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Random Field

Broadly applicable stochastic model
– Collection of n sites S
– Hidden variable xi at each site i
– Label set L

• Each site takes on label l∈L

– Neighborhood system N
• Ni neighbors of site i
• Explicit dependencies between neighbors

Graphical model with undirected edges
– Graph G=(S,N)
– Ni set of nodes with edges incident on i 
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Markov Random Field (MRF)

Random field with Markov property
P(xi | xS\i) = P(xi | xNi)

– Where S\i denotes set S excluding element i

Standard simplification (abuse) of notation
– Probability of r.v. xi taking on value v, P(xi=v) 

abbreviated as P(xi)

Conditional probabilities depend only on 
neighborhood
– Probability of xi taking on some value same 

given all other nodes as given just neighbors
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MRF’s for Low Level Vision

Grid graph
– Sites are pixels; up, down, left, right neighbors
– Neighborhood enforces spatial coherence
– Observed value yi at each site (pixel)

Applies to many pixel-oriented problems
– Naturally expressed as posterior probability of 

labels given observations, P(x|y)
• Stereopsis, labels are depths (disparities)
• Optical flow, labels are motion vectors
• Restoration, labels are intensities (colors)

– [Geman & Geman, 1984]
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MRF Stereo

Given two images, estimate depth at each 
pixel

x1 x2

x3 x4

y2y1

y3 y4

Depths

(Tens of labels)
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MRF Motion

Given two images, estimate motion vector 
at each pixel

Flow vectors

x1 x2

x3 x4

y2y1

y3 y4

(Hundreds of labels)
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MRF Image Restoration

Given image corrupted by noise, estimate 
original image
– Intensity/color for each pixel

x1 x2

x3 x4

y2y1

y3 y4

Intensities
(Hundreds of labels)
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MRF’s for High Level Vision

Given image, estimate location of object
– Pictorial structure model

• Parts represented as local image patches
• Spring-like connections between pairs of parts

– Non-MRF formulation [Fischler&Elschlager, 1973]

x1

x4

x5

x6

x7

Locations
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x10

(Millions of labels)
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Using MRF’s 

Given MRF model and observed values, 
infer most likely values of hidden variables
Learn MRF parameters from examples
Note analogous problems for hidden 
Markov models (HMM’s)
– Chains are equivalent to HMM’s
– Generalization to sites and neighborhoods 

rather than temporal (ordered) dependency

Both inference (estimation) and learning 
problems are hard for general MRF’s
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MRF Inference (Estimation)

Find labelings that have high probability 
given observations (posterior)

P(x|y)=P(x1,x2, …, xn | y1,y2, … yn)
Standard Bayesian estimation problem

P(x|y) ∝ P(y|x)P(x)
– Likelihood P(y|x) of observations given labels

• Reasonable to assume independence, factor
P(y|x) = ∏i∈S P(yi|xi)

– Prior P(x) of labelings
• MRF conditional probability P(xi|xS\i) = P(xi|xNi) 

not directly useful for factoring this joint distr.
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Factoring the Prior

MRF equivalent to Gibbs random field (GRF)
– Hammersley-Clifford theorem (1971)

In GRF prior is factored over cliques C of 
underlying graph G=(S,N)

P(x) ∝ exp(-∑c∈C Vc(xc))
– Clique potential VC function of labels for clique

Cliques=edges for chains, trees, four-
connected grids (cliques size 2)

P(x) ∝ exp(-∑(i,j)∈N Vij(xi,xj))
– Often also written P(x) ∝ ∏(i,j)∈N Ψij(xi,xj)
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Tractable Inference Problem

Posterior distribution factors
P(x|y) ∝ ∏i∈S P(yi|xi) ∏(i,j)∈N Ψij(xi,xj)

Maximize posterior
– MAP estimate, argmaxx P(x|y)
– Sample high probability values of x

Common to express as corresponding 
energy minimization problem
– Costs (negative log probabilities)

∑i∈S Di(xi,yi) + ∑(i,j)∈N Vij(xi,xj)

Match to Data Local Consistency
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Back to Vision Problems

Intuitive local meanings of energy function
∑i∈SDi(xi,yi) + ∑(i,j)∈N Vij(xi,xj)

– For both low-level and high-level problems
• Spatial coherence for stereo, motion, restoration
• Spring-like connections for multi-part objects

Global: equivalent to maximizing P(x|y)

x1 x2

x3 x4

y2y1

y3 y4

D

V
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Remaining Computational Issues

Exponential number of labelings
O(kn) where |L|=k

Efficient algorithms if no loops in the graph 
(i.e., chain or tree)
– Viterbi algorithm O(k2n)
– NP hard in most cases for grid graph

• E.g., some two-label problems poly-time (min cut)

For practical purposes a dead end
– Low level vision: heuristic search methods like 

annealing slow and unreliable
– High level vision: quadratic in millions of labels
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Recent Algorithmic Advances

Approximations for grid graph
– Characterization of local minima

• Graph cuts [Boykov, Veksler & Zabih, 1999]
• Loopy belief propagation [Weiss&Freeman, 1999]

– Best stereo algorithms now almost all use either 
GC or LBP

O(nk) algorithm for tree – many labels
– For pictorial structures where clique potential is 

a weighted quadratic distance, sxi-xj2

• Based on generalization of distance transforms 
[Felzenszwalb&Huttenlocher, 2000]
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Still Limited Applicability

Large label sets often impractical
– Grid graphs

• Optical flow (motion estimation)
• Image restoration

– Chains (HMM’s)
• Inference on time series data

Graph cuts and belief prop slow compared 
to local methods
– Several minutes for stereo pair compared to 

second or less for methods not based on MRF’s
• Choice of speed versus accuracy
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New Results Address These Limits

Running time linear in number of labels for 
commonly used clique potentials Vij

– For Viterbi and BP algorithms
– Efficient computation of min-transform

• Potentially applicable to other combinatorial 
optimization problems 

Hierarchical method for LBP on grid graph
– LBP is an iterative messaging passing method

• Number of iterations generally proportional to 
diameter of graph

• Hierarchy enables constant number of iterations
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Form of Clique Potentials

Vij(xi,xj) commonly based on measure of 
difference between labels xi,xj

– Linear: σ|xi-xj|

– Quadratic: σ(xi-xj)2

– Potts: 0 when xi=xj, τ otherwise

– Truncated linear: min(τ, σ|xi-xj|)

– Truncated quadratic:  min(τ, σ(xi-xj)2)

Spring-like

Spatially
Coherent

Truncation allows for discontinuities (non-coherence)
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Dependence on Number of Labels

Viterbi and min-sum BP both involve min-
transform of some f for each site i

h(xi)=minxj (Vij(xi,xj) + f(xj))

Cost of label xi at node i, h(xi)
– Depends on cost computed at neighbor j plus 

discontinuity cost (clique potential)
• Seek best xj for each xi – miminization

Explicit computation by considering pairs 
xi,xj leads to O(k2) term in running time
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Potts Min-Transform

The min-transform can be computed in 
O(k) time for the Potts model
– Penalty of τ when labels disagree 0 when agree

Straightforward re-arrangement of terms
h(xi)=min(minxj f(xj)+τ, f(xi))

– Because Vij(xi,xj) is 0 when xi=xj, τ otherwise

– No need to explicitly consider pairs only two 
cases
• Same labels, value of h is same as f (penalty 0)

• Different labels, value of h is best f plus penalty
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Quadratic Min-Transform 

Compute h(xi)=minxj(σ(xi-xj)2+f(xj)) 
– Geometric view: in one dimension, lower 

envelope of arrangement of k quadratics 
• Each rooted at (xj,f(xj))
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Algorithm for Lower Envelope

Quadratics ordered x1<x2< … <xk

At step j consider adding j-th quadratic to 
LE of first j-1 quadratics
– Maintain two ordered lists

• Quadratics currently visible on LE
• Intersections currently visible on LE

– Compute intersection of j-th quadratic and 
rightmost quadratic visible on LE
• If right of rightmost visible intersection add 

quadratic and intersection to lists
• If not, this quadratic hides at least rightmost 

quadratic, remove it and try again
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LE Algorithm

Add secondAdd first

Try adding third

Remove second

Try again and add
… 
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Running Time of LE Algorithm

Considers adding each of k quadratics just 
once
– Intersection and comparison constant time
– Adding to lists constant time
– Removing from lists constant time

• But then need to try again

Simple amortized analysis
– Total number of removals O(k)

• Each quadratic once removed never considered 
for removal again

Thus overall running time O(k)
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Linear Time Min-Transform Method 

Calculating minxj(σ(xi-xj)2+f(xj)) from LE
– Fill in vector of values based on visible 

quadratics and intersections
– Exact calculation followed by rasterization

Overall algorithm about 30 lines of c code
– Very fast in practice

Generalizes to higher dimensions
– Consider two dimensions u,v

• First pass to compute min u2 (or min v2) distance
• Subsequent pass on result of first pass computes 

min u2+v2 distance



26

Other Applications of Min-Transform

(Squared) Euclidean distance transform
– Distance to nearest “on” pixel in binary image
– Previous algorithms complex because think of 

operating on point sets rather than functions

Combinatorial optimization problems
– Minimizations involving sum of cost and 

distance 
miny(σx-y+ f(y)) 
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Min-Transform for Viterbi

For chain x=(x1, …, xn) the Viterbi
algorithm computes 

minx ∑i D(xi,yi) + V(xi,xi-1)

– Using recurrence 
si(xi) = D(xi,yi) + minXi-1 (si-1(xi-1) + V(xi,xi-1))

Use min-transform algorithm to compute 
second term of recurrence in O(k) time
– For quadratic, Potts, truncated quadratic
– Simpler method for linear, truncated linear

O(nk) overall, n steps in recurrence
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Coin Tossing Example

Estimate bias of “changing coin” from 
sequence of observed {H,T} values
– Labels correspond to 

possible bias values, 
e.g., .100, …, .900 

– Data costs 
-logP(H|xi) 
-logP(T|xi)

– Clique potential
truncated quadratic

– [Felzenszwalb, Huttenlocher & Kleinberg, 2003]



29

Power of Stochastic Model

Infer instantaneous (discretized) 
probability from observed H,T sequence
Detect changes in hidden value
Contrast with linear approach such as 
weighted windowed average
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Loopy Belief Propagation

Iterative message passing from each site to 
neighbors
– Several variants, consider min-sum which 

matches our energy minimization formulation
– Message mi,j,t sent from site i to j at time t

mi,j,t(xj) = minxi [V(xi,xj)+D(xi,yi)

+ ∑k∈Ni\j mk,i,t-1(xi)]
• Based on neighbors of i other than j, at step t-1

– After T iterations each node computes label 
minimizing (maximizing “belief”)

bi(xi)=D(xi,yi)+∑k∈Nimk,i,T(xi) 
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Schematic of LBP on Grid

Each node computes four messages
– Think of neighbors as up, down, left, right

Example, message to send down from i
mi,d,t(xd) = minxi [V(xi,xd)+D(xi,yi)+mr,i,t-1(xi)

+ ml,i,t-1(xi)+ mu,i,t-1(xi)]

Min-transform so O(k) not O(k2)

mu,i,t-1

ml,i,t-1mr,i,t-1

Compute mi,d,t
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About LBP

For grids works well in practice
– Convergence properties not totally understood

Number of iterations T proportional to 
diameter of grid
– For most vision problems need to propagate 

information from distant parts of grid

An improvement to LBP on grid
– Initialize messages to values that reflect 

propagation from distant sites
• Use a multi-scale method to do so

– Only constant number of iterations required
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Multi-Scale LBP on Grid

Node corresponds to block of pixels that 
are all assigned a single label
– 2lx2l block at level l of hierarchy

Short paths in coarse level graphs

Final messages at level l initialize level l-1

Other multi-scale 
BP methods change
problem definition
– Use hierarchical graph
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Multi-Scale Method

Clique potential V, same at all levels
– Based on pair of labels for two nodes

• Each node assigned one label (for all pixels)

Data cost D, sum of data costs for pixels
– Corresponds to likelihood of observed data 

given single label for all pixels
– Differs from other multi-scale methods

• Not lower resolution image
− E.g., Gaussian pyramid, smooth and sub-sample

• Only lower resolution estimation problem
− To speed message propagation
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Hierarchical Method Converges Fast

Example for stereo matching
– Truncated linear clique potential 
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Fast MRF Methods

Makes MRF’s practical for many problems
– Vision, comparable to speed of local methods

• Stereo matching, 1 sec per pair
• Visual motion estimation, 4 secs per pair
• Image restoration, 4 secs per image
• Human body pose recovery, 30 secs per image

(640x480 images, 2 gHz Pentium 4)
– Time series, large label sets (state spaces)

Compared with previous methods
– GC and standard LBP take minutes for stereo, 

other vision problems not feasible
– HMM’s only feasible for small state spaces
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Still Plenty To Do

Better understanding of why LBP and 
hierarchical method work well on grids
– “Large moves” – many labels set together
– Characterization of local minima found

Related techniques for sum-product BP 
algorithm
– Important for problems such as motion where 

sub-pixel interpolation desirable

Problems where parameters of MRF not 
known (or learned) a priori
– E.g., “multi modal” imagery
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