
Frenetic: A High-Level Language

for OpenFlow Networks

Nate Foster, Rob Harrison,

Matthew L. Meola, Michael J.

Freedman, Jennifer Rexford, David

Walker

11.28.2010

PRESTO 2010,

Philadelphia, PA

Background

OpenFlow/NOX allowed us to take back the

network

• Direct access to dataplane hardware

• Programmable control plane via open API

OpenFlow/NOX made innovation possible, not

easy

• Low level interface mirrors hardware

• Thin layer of abstraction

• Few built-in features

So let’s give the network programmer some help…
2

OpenFlow Architecture

3

Priority Pattern Action Counters

0-65535 Physical Port, Link Source/Destination/Type,
VLAN, Network Source/Destination/Type,
Transport Source/Destination

Forward
Modify
Drop

Bytes, Count

OpenFlow Switch Flow Table

Controller

Switches

Network Events
• Flow table miss

• Port status

• Join/leave

• Query responses

Control Messages
• Send packet

• Add/remove flow

• Statistics Queries

NOX

Programming Networks with NOX

4

In general, program modules do not compose
• If m yields r, and some m¶ yields r¶, then (m ̂m¶) does not yield (r ̂r¶)

Forwarding Monitoring Access Control

Application

• Destination addressing • Transport ports • Individual MACs

Example

5

Simple Network Repeater

• Forward packets received on port 1 out 2; vice versa

1 2

Controller

Switch

Simple Repeater

6

def simple_repeater():
 # Repeat Port 1 to Port 2
 p1 = {IN_PORT:1}
 a1 = [(OFPAT_OUTPUT, PORT_2)]
 install(switch, p1, HIGH, a1)

 # Repeat Port 2 to Port 1
 p2 = {IN_PORT:2}
 a2 = [(OFPAT_OUTPUT, PORT_1)]
 install(switch, p2, HIGH, a2)

Priority Pattern Action Counters

HIGH IN_PORT:1 OUTPUT:2 (0,0)

HIGH IN_PORT:2 OUTPUT:1 (0,0)

NOX Program

Flow Table

1 2

Controller

Switch

Example

7

Simple Network Repeater
• Forward packets received on port 1 out 2; vice versa
•Monitor incoming HTTP traffic totals per host

1 2

Controller

Switch

with Host Monitoring

Simple Repeater with Host Monitoring

8

Repeat port 1 to 2
def port1_to_2():
 p1 = {IN_PORT:1}
 a1 = [(OFPAT_OUTPUT, PORT_2)]
 install(switch, p1, HIGH, a1)

Callback to generate rules per host
def packet_in(switch, inport, pkt):
 p = {DL_DST:dstmac(pkt)}
 pweb = {DL_DST:dstmac(pkt),
 DL_TYPE:IP,NW_PROTO:TCP,
 TP_SRC:80}
 a = [(OFPAT_OUTPUT, PORT_1)]
 install(switch, pweb, HIGH, a)
 install(switch, p, MEDIUM, a)

def main():
 register_callback(packet_in)
 port1_to_2()

Priority Pattern Action Counter

s

HIGH {IN_PORT:1} OUTPUT:2 (0,0)

HIGH {DL_DST:mac,DL_TYPE:IP_TYPE,NW_PROTO:TCP, TP_SRC:80} OUTPUT:1 (0,0)

MEDIUM {DL_DST:mac} OUTPUT:1 (0,0)

def simple_repeater():
 # Port 1 to port 2
 p1 = {IN_PORT:1}
 a1 = [(OFPAT_OUTPUT, PORT_2)]
 install(switch, p1, HIGH, a1)

 # Port 2 to Port 1
 p2 = {IN_PORT:2}
 a2 = [(OFPAT_OUTPUT, PORT_1)]
 install(switch, p2, HIGH, a2)

OpenFlow/NOX Difficulties

Low-level, brittle rules

•No support for operations like union and
intersection

Split architecture

• Between logic running on the switch and controller

No compositionality

•Manual refactoring of rules to compose
subprograms

Asynchronous interactions

• Between switch and controller

9

Our Solution: Frenetic

A High-level Language

• High-level patterns to

describe flows

• Unified abstraction

• Composition

A Run-time System

• Handles module

interactions

• Deals with asynchronous

behavior

10

NOX

Frenetic Version

11

Static repeating between ports 1 and 2
def simple_repeater():
 rules=[Rule(inport_fp(1), [output(2)]),
 Rule(inport_fp(2), [output(1)])]
 register_static(rules)

per host monitoring es: E(int)
def per_host_monitoring():
 q = (Select(bytes) *
 Where(protocol(tcp) & srcport(80))*
 GroupBy([dstmac]) *
 Every(60))
 log = Print(“HTTP Bytes:”)
 q >> l

Composition of two separate modules
def main():
 simple_repeater()
 per_host_monitoring()

1 2

Controller

Switch

• No refactoring of rules

• Pure composition of

modules

• Unified “see every packet”

abstraction

• Run-time deals with the rest

Frenetic Version

12

Static repeating between ports 1 and 2
def simple_repeater():
 rules=[Rule(inport_fp(1), [output(2)]),
 Rule(inport_fp(2), [output(1)])]
 register_static(rules)

per host monitoring es: E(int)
def per_host_monitoring():
 q = (Select(bytes) *
 Where(protocol(tcp) & srcport(80))*
 GroupBy([dstmac]) *
 Every(60))
 log = Print(“HTTP Bytes:”)
 q >> l

Composition of two separate modules
def main():
 simple_repeater()
 per_host_monitoring()

Frenetic Language

Network as a stream of discrete, heterogenous events

• Packets, node join, node leave, status change, time, etc…

Unified Abstraction

• “See every packet”

• Relieves programmer from reasoning about split architecture

Compositional Semantics

• Standard operators from Functional Reactive Programming

(FRP)

13

Event Stream

Single Value or Event
.

Frenetic Run-time System

Frenetic programs

interact only with the

run-time

• Programs create subscribers

• Programs register rules

Run-time handles the

details

• Manages switch-level rules

• Handles NOX events

• Pushes values onto the

appropriate event streams
14

NOX

NOX

Run-time System Implementation

Reactive, microflow based run-time system

15

Check

Subscribers
Check Rules

Monitoring

Loop
Stats Request

Do Actions

Install Flow

Send Packet

Update Stats

Stats In

Packets Stats

Subscribers

Rules

Flow

Removed

Subscribe Register

NOX

Frenetic Program

Frenetic Run-time System

Packet InPacket Packet

Rule

Packet

Optimizing Frenetic

“See every packet” abstraction can negatively

affect performance in the worst case

•Naïve implementation strategy

•Application directed

Using an efficient combination of operators, we

can keep packets in the dataplane

•Must match switch capabilities

–Filtering, Grouping, Splitting, Aggregating, Limiting

• Expose this interface to the programmer explicitly

16

Does it Work in Practice?

Frenetic programs perform comparably with pure NOX

• But we still have room for improvement

17

Learning

Switch

Web Stats

Static

Web Stats

Learning

Heavy

Hitters

Learning

Pure NOX

Lines of Code 55 29 121 125

Traffic to Controller (Bytes) 71224 1932 5300 18010

Naïve Frenetic

Lines of Code 15 7 19 36

Traffic to Controller (Bytes) 120104 6590 14075 95440

Optimized Frenetic

Lines of Code 14 5 16 32

Traffic to Controller (Bytes) 70694 3912 5368 19360

Frenetic Scalability

Frenetic scales to larger networks comparably with

NOX

18

25

Hosts

0 50

Frenetic

NOX

80

60

40

20

Tr
a
ff

ic
 t
o
 C

o
n
tr

o
ll
e
r
(k

B
)

Memcached with dynamic membership
• Forwards queries to a dynamic member set
•Works with unmodified memcached clients/servers

Defensive Network Switch
• Identifies hosts conducting network scanning
•Drops packets from suspected scanners

Memcached

Larger Applications

19

ServersClient
get(key)

set(k,v)

a-i

j-

q

r-z

a-m

n-z

Ongoing and Future Work

Surface Language
• Current prototype is in Python – to ease transition
• Would like a standalone language

Optimizations
• More programs can also be implemented efficiently
• Would like a compiler to identify and rewrite

optimizations

Proactive Strategy
• Current prototype is reactive, based on microflow rules
• Would like to enable proactive, wildcard rule installation

Network Wide Abstractions
• Current prototype focuses only on a single switch
• Need to expand to multiple switches 20

Questions?

See our recent submission for more details…

 http://www.cs.cornell.edu/~jnfoster/papers/frenetic-

draft.pdf

21

	Slide 1: Frenetic: A High-Level Language for OpenFlow Networks
	Slide 2: Background
	Slide 3: OpenFlow Architecture
	Slide 4: Programming Networks with NOX
	Slide 5: Example
	Slide 6: Simple Repeater
	Slide 7: Example
	Slide 8: Simple Repeater with Host Monitoring
	Slide 9: OpenFlow/NOX Difficulties
	Slide 10: Our Solution: Frenetic
	Slide 11: Frenetic Version
	Slide 12: Frenetic Version
	Slide 13: Frenetic Language
	Slide 14: Frenetic Run-time System
	Slide 15: Run-time System Implementation
	Slide 16: Optimizing Frenetic
	Slide 17: Does it Work in Practice?
	Slide 18: Frenetic Scalability
	Slide 19: Larger Applications
	Slide 20: Ongoing and Future Work
	Slide 21: Questions? See our recent submission for more details… http://www.cs.cornell.edu/~jnfoster/papers/frenetic-draft.pdf

