-processing semantics. It is crucial that the symbolic representations for NetKAT

programs be compact and admit efficient equivalence checks.

Challenge 2: Extended Logical Operators. In the tradition of regular expressions, NetKAT only

includes sequential composition (𝑒1 ·𝑒2) and union operators (𝑒1 +𝑒2)—the latter computes the union

of the sets of traces described by 𝑒1 and 𝑒2. However, when verifying network-wide properties it is

often useful to have operators for intersection (𝑒1∩𝑒2), difference (𝑒1 \𝑒2), and symmetric difference

(𝑒1 ⊕ 𝑒2). Having native support for these operators at the level of syntax and in equivalence

checking algorithms allows the reduction of all verification queries to an emptiness check—e.g.,

𝐴 ≡ 𝐵 reduces to 𝐴 ⊕ 𝐵 ≡ ⊥, and 𝐴 ⊑ 𝐵 reduces to 𝐴 \ 𝐵 ≡ ⊥.

Challenge 3: Support for Counter-Examples. When an equivalence check fails, it can be hard to

understand the cause of the failure, and which changes might be needed to resolve the problem. It

is therefore important to be able to construct symbolic counter-examples that precisely capture the

input packets and traces that cause equivalence to fail.

In addressing the above challenges, we make the following technical contributions:

Contribution 1: Efficient symbolic representations (Section 3). We design a symbolic data

structure called Symbolic Packet Programs (SPPs) for representing both sets of packets and trans-

formations on packets in a symbolic manner. SPPs generalize classic BDDs and are asymptotically

more efficient than the representations used in prior work on NetKAT. In particular, SPPs support

efficient sequential composition (𝑒1 · 𝑒2) and can be made canonical which, with hash consing,

allows us to check equivalence of SPPs in constant time.

Contribution 2: Symbolic Brzozowski derivatives (Section 4). We introduce a new form of

symbolic Brzozowski derivative to produce automata for NetKAT programs. Our approach naturally

and efficiently supports the extended “negative” logical operators mentioned above, in contrast to

prior approaches that only support “positive” operators like union.

Contribution 3: Symbolic bisimilarity checking (Section 5). Building on the foundation

provided by SPPs and deterministic NetKAT automata, we develop symbolic algorithms for checking

bisimilarity. We present a symbolic version of the standard algorithm that searches in the forward

direction through the state space of the automata under consideration. We also present a novel
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Syntax Description Semantics

𝑝, 𝑞 F J𝑝K(𝛼 :Pk) : P(Pk+) =
| ⊥ False ∅
| ⊤ True {𝛼}
| 𝑓 =𝑣 Test equals if 𝛼 𝑓 = 𝑣 then {𝛼} else ∅
| 𝑓 ≠𝑣 Test not equals if 𝛼 𝑓 ≠ 𝑣 then {𝛼} else ∅
| 𝑓 � 𝑣 Modification {𝛼 [𝑓 � 𝑣]}
| dup Duplication {𝛼𝛼}
| 𝑝 + 𝑞 Union J𝑝K(𝛼) ∪ J𝑞K(𝛼)
| 𝑝 · 𝑞 Sequencing {ab | a𝛽 ∈ J𝑝K(𝛼), b ∈ J𝑞K(𝛽)}
| 𝑝★ Iteration

⋃
𝑛≥0

J𝑝𝑛K

Values 𝑣 F 0 | 1 | . . . | 𝑛 Fields 𝑓 F 𝑓1 | . . . | 𝑓𝑘 Packets 𝛼 F {𝑓1 = 𝑣1, . . . , 𝑓𝑘 = 𝑣𝑘 }

Fig. 1. NetKAT syntax and semantics.

backward algorithm that computes symbolic counter-examples to equivalence—i.e., the precise set

of input packets for which equivalence fails.

Contribution 4: KATch implementation (Section 6) and evaluation (Section 7). Finally, we
present a new verification tool, called KATch, implemented in Scala. KATch implements symbolic

bisimilarity checking, including an extended set of extended logical operators, as well as symbolic

counter-examples. We evaluate the performance of KATch on a variety of real-world topologies,

and show that it efficiently answers a variety of verification queries and scales to much larger

networks than prior work. Due to its use of our efficient data structures, KATch is several orders of

magnitude faster than prior implementations of NetKAT on these realistic examples. Moreover,

KATch is faster than prior work on synthetic combinatorial benchmarks by arbitrary large factors.

2 NETKAT EXPRESSIONS AND AUTOMATA
This section reviews basic definitions forNetKAT to set the stage for the new contributions presented

in the subsequent sections. NetKAT is a language for specifying the packet-forwarding behavior of

network data planes [1, 22, 37].
1
The syntax and semantics of NetKAT is presented in Figure 1, and

is based on Kozen’s Kleene Algebra with Tests (KAT) [29].

To a first approximation,NetKAT can be thought of as a simple, imperative language that operates

over packets, where a packet is a finite record assigning values to fields. The basic primitives in

NetKAT are packet tests (𝑓 =𝑣 , 𝑓 ≠𝑣) and packet modifications (𝑓 �𝑣). Program expressions are

then compositionally built from tests and packet modifications, using union (+), sequencing (·), and
iteration (★). Conditionals and loops can be encoded in the standard way:

if 𝑏 then 𝑝 else 𝑞 ≜ 𝑏 · 𝑝 + ¬𝑏 · 𝑞 while 𝑏 do 𝑝 ≜ (𝑏 · 𝑝)★ · ¬𝑏.
In a network, conditionals can be used to model the behavior of the forwarding tables on individual

switches while iteration can be used to model the iterated processing performed by the network as

a whole; the original paper on NetKAT provides further details [1]. Note that assignments and tests

1
Networks have a control plane, which computes paths through the topology using distributed routing protocols (or a

software-defined networking controller), and a data plane, which implements paths using high-speed hardware and software

pipelines. NetKAT models the behavior of the latter.
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in NetKAT are always against constant values. This is a key restriction that makes equivalence

decidable and aligns with the capabilities of data plane hardware. The dup primitive makes a copy

of the current packet and appends it to the trace, which only ever grows as the packet goes through

the network. This primitive is crucial for expressing network-wide properties, as it allows the

semantics to “see” the intermediate packets processed on internal switches.

NetKAT’s formal semantics, given in Figure 1, defines the action of a program on an input packet

𝛼 , producing a set of output traces. The semantics for ⊤ gives a single trace containing the single

input packet 𝛼 , whereas ⊥ produces no traces. Tests (𝑓 = 𝑣 and 𝑓 ≠ 𝑣) produce a singleton trace

or no traces, depending on whether the test succeeds or fails. Modifications (𝑓 � 𝑣) produce a

singleton trace with the modified packet. Duplication (dup) produces a single trace with two copies

of the input packet. Union (𝑝 + 𝑞) produces the union of the traces produced by 𝑝 and 𝑞. Sequential

composition (𝑝 · 𝑞) produces the concatenation of the traces produced by 𝑝 and 𝑞, where the last

packet in output traces of 𝑝 is used as the input to 𝑞. Finally, iteration (𝑝★) produces the union of

the traces produced by 𝑝 iterated zero or more times. Consider the following example:

(𝑥 =0 · 𝑥�1 · dup + 𝑥 =1 · 𝑥�0 · dup)★

This program repeatedly flips the value of 𝑥 between 0 and 1, and traces the packet at each step.

On input packet 𝑥 =0, it produces the following traces:

{[𝑥 =0], [𝑥 =0, 𝑥 =1], [𝑥 =0, 𝑥 =1, 𝑥 =0], [𝑥 =0, 𝑥 =1, 𝑥 =0, 𝑥 =1], . . .}

Consider what happens if we change the program to (𝑥 =0 · 𝑥�1 · dup + 𝑥�0 · dup)★. Unlike the
previous example, where the tests were disjoint, this program can generate multiple outputs for

a given input packet, as the right branch of the union can always be taken, leading to sequences

𝑥 =0, 𝑥 =0, . . .. On the other hand, if the 𝑥�1 assignment is performed, then the left branch cannot

be taken the next time, because the test 𝑥 =0 will fail. Hence, the program produces traces with

sequences of 𝑥 =0 packets, with singular 𝑥 =1 packets between them.

As these simple examples show, despite the fact that assignments and tests in NetKAT pro-

grams are always against constant values, the behavior of NetKAT programs can be complicated,

particularly when conditionals, iteration, and multiple packet fields are involved.

Traditional presentations of NetKAT distinguish a syntactic test fragment that includes negation:

𝑡, 𝑟 F ⊥ | ⊤ | 𝑓 =𝑣 | 𝑡 ∨ 𝑟 | 𝑡 ∧ 𝑟 | ¬𝑡 (Test fragment)

𝑝, 𝑞 F 𝑡 | 𝑓 � 𝑣 | 𝑝 + 𝑞 | 𝑝 · 𝑞 | dup | 𝑝★ (General expressions)

This distinction is necessary because negation ¬𝑝 only makes sense on the test fragment. We

replace general negation ¬𝑡 in our presentation with only negated field tests 𝑓 ≠𝑣 . There is no loss

of generality—we translate a test fragment expression 𝑡 to [𝑡]0 using the DeMorgan rules:

[⊥]0 = ⊥
[⊤]0 = ⊤

[𝑓 =𝑣]0 = (𝑓 =𝑣)

[𝑡 ∨ 𝑟 ]0 = [𝑡]0 + [𝑟 ]0
[𝑡 ∧ 𝑟 ]0 = [𝑡]0 · [𝑟 ]0
[¬𝑡]0 = [𝑡]1

[⊥]1 = ⊤
[⊤]1 = ⊥

[𝑓 =𝑣]1 = (𝑓 ≠𝑣)

[𝑡 ∨ 𝑟 ]1 = [𝑡]1 · [𝑟 ]1
[𝑡 ∧ 𝑟 ]1 = [𝑡]1 + [𝑟 ]1
[¬𝑡]1 = [𝑡]0

Conditional dup, equivalence, and subsumption. An interesting feature of NetKAT is that dup need

not appear the same number of times on all paths through the expression. Consider the program

(𝑓 � 𝑣 + 𝑓 � 𝑤 + dup)★, which either sets field 𝑓 to 𝑣 or to𝑤 , or logs the packet to the trace, and

then repeats. Any number of writes can happen between two dups, and only the effect of the last

write before the dup gets logged to the trace. This is allowed and fully supported by KATch.

The use of dup controls the type of equivalence that is checked. If we insert a dup after every

packet field write, then we obtain trace equivalence. If we insert no dups whatsoever, we obtain
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Input: A pair of NetKAT automata (𝑆, 𝑠0, 𝛿, 𝜖), (𝑆 ′, 𝑠′0, 𝛿 ′, 𝜖′).
Returns: A Boolean indicating whether the automata are equivalent.

𝑊 ← {(𝑠0, 𝑠′0, 𝛼) | 𝛼 ∈ Pk};
while𝑊 changes do

for (𝑠, 𝑠′, 𝛼) ∈𝑊 do
if 𝜖 (𝑠, 𝛼) ≠ 𝜖′ (𝑠′, 𝛼) then return false;
𝑊 ←𝑊 ∪ {(𝛿 (𝑠, 𝛼) (𝛼 ′), 𝛿 ′ (𝑠′, 𝛼) (𝛼 ′), 𝛼 ′) | 𝛼 ′ ∈ Pk}

return true;

Fig. 2. Bisimulation algorithm à la Hopcroft & Karp [25]

input-output equivalence. By inserting dups in some places but not others, we can control the

equivalence that is checked in a fine-grained manner.

In addition to 𝑝 ≡ 𝑞, we may want to check inclusion 𝑝 ⊑ 𝑞. This can be expressed as 𝑝 +𝑞 ≡ 𝑞 or

equivalently, in KATch, as 𝑝 \ 𝑞 ≡ ⊥. As before, the number of dups controls the type of inclusion

that is checked: from trace inclusion to input-output inclusion, or something in between.

2.1 NetKAT Automata
NetKAT’s semantics induce an equivalence (𝑝 ≡ 𝑞) ≜ (J𝑝K = J𝑞K) on syntactic programs. This

equivalence is decidable, and can be computed by converting programs to automata and checking

for automata equivalence. To convert NetKAT programs to automata, the standard approach is to

use Antimirov derivatives. We do not give the details here, but the interested reader can find them

in [22], and for our symbolic automata, in Section 4. We continue with a brief overview of NetKAT

automata and how to check their equivalence. A NetKAT automaton (𝑆, 𝑠0, ⟨𝜖, 𝛿⟩) consists of a set
of states 𝑆 , a start state 𝑠0, and a pair of functions that depend on an input packet:

𝜖 : 𝑆 × Pk→ 2
Pk 𝛿 : 𝑆 × Pk→ 𝑆Pk

Intuitively, the observation function 𝜖 is analogous to the notion of a final state, and models the

output packets produced from an input packet at a given state. The transition function 𝛿 models

the state transitions that can occur when processing an input packet at a given state. Because

transitions can modify the input packet, the transition structure 𝛿 (𝑠, 𝛼) is itself a function of the

modified packet, and tells us to transition to state 𝛿 (𝑠, 𝛼) (𝛼 ′) when input packet 𝛼 is modified to 𝛼 ′.
In terms of the semantics, a transition in the automaton corresponds to executing to the next

dup in a NetKAT program, and appends the current packet to the trace. It should also be noted that

states in the automaton do not necessarily correspond to network devices; because the location of

the packet is modeled as just a field in the packet, there can be states in the automaton that handle

packets from multiple devices, and the packets of a device can be handled by multiple states.

Carry-on packets. Unlike traditional regular expressions and automata, NetKAT is stateful, and

the output packet of a transition is carried on to the next state. This makes NetKAT fundamentally

different from traditional regular expressions, resulting in challenges in the semantics (which is not

a straightforward trace or language semantics) and in designing equivalence procedures, as they

have to account for the carry-on packet. Technically it would be possible to fold the packet into the

state of the automaton and approach the semantics and the problem of checking equivalence using

classical automata. However, because the number of possible packets is exponential in the number

of fields and values, such conversion results in enormous state blowup and is therefore impractical.
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Fig. 3. Examples of SPs, where 𝑝 ≜ (𝑎=3 · 𝑏=4 + 𝑏≠5 · 𝑐 =5) and 𝑞 ≜ (𝑏 = 3 · 𝑐 =4 + 𝑎=5 · 𝑐≠5).

2.2 Bisimulation of NetKAT Automata
NetKAT automata can be used to decide 𝑝 ≡ 𝑞. Intuitively, while traces may be infinite, transitions

only depend on the current packet, which has a finite number of distinct possible values.

Given two automata (𝑆, 𝑠0, ⟨𝜖, 𝛿⟩) and (𝑆 ′, 𝑠′0, ⟨𝜖′, 𝛿 ′⟩), we check their equivalence by considering

all possible input packets separately. We run the two automata in parallel, starting from an input

packet 𝛼 at their respective start states. We first check that the immediate outputs 𝜖 (𝑠0, 𝛼) and
𝜖′ (𝑠′

0
, 𝛼) are the same. If so, we check that the transitions 𝛿 (𝑠0, 𝛼) and 𝛿 ′ (𝑠′0, 𝛼) are equivalent, by

recursively checking the equivalence of the states 𝛿 (𝑠0, 𝛼) (𝛼 ′) and 𝛿 ′ (𝑠′0, 𝛼) (𝛼 ′) for all 𝛼 ′.
We can implement this strategy using a work list algorithm. The work list contains triples

(𝑠, 𝑠′, 𝛼), where 𝑠 and 𝑠′ are states in the two automata, and 𝛼 is an input packet. Initially, the work

list contains (𝑠0, 𝑠′0, 𝛼) for all packets 𝛼 . We then repeatedly take triples (𝑠, 𝑠′, 𝛼) from the work list,

and check that 𝜖 (𝑠, 𝛼) = 𝜖′ (𝑠′, 𝛼) and add (𝛿 (𝑠, 𝛼) (𝛼 ′), 𝛿 ′ (𝑠′, 𝛼) (𝛼 ′), 𝛼 ′) to the work list for all 𝛼 ′. If
at any point we find that 𝜖 (𝑠, 𝛼) ≠ 𝜖′ (𝑡, 𝛼), then the automata are not equivalent. If the work list

stabilizes, the automata are equivalent. This algorithm is shown in Figure 2.

Of course, the issue with this algorithm is that the space of packets is huge. The rest of this

paper develops techniques for working with symbolic representations of packets and automata,

allowing us to represent and manipulate large sets of packets and to efficiently check equivalence

of automata without explicitly enumerating the space of packets.

3 SYMBOLIC NETKAT REPRESENTATIONS
In this section, we develop symbolic techniques to trace an entire set of packets at once, vastly

reducing the number of iterations required to compute a bisimulation in practice. These techniques

will allow us to revise the approach of Figure 2 with a much more efficient version in Section 5.

First, we introduce a representation for symbolic packets, which represent sets of packets, or

equivalently, the fragment of NetKAT where all atoms are tests. This representation is essentially

a natural n-ary variant of binary decision diagrams (BDDs) [12]. Second, we introduce Symbolic

Packet Programs (SPPs), a new representation for symbolic transitions in NetKAT automata,

representing the dup-free fragment of NetKAT—i.e., the fragment in which all atoms are tests or

assignments. The primary challenge is to design this representation so that it is efficiently closed

under the NetKAT operations. Furthermore, we need to be able to efficiently compute the transition

of a symbolic packet over a SPP, both forward and backward.
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Primitive tests:
(𝑓 =𝑣) ≜ SP(𝑓 , {𝑣 ↦→ ⊤},⊥) (𝑓 ≠𝑣) ≜ SP(𝑓 , {𝑣 ↦→ ⊥},⊤)

Operations, base cases:
⊤ +̂ ⊤ ≜ ⊤ ⊤ ·̂ ⊤ ≜ ⊤ ⊤ ∩̂ ⊤ ≜ ⊤ ⊤ ⊕̂ ⊤ ≜ ⊥ ⊤ −̂ ⊤ ≜ ⊥
⊤ +̂ ⊥ ≜ ⊤ ⊤ ·̂ ⊥ ≜ ⊥ ⊤ ∩̂ ⊥ ≜ ⊥ ⊤ ⊕̂ ⊥ ≜ ⊤ ⊤ −̂ ⊥ ≜ ⊤
⊥ +̂ ⊤ ≜ ⊤ ⊥ ·̂ ⊤ ≜ ⊥ ⊥ ∩̂ ⊤ ≜ ⊥ ⊥ ⊕̂ ⊤ ≜ ⊤ ⊥ −̂ ⊤ ≜ ⊥
⊥ +̂ ⊥ ≜ ⊥ ⊥ ·̂ ⊥ ≜ ⊥ ⊥ ∩̂ ⊥ ≜ ⊥ ⊥ ⊕̂ ⊥ ≜ ⊥ ⊥ −̂ ⊥ ≜ ⊥

Operations, inductive case:
SP(𝑓 , 𝑏𝑝 , 𝑑𝑝 ) ±̂ SP(𝑓 , 𝑏𝑞, 𝑑𝑞) ≜ sp(𝑓 , 𝑏′, 𝑑𝑝 ±̂ 𝑑𝑞)

where 𝑏′ = {𝑣 ↦→ 𝑏𝑝 (𝑣 ;𝑑𝑝 ) ±̂ 𝑏𝑞 (𝑣 ;𝑑𝑞) | 𝑣 ∈ dom(𝑏𝑝 ∪ 𝑏𝑞)}
Expansion:
𝑝 ≡ SP(𝑓 , ∅, 𝑝) if 𝑝 ∈ {⊤,⊥, SP(𝑓 ′, 𝑏, 𝑑)} where 𝑓 ⊏ 𝑓 ′

Smart constructor:
sp(𝑓 , 𝑏, 𝑑) ≜ if 𝑏′ = ∅ then 𝑑 else SP(𝑓 , 𝑏′, 𝑑)
where 𝑏′ ≜ {𝑣 ↦→ 𝑝 | 𝑣 ↦→ 𝑝 ∈ 𝑏, 𝑝 ≠ 𝑑}

Fig. 4. Definition of the SP operations. The inductive case is identical for all operations (indicated by ±̂), and
applies when both SPs test the same field. Expansion inserts a trivial SP node to reduce the remaining cases

to the inductive case. The notation 𝑏 (𝑣 ;𝑑) means the child 𝑏 (𝑣) if 𝑣 ∈ dom(𝑏), or the default case 𝑑 otherwise.

3.1 Symbolic Packets
We begin by choosing a representation for symbolic packets. A symbolic packet 𝑝 ⊆ Pk is a set of

concrete packets, represented compactly as a decision diagram. Syntactically, symbolic packets are

NetKAT expressions with atoms restricted to tests, represented in the following canonical form:

𝑝 ∈ SPF ⊥ | ⊤ | SP(𝑓 , {. . . , 𝑣𝑖 ↦→ 𝑞𝑖 , . . .}, 𝑞)︸                               ︷︷                               ︸
≡ ∑

𝑖 𝑓=𝑣𝑖 ·𝑞𝑖 + (
∏

𝑖 𝑓≠𝑣𝑖 ) ·𝑞

That is, symbolic packets form an n-ary tree, where each child 𝑞𝑖 is labeled with a test of the current

field 𝑓 , and the default case 𝑞 is labeled with the negation of the other tests. Hence, a given concrete

packet has a unique path through the tree.

The following conditions need to be satisfied for a symbolic packet to be in canonical form,

inspired by the analogous properties of BDDs:

Reduced If a child 𝑞𝑖 is equal to the default case 𝑞, it is removed. If only the default case remains,

the symbolic packet is reduced to the default case itself.

Ordered A path down the tree always follows the same order of fields, and the children 𝑞𝑖 are

ordered by the value 𝑣𝑖 .

These conditions ensure the representation of a symbolic packet is unique, in the sense that two

symbolic packets are semantically equal if and only if they are syntactically equal.

Representation. Aswith BDDs, we share nodes in the tree, making the representation of a symbolic

packet a directed acyclic graph, as shown in Figure 3. Vertices are labeled with the packet field

they test. Solid arrows labeled with a number encode the test value, and dashed arrows represent a

default case. The sinks of the graph are labeled with ⊤ or ⊥, indicating membership in the set. On

the left, we have a symbolic packet representing all packets where 𝑎 = 3 and 𝑏 = 4, or 𝑏 ≠ 5 and

𝑐 = 5. In the middle, we have a symbolic packet representing all packets where 𝑎 = 3 and 𝑐 = 4, or

𝑎 = 5 and 𝑐 ≠ 5. On the right, we have the union of these symbolic packets.
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Fig. 5. Examples of SPPs, where 𝑝 ≜ (𝑎=5 + 𝑏=2) · (𝑏�1 + 𝑐 =5), and 𝑞 ≜ (𝑏=1 + 𝑐�4 + 𝑎�1 · 𝑏�1).

Operations. Symbolic packets are closed under the NetKAT operations:

+̂, ·̂, ∩̂, ⊕̂, −̂ : SP × SP→ SP ★̂ : SP→ SP 𝑓 =𝑣, 𝑓 ≠𝑣 : SP

As defined in Figure 4, operations on symbolic packets are computed by traversing the two trees in

parallel, recursively taking the operation of the children, making sure to maintain canonical form

using the smart constructor. Repetition 𝑝★ ≜ ⊤ is trivial for symbolic packets. All other operations

are defined in the extended version of this paper [33].

Specifications. Each of these operations is uniquely specified by two correctness conditions:

(1) They semantically match their counterpart: J𝑝 +̂𝑞K = J𝑝 + 𝑞K for all 𝑝, 𝑞 ∈ SP.
(2) They maintain canonical form: 𝑝 +̂𝑞 is reduced and ordered if 𝑝, 𝑞 are.

For further formal treatment of SPs, see the extended version of this paper [33].

3.2 Symbolic Transitions
We now introduce a representation for symbolic transitions in NetKAT automata. Whereas symbolic

packets represent the fragment of NetKATwhere all atoms are tests, symbolic transitions correspond

to the larger dup-free fragment, where all atoms are tests or assignments. This introduces additional

challenges for a canonical representation, as well as for the operations. For instance, sequential

composition is no longer equivalent to intersection, and the star operator is no longer trivial.

𝑝 ∈ SPPF ⊥ | ⊤ | SPP(𝑓 , {. . . , 𝑣𝑖 ↦→ {. . . ,𝑤𝑖 𝑗 ↦→ 𝑞𝑖 𝑗 , . . .}, . . .}, {. . . ,𝑤𝑖 ↦→ 𝑞𝑖 , . . .}, 𝑞)︸                                                                                   ︷︷                                                                                   ︸
≡ ∑

𝑖 𝑓=𝑣𝑖 ·
∑

𝑗 𝑓�𝑤𝑖 𝑗 ·𝑞𝑖 𝑗 + (
∏

𝑖 𝑓≠𝑣𝑖 ) · (
∑

𝑖 𝑓�𝑤𝑖 + (
∏

𝑖 𝑓≠𝑤𝑖 ) ·𝑞)

Like SPs, SPPs have two base cases, ⊤ and ⊥. Also like SPs, SPPs test a field 𝑓 of the input

packet against a series of values 𝑣0, . . . , 𝑣𝑛 , with a default case 𝑓 ≠𝑣0 · · · 𝑓 ≠𝑣𝑛 . However, instead of

continuing recursively after the test, SPPs non-deterministically assign a value𝑤𝑖 𝑗 to the field 𝑓 of

the output packet, and continue recursively with the corresponding child 𝑞𝑖 𝑗 . This way, SPPs can

output more than one packet for a given input packet, and can also output packets with different
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values for the same field. The default case is further split into two cases, one where the field 𝑓 is

non-deterministically assigned a new value (like in the other cases), and an identity case where

the field 𝑓 keeps the same value as the input packet. However, the packet for the latter case is not

produced when the input packet’s field 𝑓 had a value that could also be produced by the explicit

assignments in the default case. This ensures that for a given input packet, a given output packet is

produced by a unique path through the SPP.

The following conditions need to be satisfied for a SPP to be in canonical form:

Reduced If a child 𝑞𝑖 𝑗 is equal to ⊥, it is removed (with the exception of the default-identity case,

which is always kept). If one of the default-assignment cases for a value𝑤 is ⊥, it is removed,

but to keep the behavior equivalent, an additional test for the same value𝑤 is added, with

an empty sequence of assignments (if a test for the value𝑤 was already present, nothing is

added). Further, each of the non-default cases is analyzed, and if we determine that it behaves

semantically like the default case for that input value, then it is removed. If only the default

case remains, the SPP is reduced to the default case itself.

Ordered A path down the tree always follows the same order of fields, and both the tests and the

assignments are ordered by the value 𝑣𝑖 or𝑤𝑖 𝑗 .

These conditions ensure the representation of a SPP is unique, in the sense that two SPPs are

semantically equal if and only if they are syntactically equal.

Representation. Like symbolic packets, we represent SPPs as a directed acyclic graph, with

duplicate nodes shared. Examples of SPPs are shown in Figure 5. Vertices are labeled with the

packet field that they test. Solid arrows labeled with a number represent the tests, and dashed

arrows represent the default case. Each test is followed by a non-deterministic assignment of a

new value to the field, indicated by the small diamonds. In the default case, the non-deterministic

assignment also has an identity case (keeping the value of the field unchanged), indicated by a

dashed arrow emanating from the diamond.

Consider the action of the first SPP in Figure 5 on the concrete packet 𝑎=5 · 𝑏=3 · 𝑐 =5. The first
test 𝑎=5 succeeds, and the field 𝑎 is assigned the value 5. The 𝑏 field is then tested, but the 𝑏 node

only has a default case. The default case does have a non-deterministic assignment, which can set

the 𝑏 field to the new value 1, or it can keep the old value 3. In case the new value of 𝑏 is 1, the

packet is immediately accepted by the ⊤ node, so the packet 𝑎=5 · 𝑏=1 · 𝑐 =5 is produced. In case

the old value of 𝑏 is kept, the 𝑐 field is tested, and in our case the value of the 𝑐 field is 5. In this

case, the value of the field is unchanged, and the packet 𝑎=5 · 𝑏=3 · 𝑐 =5 is produced. In summary,

for input packet 𝑎=5 · 𝑏=3 · 𝑐 =5, the SPP produces packets 𝑎=5 · 𝑏=1 · 𝑐 =5 and 𝑎=5 · 𝑏=3 · 𝑐 =5.
When we sequentially compose the two SPPs on the left, we get the third SPP shown. In other

words, if we take a concrete packet, and first apply the first SPP, and then apply the second SPP to

all of the resulting packets, then we get the same result as if we apply the SPP on the right directly to

the concrete packet. Sequential composition is a relatively complex operation, but algorithmically it

is a key strength of our representation and reduced/ordered invariant. To understand why, consider

taking a concrete packet, and applying the first SPP to it. Once we have applied the 𝑎-layer of the

SPP to the packet, we already know what the value of the 𝑎 field in the output packet will be. We

can therefore immediately continue with the 𝑎 layer of the second SPP, without having to consider

the other layers of the first SPP. This is in contrast to a naive algorithm, which would have to

consider the entire first SPP before being able to apply the second SPP. This property makes it

possible to compute the sequential composition of two SPPs efficiently in practice, and is a key

contributor to the performance and scalability of our system.
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Primitive tests and mutation:
(𝑓 =𝑣) ≜ SPP(𝑓 , {𝑣 ↦→ {𝑣 ↦→⊤}}, ∅,⊥) (𝑓 � 𝑣) ≜ SPP(𝑓 , ∅, {𝑣 ↦→⊤},⊥)
(𝑓 ≠𝑣) ≜ SPP(𝑓 , {𝑣 ↦→ {𝑣 ↦→⊥}}, ∅,⊤)

Operations, base cases:
Identical to those in Figure 4.

Operations, inductive cases:
SPP(𝑓 , 𝑏𝑝 ,𝑚𝑝 , 𝑑𝑝 ) ±̂ SPP(𝑓 , 𝑏𝑞,𝑚𝑞, 𝑑𝑞) ≜ spp(𝑓 , 𝑏′,𝑚𝑝 ®±𝑚𝑞, 𝑑𝑝 ±̂ 𝑑𝑞)
where 𝑏′ = {𝑣 ↦→𝑝 (𝑣) ®±𝑞(𝑣) | 𝑣 ∈ dom(𝑏𝑝 ∪ 𝑏𝑞 ∪𝑚𝑝 ∪𝑚𝑞)}
SPP(𝑓 , 𝑏𝑝 ,𝑚𝑝 , 𝑑𝑝 ) ·̂ SPP(𝑓 , 𝑏𝑞,𝑚𝑞, 𝑑𝑞) ≜ spp(𝑓 , 𝑏′,𝑚𝐴 ®+𝑚𝐵, 𝑑𝑝 ·̂ 𝑑𝑞)
where 𝑏′ = {𝑣 ↦→ ®Σ

𝑣′ ↦→𝑝′∈𝑝 (𝑣)
{𝑤 ′↦→𝑝′ ·̂𝑞′ | 𝑤 ′↦→𝑞′ ∈ 𝑞(𝑣 ′)} | 𝑣 ∈ dom(𝑏𝑝 ∪ 𝑏𝑞 ∪𝑚𝑝 ∪𝑚𝑞 ∪𝑚𝐴)}

𝑚𝐴 = ®Σ
𝑣′ ↦→𝑝′∈𝑚𝑝

{𝑤 ′↦→𝑝′ ·̂𝑞′ | 𝑤 ′↦→𝑞′ ∈ 𝑞(𝑣 ′)}, 𝑚𝐵 = {𝑤 ′↦→𝑑𝑝 ·̂𝑞′ | 𝑤 ′↦→𝑞′ ∈𝑚𝑞}

𝑚1
®±𝑚2 ≜ {𝑣 ↦→𝑚1 (𝑣 ;⊥) ±̂𝑚2 (𝑣 ;⊥) | 𝑣 ∈ dom(𝑚1 ∪𝑚2)}, ®Σ ≜ 𝑛-ary sum w.r.t. ®+

𝑝 (𝑣) ≜ 𝑏𝑝 (𝑣 ; if 𝑣 ∈𝑚𝑝 ∨ 𝑑𝑝 = ⊥ then𝑚𝑝 else𝑚𝑝 ∪ {𝑣 ↦→𝑑𝑝 }) (similarly for 𝑞(𝑣))
Expansion:
𝑝 ≡ SPP(𝑓 , ∅, ∅, 𝑝) if 𝑝 ∈ {⊤,⊥, SPP(𝑓 ′, 𝑏,𝑚,𝑑)} where 𝑓 ⊏ 𝑓 ′

Repetition:
𝑝★ ≜ Σ̂𝑖 𝑝

𝑖 = ⊤ +̂ 𝑝 +̂ 𝑝 ·̂𝑝 +̂ 𝑝 ·̂𝑝 ·̂𝑝 +̂ . . . (sums in SPP converge in a finite number of steps)

Fig. 6. Definition of the SPP operations. The inductive case is identical for all operations (indicated by ±̂),
except ·̂, which is given separately. Expansion inserts a trivial SPP node to reduce the remaining cases to the

inductive case. The notation 𝑏 (𝑣 ;𝑑) means the child 𝑏 (𝑣) if 𝑣 ∈ dom(𝑏), or by default 𝑑 otherwise.

Operations. SPPs are closed not just under sequential composition, but under all of the NetKAT

operations. These operations are largely mechanical, but more complex than for SPs, as we need to

take assignments into account while respecting the conditions that ensure uniqueness. In particular,

sequential composition is no longer equivalent to intersection, as the assignments in the first SPP

clearly affect the tests in the second SPP. Furthermore, the star operator is no longer trivial, as the

assignments in the SPP can affect the tests in the SPP itself, and a fixed point needs to be taken. We

have the following operations on SPPs:

+̂, ·̂, ∩̂, ⊕̂, −̂ : SPP × SPP→ SPP ★̂ : SPP→ SPP 𝑓 =𝑣, 𝑓 ≠𝑣, 𝑓 �𝑣 : SPP

Push and pull. In addition to these operations for combining SPPs, we also have the following

operations, which “push” and “pull” a symbolic packet through a SPP:

push : SP × SPP→ SP pull : SPP × SP→ SP

The push operation computes the effect of a SPP on a symbolic packet, giving a symbolic packet

as a result. The new symbolic packet contains all of the packets that are produced by the SPP when

applied to the packets in the input symbolic packet.

The pull operation simulates the effect of a SPP in reverse. This operation is used when computing

the backward transition of a symbolic packet over a symbolic transition, for counter-example

generation. The pull operation answers this question: given a set of output packets (represented

symbolically), what are the possible input packets (also represented symbolically) that could have

produced them? In other words, a concrete packet 𝛼 is an element of pull(𝑝, 𝑞) if and only if running
the SPP 𝑝 on 𝛼 produces an output packet in 𝑞. In particular, it is okay if running the SPP on 𝛼

produces multiple output packets, as long as at least one of them is in 𝑞.
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Specifications. Each of these operations is uniquely specified by two correctness conditions:

(1) They semantically match their counterpart (e.g. J𝑝 +̂𝑞K ≡ J𝑝 + 𝑞K for all 𝑝, 𝑞 ∈ SPP)
(2) They maintain the reduced & ordered invariant (e.g., 𝑝 +̂𝑞 is reduced & ordered if 𝑝, 𝑞 are)

For push and pull, the correctness condition is as follows:

𝛽 ∈ Jpush 𝑝 𝑠K ⇐⇒ ∃𝛼 ∈ J𝑝K. 𝛽 ∈ J𝑠K(𝛼) and 𝛽 ∈ Jpull 𝑠 𝑝K ⇐⇒ ∃𝛼 ∈ J𝑝K. 𝛼 ∈ J𝑠K(𝛽)
For further details, see the extended version of this paper [33].

4 SYMBOLIC NETKAT AUTOMATA VIA BRZOZOWSKI DERIVATIVES
With the symbolic packet and symbolic transition representations in place, we can now define

symbolic NetKAT automata. The construction of NetKAT automata shares some similarities with

the construction of automata for regular expressions. In prior work [22, 37], NetKAT automata

were constructed via Antimirov derivatives [2], which can be extended from regular expressions

to NetKAT. The Antimirov derivative constructs a non-deterministic automaton, and as such, is

well suited for handling NetKAT’s union operator by inserting transitions for the two sub-terms.

However, the Antimirov derivative is not well suited for our extended set of logical operators, as

we cannot simply insert (non-deterministic) transitions for the operands of intersection, difference,

and symmetric difference. Instead, we extend the Brzozowski derivative [13] to NetKAT, which

constructs a deterministic automaton directly, and is better suited for the logical operators.

In the rest of this section, we will first describe what symbolic NetKAT automata are, and then

describe how to construct them via the Brzozowski derivative.

4.1 Symbolic NetKAT Automata
An automaton for a regular expression consists of a set of states, and transitions labeled with

symbols from the alphabet. Additionally, one of the states is designated as the initial state, and

a subset of the states are designated as accepting states. This way, an automaton for a regular

expression models the set of strings that are accepted by the regular expression.

An automaton for a NetKAT program is similar, but instead of modeling a set of strings, it models

the traces that are produced for a given input packet. When a packet travels through the automaton,

every state that it traverses acts as a dup operation, appending a copy of the packet to the packet’s

trace. Therefore, the transition between two states is labeled with a dup-free NetKAT program,

represented symbolically as a SPP. That is, each edge in the automaton is not labeled with a single

letter, as it would be in a standard DFA or NFA, but with a potentially large SPP. This is necessary

because an edge in the automaton intuitively represents “what happens between two dups”. This is

precisely a dup-free NetKAT program, which can itself have rich behavior, represented canonically

as an SPP. This is needed to support fine-grained control over equivalence and inclusion as discussed

in Section 2—e.g., via conditionally executed dups or assignments between dups.

Secondly, instead of having a boolean at each state to determine acceptance, NetKAT automata

have an additional SPP at each state that determines the set of packets that are produced as output

of the automaton when a packet reaches that state. Therefore, a symbolic NetKAT automaton is a

tuple A = ⟨𝑄,𝑞𝑜 , 𝛿, 𝜖⟩ where 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is the initial state,

• 𝛿 : 𝑄 ×𝑄 → SPP is the transition function, and

• 𝜖 : 𝑄 → SPP is the output function.

Deterministic NetKAT automata. The notion of a deterministic NetKAT automaton is more subtle

than for classic finite automata. For classic automata, a deterministic automaton is one where for

every state 𝑞 and symbol 𝑎, there is at most one transition from 𝑞 labeled with 𝑎. For a NetKAT

automaton, we need to take into account the fact that the transitions are labeled with SPPs, which
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may produce multiple packets for a given input packet. Therefore, we define a deterministic

NetKAT automaton as one where for every state 𝑞 and packet 𝛼 , the set of packets produced by

push(𝛼, 𝛿 (𝑞, 𝑞′)) are disjoint for all 𝑞′ ∈ 𝑄 . This is equivalent to saying that 𝛿 (𝑞, 𝑞′
1
) ∩̂𝛿 (𝑞, 𝑞′

2
) = ⊥

for all 𝑞′
1
, 𝑞′

2
∈ 𝑄 (𝑞′

1
≠ 𝑞′

2
). Note that an input packet 𝛼 may produce multiple different packets at

each successor state, but these packet sets at different successor states are disjoint.

4.2 Constructing Automata via Brzozowski Derivatives
We now describe how to construct a symbolic NetKAT automaton for a NetKAT program via the

Brzozowski derivative. We take the set of states to be the set of NetKAT expressions, and the initial

state to be the NetKAT program itself. Because we want to construct a deterministic automaton,

we need a way to represent a non-intersecting outgoing symbolic transition structure (STS). We

represent such a transition structure as a NetKAT expression in the following form:

𝑟 ∈ STSF 𝑝1· dup · 𝑞1 + . . . + 𝑝𝑛 · dup · 𝑞𝑛
where 𝑝𝑖 ∈ SPP, and 𝑞𝑖 are NetKAT expressions, and the 𝑝𝑖 are disjoint (𝑝𝑖 ∩̂𝑝 𝑗 = ⊥ for 𝑖 ≠ 𝑗 ).

Operations. Dup is an STS, by taking 𝑟 = ⊤ · dup · ⊤. We extend the logical operators to STSs:

+̃, ∩̃, ⊕̃, −̃ : STS × STS→ STS

These operations need to be defined such that the resulting STS is deterministic. For 𝑟1 ∩ 𝑟2:
(𝑝1 · dup · 𝑞1 + . . . + 𝑝𝑛 · dup · 𝑞𝑛) ∩̃ (𝑝′1 · dup · 𝑞′1 + . . . + 𝑝′𝑛 · dup · 𝑞′𝑛)

To bring this in STS form, we distribute the intersection over the union, and combine the terms:

(𝑝1 ∩̂𝑝′1) · dup · (𝑞1 ∩ 𝑞′1) + (𝑝1 ∩̂𝑝′2) · dup · (𝑞1 ∩ 𝑞′2) + . . . + (𝑝𝑛 ∩̂𝑝′𝑛) · dup · (𝑞𝑛 ∩ 𝑞′𝑛)
This is not yet in STS form, as the 𝑞𝑖 ∩ 𝑞′𝑖 terms may not all be different, so we need to collect

the terms with the same 𝑞𝑖 ∩ 𝑞′𝑖 , and union their SPPs. The other operators need a similar (albeit

slightly more complicated) treatment in order to maintain determinism.

Second, we extend sequential composition to STSs, in two forms (denoted with the same symbol).

We can compose an STS with a SPP on the left, or with a NetKAT expression on the right:

·̃ : SPP × STS→ STS ·̃ : STS × Exp→ STS

Like the other operators, these need to be defined such that the resulting STS is deterministic.

All of the STS operations are defined in terms of SPP operations. Therefore, an efficient SPP

implementation is crucial both for operations on symbolic packets and for operations on STSs.

Specifications. Each of these operations is uniquely specified by two correctness conditions:

(1) They semantically match their counterpart (e.g. J𝑝 +̂𝑞K ≡ J𝑝 + 𝑞K for all 𝑝, 𝑞 ∈ STS)
(2) They maintain the invariant that the transitions are pairwise disjoint.

Brzozowski derivative. With these operations in place, it is straightforward to define the Brzo-

zowski derivative for NetKAT expressions:

𝜖 (𝑝 + 𝑞) ≜ 𝜖 (𝑝) +̂ 𝜖 (𝑞)
𝜖 (𝑝 ∩ 𝑞) ≜ 𝜖 (𝑝) ∩̂ 𝜖 (𝑞)
𝜖 (𝑝 ⊕ 𝑞) ≜ 𝜖 (𝑝) ⊕̂ 𝜖 (𝑞)
𝜖 (𝑝 − 𝑞) ≜ 𝜖 (𝑝) −̂ 𝜖 (𝑞)
𝜖 (𝑝 · 𝑞) ≜ 𝜖 (𝑝) ·̂ 𝜖 (𝑞)
𝜖 (𝑝★) ≜ 𝜖 (𝑝)★

𝜖 (dup) ≜ ⊥
𝜖 (𝑓 =𝑣) ≜ 𝑓 =𝑣

𝜖 (𝑓 ≠𝑣) ≜ 𝑓 ≠𝑣

𝜖 (𝑓 �𝑣) ≜ 𝑓 �𝑣

𝜖 (⊤) ≜ ⊤
𝜖 (⊥) ≜ ⊥

𝛿 (𝑝 + 𝑞) ≜ 𝛿 (𝑝) +̃𝛿 (𝑞)
𝛿 (𝑝 ∩ 𝑞) ≜ 𝛿 (𝑝) ∩̃𝛿 (𝑞)
𝛿 (𝑝 ⊕ 𝑞) ≜ 𝛿 (𝑝) ⊕̃ 𝛿 (𝑞)
𝛿 (𝑝 − 𝑞) ≜ 𝛿 (𝑝) −̃𝛿 (𝑞)
𝛿 (𝑝 · 𝑞) ≜ 𝛿 (𝑝) ·̃𝑞 +̃ 𝜖 (𝑝) ·̃ 𝛿 (𝑞)
𝛿 (𝑝★) ≜ 𝜖 (𝑝)★ ·̃ 𝛿 (𝑝) ·̃ 𝑝★

𝛿 (dup) ≜ dup

𝛿 (𝑓 =𝑣) ≜ ⊥
𝛿 (𝑓 ≠𝑣) ≜ ⊥
𝛿 (𝑓 �𝑣) ≜ ⊥

𝛿 (⊤) ≜ ⊥
𝛿 (⊥) ≜ ⊥
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Fig. 7. Symbolic NetKAT automaton for 𝑝 ≜
(
(𝑎�1 · 𝑏�2 · 𝑐�3 · dup)★ + (𝑏=2 · 𝑐 =3 · dup)★

)★
We construct a deterministic symbolic NetKAT automaton for a NetKAT program 𝑝 as follows:

States 𝑄 ≜ Exp.

Initial state 𝑞0 ≜ 𝑝 .

Transitions take 𝛿 (𝑞, 𝑞′) to be the SPP of 𝑞′ in the Brzozowski derivative of 𝛿 (𝑞).
Output 𝜖 : 𝑄 → SPP, defined above.

The Brzozowski derivative is guaranteed to transitively reach only finitely many essentially different

NetKAT expressions from a given start state. Therefore, in the actual implementation, we do not

use the infinite set Exp for the states, but instead use only the finitely many essentially different

NetKAT terms reached from the start state.

The NetKAT automaton for an example program is shown in Figure 7. The edges are labeled

with the SPPs that represent the transitions. The output SPP of every state is ⊤, i.e., the automaton

accepts all packets that reach a state. Note that the SPPs in the figure feature several diamonds

without outgoing edges. These diamonds produce no output packet, i.e., the packet is dropped.

For more details, see the extended version of this paper [33].

5 BISIMILARITY AND COUNTER-EXAMPLE GENERATION
After converting the NetKAT programs to automata, we can check equivalence of two NetKAT

programs by checking whether their automata are bisimilar. Bisimilarity is a well-known notion of

equivalence for automata. For NetKAT automata, two states are bisimilar for a given packet 𝛼 if (1)

the states produce the same output packets, and (2) for each possible modified packet 𝛼 ′, the two
states transition to states that are bisimilar for 𝛼 ′.

Historically, methods for computing bisimulations of automata [8, 18] have been based on either

on Moore’s algorithm for minimization [35] or Hopcroft and Karp’s algorithm [25]. Indeed, the

naive approach shown in Figure 2 follows the basic structure of Hopcroft-Karp, in the sense that it

relates the start states and proceeds to follow transitions forward in the two automata.

Our situation is different, because we have already added the symmetric difference operator to

NetKAT. Therefore, we can reduce equivalence checks 𝐴 ≡ 𝐵 to emptiness checks 𝐴 ⊕ 𝐵 ≡ ⊥.

Subtlety of symmetric difference. The reader should note that the situation is a bit more subtle

than it may seem at first sight. In particular, consider the query 𝐴 ≡ 𝐵, which asks whether two

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 224. Publication date: June 2024.



KATch: A Fast Symbolic Verifier for NetKAT 224:15

done(𝑞) ← ⊥ for 𝑞 ∈ 𝑄 ;
todo(𝑞) ← ⊥ for 𝑞 ∈ 𝑄 \ {𝑞0};
todo(𝑞0) ← ⊤;
while ∃𝑞. todo(𝑞) ≠ ⊥ do

set 𝑝 := todo(𝑞) −̂ done(𝑞);
todo(𝑞) ← ⊥;
done(𝑞) +̂= 𝑝;

for 𝑞′ ∈ 𝑄 do
todo(𝑞′) +̂= push(𝑝, 𝛿 (𝑞, 𝑞′));

return
∑

𝑞∈𝑄 push(done(𝑞), 𝜖 (𝑞));

(i) Forward algorithm

done(𝑞) ← ⊥ for 𝑞 ∈ 𝑄 ;
todo(𝑞) ← pull(𝜖 (𝑞),⊤) for 𝑞 ∈ 𝑄 ;

while ∃𝑞. todo(𝑞) ≠ ⊥ do
set 𝑝 := todo(𝑞) −̂ done(𝑞);
todo(𝑞) ← ⊥;
done(𝑞) +̂= 𝑝;

for 𝑞′ ∈ 𝑄 do
todo(𝑞′) +̂= pull(𝛿 (𝑞′, 𝑞), 𝑝);

return done(𝑞0);

(ii) Backward algorithm

Fig. 8. Forward and backward algorithms for NetKAT automata

NetKAT programs 𝐴 and 𝐵 are equivalent. If they are inequivalent, then there must be some input

packet that causes 𝐴 to produce a different output than 𝐵. Output in this sense does not just mean

the final output packet, but also the trace of the packet. It can be the case that 𝐴 and 𝐵 produce the

same final output packets, but differ in the trace of the packets. Therefore, the symmetric difference

𝐴 ⊕ 𝐵 takes the symmetric difference of the traces, not just of the output packets. In other words,

the set J𝐴 ⊕ 𝐵K is the set of counter-example traces to the equivalence of 𝐴 and 𝐵.

Subtlety of the emptiness of an automaton. A second subtlety is the emptiness of an automaton.

Whereas for regular expressions, it is easy to check whether a DFA is empty (just check whether

there are any reachable accepting states), this is not the case for NetKAT automata. Because NetKAT

automata manipulate and test the fields of packets, it is possible that a packet travels through the

automaton, and even causes multiple packets to be produced (e.g., due to the presence of union

in the original NetKAT expression), but nevertheless, it is possible that all of these packets are

eventually dropped by the automaton, before producing any output packets.

The goal of this section is to develop a symbolic algorithm for this check, which is more efficient

than the naive algorithm that checks all concrete input packets separately.

5.1 Forward Algorithm
To check whether a NetKAT automaton drops all input packets, we use an algorithm that works in

the forward direction. The forward algorithm computes all output packets that the automaton can

produce, across all possible input packets. More formally: given a NetKAT automaton for a NetKAT

program 𝑝 , the forward algorithm computes the set of final packets occurring in the traces J𝑝K(𝛼)
across all input packets 𝛼 . The forward algorithm therefore starts with the complete symbolic

packet ⊤ at the input state, and repeatedly applies all outgoing transitions 𝛿 to it. In this way, the

algorithm iteratively accumulates a symbolic packet at every state, which represents the set of

packets that can reach that state from the start state. Once we know the set of packets that can

reach a state, we can determine the set of output packets by applying the output function 𝜖 to the

symbolic packet of each state, and taking the union of the results.

The forward algorithm is shown in Figure 8. To determine the set of packets that a given NetKAT

expression 𝑝 can produce, we convert it to a NetKAT automaton, and then use the forward algorithm

to determine the symbolic output packet. In our implementation, we also have a way to stop the

algorithm early, if the user is only interested in a “yes” or “no” answer for the query 𝑝 ≡ ⊥. In this

case, we can stop the algorithm as soon as any output packet is produced.
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5.2 Backward Algorithm
The forward algorithm gives us the set of output packets that a NetKAT automaton can produce, but

we are also interested in which input packets cause this output to be produced. For instance, for a

given check𝐴 ≡ 𝐵, we want to know which input packets cause𝐴 and 𝐵 to produce different sets of

output traces. More generally, we want to know which input packets cause a NetKAT automaton to

produce a nonempty set of output packets or, formally, given an automaton for a NetKAT program

𝑝 , what is the set of initial packets 𝛼 for which J𝑝K(𝛼) is nonempty.

To answer this question, we developed a backward algorithm, shown in Figure 8. The backward

algorithm computes all input packets that can cause the automaton to produce a nonempty set

of output packets. The backward algorithm therefore starts with the complete symbolic packet

⊤ at every state, and pulls it backwards through all observation functions 𝜖 . The algorithm then

iteratively accumulates a symbolic packet at every state, which represents the set of packets that

will cause the automaton to produce a nonempty set of output packets, when starting from that

state. The accumulation is done by pulling the symbolic packet backwards through all transitions

until a fixpoint is reached. Once the fixpoint is reached, we return the symbolic packet at the

start state, which represents the set of input packets that will cause the automaton to produce a

nonempty set of output packets when starting from the start state.

6 IMPLEMENTATION
Statements

check 𝑒1 ≡ 𝑒2
check 𝑒1 . 𝑒2
print 𝑒

𝑥 = 𝑒

for 𝑖 ∈ 𝑛1 ..𝑛2 do 𝑐

Expressions

forward 𝑒 , backward 𝑒

𝑒1∩𝑒2, 𝑒1⊕𝑒2, 𝑒1−𝑒2
ˆ∃ 𝑓 𝑒 , ˆ∀ 𝑓 𝑒
(+ NetKAT, see fig. 1)

Fig. 9. NKPL syntax.

We have implemented the algorithms in a new system, KATch, compris-

ing 2500 lines of Scala. In this section we explain the system’s interface.

The implementation provides a surface syntax for expressing queries,

which extends the core NetKAT syntax from Figure 1. The extended syn-

tax is shown in Figure 9. The language has statements and expressions,

which we describe below.

Statements. The check 𝑒1 ≡ 𝑒2 command runs the bisimulation al-

gorithm. The system reports success if the expressions are equivalent

(when ≡ is used) or inequivalent (when .) is used, or reports failure oth-
erwise. The other statements behave as expected: The print statement

invokes the pretty printer, 𝑥 = 𝑒 let-binds names to expressions, and for

runs a statement in a loop.

Expressions. The forward 𝑒 expression computes, in forward-flowing

mode, the set of output packets resulting from running the symbolic

packet ⊤ through the given expression 𝑒 (see Figure 8). Conversely

backward 𝑒 computes the set of input packets which generate some output packet when run on

the given expression (Figure 8). These are generally used in conjunction with the ⊕,−,∩ operators

to express the desired query. The user may combine these expressions with the
ˆ∃ and ˆ∀ operators

to reason about symbolic packets, and the print operator to pretty print the symbolic packets, or

the check operator to assert (in)equivalence of two expressions.

We note that the generality of the language allows us to express some queries in different, equiva-

lent ways. For example, the two checks: 𝑒1 ≡ 𝑒2 and 𝑒1 ⊕ 𝑒2 ≡ ⊥ are equivalent. However, the expres-

sion on the right lends itself to inspection of counterexample input packets: print (backward 𝑒1⊕𝑒2).
This statement pretty prints a symbolic packet having different behavior on 𝑒1 and 𝑒2 (i.e., packets

that result in some valid history in one expression and not the other). In other words, it prints the

set of all counter-example input packets for 𝑒1 ≡ 𝑒2.
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Topologies and routing tables. While NetKAT can be used to specify routing policies declaratively,

it is also possible to import topologies and routing tables into NetKAT. For example, a simple way

to define routing tables and topologies in NetKAT is as follows:

R ≜ sw=5 · (dst=6 · pt�3 + dst=8 · pt�4) T ≜ sw=5 · (pt = 3 · sw�6 + pt = 4 · sw�8)
+ · · · + + · · · +

sw=7 · (dst=8 · pt�2 + dst=9 · pt�1) sw=7 · (pt = 2 · sw�8 + pt = 1 · sw�9)
The routing R tests the switch field (where the packet currently is), and the destination field

(where the packet is supposed to end up), and then sets the port over which the packet should be

sent out. The topology T tests the switch and port fields, and then transports the packet to the next

switch. We define the action of the network by composing the route and topology:

net ≜ R · T · dup

We include a dup to extend the trace of the packet at every hop.

Example 6.1 (All-Pairs Reachability Queries). A naive way to check reachability of all pairs of hosts

in a network is to run the following command for each pair of end hosts 𝑛𝑖 , 𝑛 𝑗 :

check (sw=𝑛𝑖 ) · net★ · (sw=𝑛 𝑗 ) . ⊥

Of course, this requires a number of queries which is quadratic in the number of hosts—quickly

becoming prohibitive. One might think that we could reduce the number of queries to 𝑛 by running:

for 𝑖 ∈ 1..𝑛 do check (forward (sw=𝑖 · net★)) ≡ (sw ∈ 1..𝑛)

This query does work if sw is the only field of our packets, because the left hand side contains

the packets that can be reached from 𝑖 via the network, and the right hand side contains packets

where the sw field is any value in 1..𝑛. Unfortunately, this does not quite work if the network also

operates on other packet fields (say, fields 𝑓1 and 𝑓2), as the packets on the left hand side will have

those fields, whereas the packets on the right hand side will only have a sw field. The
ˆ∃ and ˆ∀

operators allow us to manipulate symbolic packets and express all pairs reachability in 𝑛 queries:

for 𝑖 ∈ 1..𝑛 do check ( ˆ∃ 𝑓1 ( ˆ∃ 𝑓2 (forward (sw = 𝑖 · net★)))) ≡ (sw ∈ 1..𝑛)

The operators
ˆ∃ and ˆ∀ give the programmer the ability to reason about symbolic packets that may

be computed, for instance, by forward or backward. The specifications are:

𝑝 ∈ ˆ∃ 𝑓 𝑒 △⇐⇒ ∃𝑣 ∈ 𝑉 : 𝑝 [𝑓 �𝑣] ∈ J𝑒K and 𝑝 ∈ ˆ∀ 𝑓 𝑒 △⇐⇒ ∀𝑣 ∈ 𝑉 : 𝑝 [𝑓 �𝑣] ∈ J𝑒K

The implementation does not iterate over 𝑉 (indeed, 𝑉 can be unknown). Rather,
ˆ∃ and

ˆ∀ are
implemented directly as operations on symbolic packets. In fact, the implementation does not need

to fix the sets of fields or values up-front at all. Instead, it operates on a conceptually infinite set of

fields and values. This works because SPPs’ default cases handle all remaining fields and all values.

Correctness and testingmethodology. Wevalidated our implementationwith the following property-

based fuzz testing methodology:

(1) We implemented the semantics J𝑝K(𝛼) in Scala, as described in Figure 1.

(2) We repeatedly pick two SPs/SPPs 𝑝 and 𝑞 and a packet 𝛼 . We enumerated small SPPs up to a

bound and generated larger SPPs randomly. We generated packets exhaustively.

(3) We check the soundness (e.g., J𝑝 +̂𝑞K(𝛼) = J𝑝K(𝛼) ∪ J𝑞K(𝛼)) and canonicity (e.g., J𝑝K(𝛼) =
J𝑞K(𝛼) for all 𝛼 if and only if 𝑝 = 𝑞) of the operations, as well as additional algebraic laws

derived from the NetKAT axioms (e.g., 𝑝 +̂𝑞 = 𝑞 +̂𝑝).
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Fig. 10. Full reachability queries on Topology Zoo. KATch and APkeep results are averages of 100 runs,

preceded by 10 runs of JIT warmup. KATch-naive is without JIT warmup and uses 𝑂 (𝑛2) 1-to-1 queries.

In addition to property-based testing for SPs and SPPs, we also generated hundreds of thousands

of pairs of random NetKAT expressions and checked that KATch’s bisimilarity check matches the

output of Frenetic. This revealed a subtle bug in Frenetic, which we reported and is now fixed.

7 EVALUATION
To evaluate KATch, we conducted experiments in which we used it to solve a variety of verification

tasks for a range of topologies and routes, as well as challenging combinatorial NetKAT terms. The

goal of our evaluation is to answer the following three questions:

(1) How does KATch perform compared to the state of the art NetKAT verifier, Frenetic?

(2) How does KATch perform compared to the state of the art specialized network verification

tool, APkeep?

(3) How well does KATch scale with the size of topology?

(4) When does KATch perform asymptotically better than prior work?

7.1 Topology Zoo
To begin to answer the first three questions, we conducted our experiments using The Internet
Topology Zoo [28] dataset, a publicly available set of 261 network topologies, ranging in size from

just 4 nodes (the original ARPANet) to 754 nodes (KDL, the Kentucky Data Link ISP topology). For

each topology, we generated a destination-based routing policy using an all-pairs shortest path

scheme that connects every pair of routers to each other.

To demonstrate KATch’s scalability, we first ran full (i.e., 𝑂 (𝑛2)) reachability queries for every

topology in the zoo using KATch, Frenetic
2
, and APkeep [47]. The results are shown in Figure 10

in a log-log plot, so straight lines correspond to polynomials with exponents related to their slope.

The figure shows two different configurations of KATch: one that verifies full reachability using

a quadratic number of point-to-point queries and does not use JIT warmup (“katch-naive”), and one

that verifies full reachability using a linear number of queries and does use JIT warmup (“katch”).

Because of the size of the dataset, we set a timeout of 5 minutes per topology. Under these

conditions, Frenetic was unable to complete for all but the smallest topologies. KATch-naive

2
https://github.com/frenetic-lang/frenetic
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Name Size 1-to-1 reachability Slicing Full reachability
(Topology Zoo) (atoms) KATch Frenetic KATch Frenetic KATch APkeep

Layer42 135 0.00 0.04 0.00 0.07 0.00 0.00

Compuserv 539 0.00 0.35 0.01 0.81 0.01 0.01

Airtel 785 0.01 0.82 0.02 1.98 0.01 0.01

Belnet 1388 0.01 3.19 0.03 7.99 0.02 0.01

Shentel 1865 0.01 3.93 0.03 9.76 0.02 0.03

Arpa 1964 0.01 4.23 0.04 10.42 0.03 0.03

Sanet 4100 0.03 23.42 0.07 62.21 0.05 0.07

Uunet 5456 0.04 80.85 0.11 203.80 0.07 0.07

Missouri 9680 0.06 166.87 0.21 441.72 0.13 0.19

Telcove 10720 0.07 441.47 0.21 1121.30 0.12 0.16

Deltacom 27092 0.18 2087.34 0.48 5098.57 0.36 0.63

Cogentco 79682 0.53 18910.82 1.38 54247.73 0.98 2.67

Kdl 1144691 9.87 out of memory 23.67 out of memory 19.44 110.92

Fig. 11. Running time (in seconds) of KATch, Frenetic, and APkeep on Topology Zoo queries. KATch and

APkeep results are averages of 100 runs, preceded by 10 runs of JIT warmup.

handles most of the topologies in well under a second, and all but the largest in under 2 minutes.

KATch-naive exceeds the timeout on Kentucky Data Link—using a quadratic number of queries to

check full reachability produces over 500k individual point-to-point queries in a network with 754

nodes! (However, KATch-naive is able to finish it in just under 20 minutes.)

To avoid combinatorial blowup in the verification query itself, we also used KATch’s high-level

verification interface, to check full reachability using a linear number of queries, as discussed in

Example 6.1. Frenetic does not have an analogous linear mode. APkeep does have an analogous

mode, as it has specialized support for full reachability queries. APkeep is faster than KATch for the

smaller topologies, but slower for the larger ones. Indeed, the slope of the APkeep line is steeper

than the KATch line, indicating that KATch scales slightly better with the size of the network on

these queries. It is important to note that APkeep has support for prefix-matching, ACLs, NAT,

incrementality, and other features for which KATch does not have specialized support and which

are not tested in this comparison. One should therefore not draw strong conclusions from this

comparison; we include it as it is encouraging that reachability via NetKAT equivalence can be

competitive with a state-of-the-art specialized tool.

We also randomly sampled a subset of toplogies from the Topology Zoo of varying size and

generated point-to-point (1-to-1) reachability and slicing queries to be checked against the routing

configurations with no timeout. For each query, we ran KATch and also generated an equivalent

query in the syntax of Frenetic, and ran Frenetic’s bisimulation verifier on those queries. We

present a full table of results of these experiments in Figure 11. The table shows that KATch’s relative

speedup over Frenetic is considerable, and increases problem size. This is encouraging, because it

shows that KATch is more scalable. Frenetic was unable to complete KDL within a 200GB memory

limit (for comparison, KATch is able to complete the same query with well under 1GB). We also

include a selection of full-reachability results from Figure 10 in the table. The reader may wonder

why full reachability takes only twice as long as 1-to-1 reachability. This is because a significant

fraction of the time is spent constructing automata (which are similar for both queries), and much

of the work in the full reachability queries is shared due to memoization of SPP operations.
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Fig. 12. Results of running KATch and Frenetic on combinatorial benchmarks

7.2 Combinatorial Examples
Finally, we ran experiments to test the hypothesis that SPPs have an asymptotic advantage for

certain types of queries. Frenetic uses forwarding decision diagrams (FDDs), which is a different

(and non-canonical) representation for automaton transitions. A key advantage of SPPs over FDDs

is that SPPs keep the updates to each field next to the tests of the same field. On the other hand,

FDDs keep all updates at the leaves, which can result in combinatorial explosion during sequencing.

To test this, we generated the following NetKAT programs:

Inc: Treating the input packet’s 𝑛 boolean fields as a binary number, increment it by one.

Flip: Sequentially flip the value of each of the 𝑛 boolean fields.

Nondet: Set each field of the packet to a range of values from 0 to 𝑛.

For Inc, we tested that repeatedly incrementing (using the ★ operator) can turn packet 00 · · · 0 into
11 · · · 1. For Flip, we tested that flipping all bits twice returns the original packet. For Nondet, we

tested that setting the fields non-deterministically twice is the same as doing it once. The results of

this experiment are shown in Figure 12. Because the available fields are hardcoded in Frenetic, we

only ran the Inc and Flip experiments up to 𝑛 = 10. We ran the non-determinism test up to 𝑛 = 15.

KATch finishes all three queries up to 𝑛 = 100 in under a one minute, demonstrating its asymptotic

advantage for these queries, while Frenetic shows combinatorial blowup on larger packets.

Source of speedup. The speedup of KATch over Frenetic comes from several sources: (1) the use

of SPPs instead of FDDs, which can be exponentially more compact and support more efficient

sequential composition, (2) the symbolic bisimulation algorithm operating on SPs, which can handle

exponentially large sets of packets at once, and (3) a quadratic-doubling implementation of star,

which can handle exponentially long traces quickly. These differences show up most strongly in the

combinatorially adversarial examples above, but the speedup is also considerable for the Topology

Zoo benchmarks, which are based on real-world topologies and not designed to be adversarial.

Field order. The field order of SPs and SPPs can affect performance, just as for BDDs. In practice,

field orders that keep related fields close together are beneficial. Our implementation allows the

user to control the field order, but we did not use this for our benchmarks. By default, the fields are

in the order in which they first occur in the input file, which turned out to work well enough.

8 RELATEDWORK
This section discusses the most closely related prior work to this paper, focusing on three areas:

NetKAT, network verification, and automata-theoretic approaches to verification.
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NetKAT. NetKAT was originally proposed as a semantic foundation for SDN data planes [1].

Indeed, being based on KAT [29], the language provides a sound and complete algebraic reasoning

system. Later work on NetKAT developed an automata-theoretic (or coalgebraic) account of the

language [22], including a decision procedure based on Brzozowski derivatives and bisimulation,

implemented in Frenetic. However, the performance of this approach turns out to be poor, as shown

in our experiments, due to the use of ad hoc data structures (“bases”) to encode packets and automata.

NetKAT’s compiler uses a variant of BDDs, called Forwarding Decision Diagrams (FDDs), as well

as an algorithm for converting programs to automata using Antimirov derivatives [37], improving

on the earlier representation of transitions as sets of bases [22]. The SPPs proposed in this paper

improve on FDDs by ensuring uniqueness and supporting efficient sequential composition in the

common case. In addition, the deterministic automata used in KATch support additional “negative”

operators that are useful for verification. Other papers based on NetKAT have explored use of the

language in other settings such as distributed control planes [7], probabilistic networks [21, 39, 40],

and Kleene algebra over composable theories with unbounded state [23]. It would be interesting to

extend the techniques developed in this paper to these richer settings. Another interesting direction

for future work is to build a symbolic verifier for the guarded fragment of NetKAT [38].

Network Verification. Early work by Xie et al. [45] proposed a unifying mathematical model for

Internet routers and developed algorithms for analyzing network-wide reachability. Although the

paper did not discuss an implementation, its elegant formal model has been extremely influential

in the community and has served as the foundation for many follow-on efforts, including this

work. The emergence of software-defined networking (SDN) led to a surge of interest in static

data plane verification, including systems such as Header Space Analysis (HSA) [26], Anteater [32],

VeriFlow [27], Atomic Predicates (AP) [46], APKeep [47]. These systems all follow a common

approach: they build a model of the network-wide forwarding behavior and then check whether

given properties hold. However, they vary in the data structures and algorithms used to represent

and analyze the network model. For instance, Anteater relies on first-order logic and SAT solvers,

while VeriFlow uses prefix trees and custom graph-based algorithms. HSA, AP and APKeep are

arguably the most related to our work as they use symbolic representations and BDDs respectively.

The primary difference between KATch and these systems is that the latter implement specialized

algorithms for network-wide analysis queries, while KATch (and Frenetic) solve the more general

NetKAT equivalence problem, into which network-wide analysis queries can be encoded. This

generic approach is based on principled automata-theoretic foundations, but one might expect it to

be less efficient than specialized algorithms. Frenetic was found to be comparable to or faster than

HSA [22], so by transitivity we expect KATch to be faster than HSA. However, the current state of

the art is APkeep, which is significantly faster than Frenetic and HSA. We include a comparison

with APkeep in Section 7 on reachability queries. The results show that KATch is competitive

with APkeep on these benchmarks, despite solving general NetKAT queries. As discussed, one

should not draw strong conclusions from this comparison as APkeep includes additional features;

nevertheless, it offers a promising preliminary indication of NetKAT’s scalability and performance.

Another line of work has explored how to lift verification from the data plane to the control

plane. Batfish [10, 19] proposed using symbolic simulation to analyze distributed control planes—

i.e., generating all possible data planes that might be produced starting from a given control-

plane configuration. Like KATch, Batfish uses a BDD-based representation for data plane analysis.

MineSweeper [4] improves on Batfish using an SMT encoding of the converged states of the control

plane that avoids having to explicitly simulate the underlying routing protocols. Recent work has

focused on using techniques like modular reasoning [41, 42] abstract interpretation [6], and a form

of symmetry reduction [5] to further improve the scalability of control-plane verification.
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Automata-Theoretic Approach and Symbolic Automata. Our work on KATch builds on the large

body of work on the automata-theoretic approach to verification and symbolic automata. The

automata-theoretic approach was pioneered in the 1980s, with applications of temporal logics and

model checking to hardware verification [44]. BDDs, originally proposed by Lee [30], were further

developed by Bryant [11], and used by McMillan for symbolic model checking [14]. BDD-based

techniques were a success story of symbolic model checking of hardware in the 1990s—Chaki and

Gurfinkel give an overview [15].

An influential line of work by D’Antoni and Veanus developed techniques for representing

and transforming finite automata where the transitions are not labeled with individual characters

but with elements of a so-called effective Boolean algebra [16, 17]. Shifting from a concrete to

a symbolic representation requires generalizing classical algorithms, such as minimization and

equivalence, but facilitates building automata that work over huge alphabets, such as Unicode.

Pous [36] developed symbolic techniques for checking the equivalence of automata where

transitions are specified using BDDs. The methods developed in this paper take Pous’s work as a

starting point but develop a non-trivial extension for NetKAT. In particular, SPPs provide a compact

representation for “carry-on” packets, which is a critical and unique aspect of NetKAT’s semantics.

Bonchi and Pous [8] explored the use of up-to techniques for checking equivalence of automata. In

principle, one can view the invariants enforced by KATch’s term representations as a kind of up-to

technique, but a full investigation of this idea requires more work.

Our backward algorithm for computing bisimulations can be seen as a variant of Moore’s classic

algorithm for computing the greatest bisimulation of classic automata. Doenges et al. [18] proposed

an analogous approach for checking equivalence of automata that model the behavior of P4 packet

parsers [9]. However, Leapfrog’s model is simpler than NetKAT’s and is based on classic finite

automata. It achieves scalability due to a novel up-to technique that “leaps” over internal buffering

transitions rather than symbolic representations.
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