

Algorithms for Markov Random Fields in Computer Vision

Dan Huttenlocher November, 2003

(Joint work with Pedro Felzenszwalb)

Random Field

- Broadly applicable stochastic model
 - Collection of n sites S
 - Hidden variable x; at each site i
 - Label set £
 - Each site takes on label $\ell \in \mathcal{L}$

- Neighborhood system ${\mathcal N}$
 - N_i neighbors of site i
 - Explicit dependencies between neighbors
- Graphical model with <u>undirected</u> edges
 - Graph $\mathcal{G}=(S,\mathcal{N})$
 - N_i set of nodes with edges incident on i

Markov Random Field (MRF)

Random field with Markov property

$$P(x_i \mid x_{S\setminus i}) = P(x_i \mid x_{\mathcal{N}i})$$

- Where S\i denotes set S excluding element i
- Standard simplification (abuse) of notation
 - Probability of r.v. x_i taking on value v, $P(x_i=v)$ abbreviated as $P(x_i)$
- Conditional probabilities depend only on neighborhood
 - Probability of x_i taking on some value same given all other nodes as given just neighbors

MRF's for Low Level Vision

- Grid graph
 - Sites are pixels; up, down, left, right neighbors
 - Neighborhood enforces spatial coherence
 - Observed value y_i at each site (pixel)
- Applies to many pixel-oriented problems
 - Naturally expressed as posterior probability of labels given observations, P(x|y)
 - Stereopsis, labels are depths (disparities)
 - Optical flow, labels are motion vectors
 - Restoration, labels are intensities (colors)
 - [Geman & Geman, 1984]

MRF Stereo

Given two images, estimate depth at each

pixel

Depths

(Tens of labels)

MRF Motion

Given two images, estimate motion vector

at each pixel

Flow vectors

(Hundreds of labels)

MRF Image Restoration

- Given image corrupted by noise, estimate original image
 - Intensity/color for each pixel

Intensities

(Hundreds of labels)

Corrupted

Restoration

Original

MRF's for High Level Vision

- Given image, estimate location of object
 - Pictorial structure model
 - Parts represented as local image patches
 - Spring-like connections between pairs of parts
 - Non-MRF formulation [Fischler&Elschlager, 1973]

Using MRF's

- Given MRF model and observed values, infer most likely values of hidden variables
- Learn MRF parameters from examples
- Note analogous problems for hidden Markov models (HMM's)
 - Chains are equivalent to HMM's
 - Generalization to sites and neighborhoods rather than temporal (ordered) dependency
- Both inference (estimation) and learning problems are hard for general MRF's

MRF Inference (Estimation)

 Find labelings that have high probability given observations (posterior)

$$P(x|y)=P(x_1,x_2, ..., x_n | y_1,y_2, ... y_n)$$

Standard Bayesian estimation problem

$$P(x|y) \propto P(y|x)P(x)$$

- Likelihood P(y|x) of observations given labels
 - Reasonable to assume independence, factor $P(y|x) = \prod_{i \in S} P(y_i|x_i)$
- Prior P(x) of labelings
 - MRF conditional probability $P(x_i|x_{S\setminus i}) = P(x_i|x_{Ni})$ not directly useful for factoring this joint distr.

Factoring the Prior

- MRF equivalent to Gibbs random field (GRF)
 - Hammersley-Clifford theorem (1971)
- In GRF prior is factored over cliques \mathcal{C} of underlying graph $\mathcal{G}=(S,\mathcal{N})$

$$P(x) \propto exp(-\sum_{c \in e} V_c(x_c))$$

- Clique potential V_c function of labels for clique
- Cliques=edges for chains, trees, fourconnected grids (cliques size 2)

$$P(x) \propto exp(-\sum_{(i,j)\in\mathcal{N}} V_{ij}(x_i,x_j))$$

- Often also written $P(x) \propto \prod_{(i,j) \in \mathcal{N}} \Psi_{ij}(x_i,x_j)$

Tractable Inference Problem

Posterior distribution factors

$$P(x|y) \propto \prod_{i \in S} P(y_i|x_i) \prod_{(i,j) \in \mathcal{N}} \Psi_{ij}(x_i,x_j)$$

- Maximize posterior
 - MAP estimate, $argmax_x P(x|y)$
 - Sample high probability values of x
- Common to express as corresponding energy minimization problem
 - Costs (negative log probabilities)

Back to Vision Problems

Intuitive local meanings of energy function

$$\sum_{i \in S} D_i(x_i, y_i) + \sum_{(i,j) \in \mathcal{N}} V_{ij}(x_i, x_j)$$

- For both low-level and high-level problems
 - Spatial coherence for stereo, motion, restoration
 - Spring-like connections for multi-part objects
- Global: equivalent to maximizing P(x|y)

Remaining Computational Issues

- Exponential number of labelings $O(k^n)$ where $|\mathcal{L}|=k$
- Efficient algorithms if no loops in the graph (i.e., chain or tree)
 - Viterbi algorithm O(k²n)
 - NP hard in most cases for grid graph
 - E.g., some two-label problems poly-time (min cut)
- For practical purposes a dead end
 - Low level vision: heuristic search methods like annealing slow and unreliable
 - High level vision: quadratic in millions of labels

Recent Algorithmic Advances

- Approximations for grid graph
 - Characterization of local minima
 - Graph cuts [Boykov, Veksler & Zabih, 1999]
 - Loopy belief propagation [Weiss&Freeman, 1999]
 - Best stereo algorithms now almost all use either GC or LBP
- O(nk) algorithm for tree many labels
 - For pictorial structures where clique potential is a weighted quadratic distance, $s \| x_i x_i \|^2$
 - Based on generalization of distance transforms [Felzenszwalb&Huttenlocher, 2000]

Still Limited Applicability

- Large label sets often impractical
 - Grid graphs
 - Optical flow (motion estimation)
 - Image restoration
 - Chains (HMM's)
 - Inference on time series data
- Graph cuts and belief prop slow compared to local methods
 - Several minutes for stereo pair compared to second or less for methods not based on MRF's
 - Choice of speed versus accuracy

New Results Address These Limits

- Running time linear in number of labels for commonly used clique potentials V_{ij}
 - For Viterbi and BP algorithms
 - Efficient computation of min-transform
 - Potentially applicable to other combinatorial optimization problems
- Hierarchical method for LBP on grid graph
 - LBP is an iterative messaging passing method
 - Number of iterations generally proportional to diameter of graph
 - Hierarchy enables constant number of iterations

Form of Clique Potentials

- $V_{ij}(x_i,x_j)$ commonly based on measure of difference between labels x_i, x_i
 - Linear: $\sigma|x_i-x_j|$ Quadratic: $\sigma(x_i-x_j)^2$ Spring-like

 - Potts: 0 when $x_i = x_i$, τ otherwise
 - Truncated linear: $min(\tau, \sigma|x_i-x_i|)$
 - Truncated quadratic: $min(\tau, \sigma(x_i-x_i)^2)$

Truncation allows for discontinuities (non-coherence)

Dependence on Number of Labels

 Viterbi and min-sum BP both involve mintransform of some f for each site i

$$h(x_i) = \min_{x_j} (V_{ij}(x_i, x_j) + f(x_j))$$

- Cost of label x_i at node i, h(x_i)
 - Depends on cost computed at neighbor j plus discontinuity cost (clique potential)
 - Seek best x_i for each x_i miminization
- Explicit computation by considering pairs x_i, x_j leads to $O(k^2)$ term in running time

Potts Min-Transform

- The min-transform can be computed in O(k) time for the Potts model
 - Penalty of τ when labels disagree 0 when agree
- Straightforward re-arrangement of terms
 h(x_i)=min(min_{xi} f(x_i)+τ, f(x_i))
 - Because $V_{ij}(x_i,x_j)$ is 0 when $x_i=x_j$, τ otherwise
 - No need to explicitly consider pairs only two cases
 - Same labels, value of h is same as f (penalty 0)
 - Different labels, value of h is best f plus penalty

Quadratic Min-Transform

- Compute $h(x_i) = \min_{x_i} (\sigma(x_i x_j)^2 + f(x_j))$
 - Geometric view: in one dimension, lower envelope of arrangement of k quadratics
 - Each rooted at (x_j,f(x_j))

Algorithm for Lower Envelope

- Quadratics ordered x₁<x₂< ... <x_k
- At step j consider adding j-th quadratic to LE of first j-1 quadratics
 - Maintain two ordered lists
 - Quadratics currently visible on LE
 - Intersections currently visible on LE
 - Compute intersection of j-th quadratic and rightmost quadratic visible on LE
 - If right of rightmost visible intersection add quadratic and intersection to lists
 - If not, this quadratic hides at least rightmost quadratic, remove it and try again

LE Algorithm

Running Time of LE Algorithm

- Considers adding each of k quadratics just once
 - Intersection and comparison constant time
 - Adding to lists constant time
 - Removing from lists constant time
 - But then need to try again
- Simple amortized analysis
 - Total number of removals O(k)
 - Each quadratic once removed never considered for removal again
- Thus overall running time O(k)

Linear Time Min-Transform Method

- Calculating $\min_{x_i}(\sigma(x_i-x_i)^2+f(x_i))$ from LE
 - Fill in vector of values based on visible quadratics and intersections
 - Exact calculation followed by rasterization
- Overall algorithm about 30 lines of c code
 - Very fast in practice
- Generalizes to higher dimensions
 - Consider two dimensions u,v
 - First pass to compute min u² (or min v²) distance
 - Subsequent pass on result of first pass computes min u²+v² distance

Other Applications of Min-Transform

- (Squared) Euclidean distance transform
 - Distance to nearest "on" pixel in binary image
 - Previous algorithms complex because think of operating on point sets rather than functions

- Combinatorial optimization problems
 - Minimizations involving sum of cost and distance

$$\min_{\mathbf{y}}(\sigma \| \mathbf{x} - \mathbf{y} \| + \mathbf{f}(\mathbf{y}))$$

Min-Transform for Viterbi

• For chain $x=(x_1, ..., x_n)$ the Viterbi algorithm computes

$$\min_{\mathbf{x}} \sum_{\mathbf{i}} D(\mathbf{x_i}, \mathbf{y_i}) + V(\mathbf{x_i}, \mathbf{x_{i-1}})$$

- Using recurrence

$$s_{i}(x_{i}) = D(x_{i}, y_{i}) + min_{X_{i-1}} (s_{i-1}(x_{i-1}) + V(x_{i}, x_{i-1}))$$

- Use min-transform algorithm to compute second term of recurrence in O(k) time
 - For quadratic, Potts, truncated quadratic
 - Simpler method for linear, truncated linear
- O(nk) overall, n steps in recurrence

Coin Tossing Example

- Estimate bias of "changing coin" from sequence of observed {H,T} values
 - Labels correspond to possible bias values, e.g., .100, ..., .900
 - Data costs-logP(H|x_i)-logP(T|x_i)
 - Clique potential truncated quadratic

- [Felzenszwalb, Huttenlocher & Kleinberg, 2003]

Power of Stochastic Model

- Infer instantaneous (discretized)
 probability from observed H,T sequence
- Detect changes in hidden value
- Contrast with linear approach such as weighted windowed average

Loopy Belief Propagation

- Iterative message passing from each site to neighbors
 - Several variants, consider min-sum which matches our energy minimization formulation
 - Message m_{i,j,t} sent from site i to j at time t

$$m_{i,j,t}(x_j) = \min_{\mathbf{x}_i} \left[V(x_i, x_j) + D(x_i, y_i) + \sum_{\mathbf{k} \in \mathcal{Z}_i \setminus i} m_{\mathbf{k}, i, t-1}(x_i) \right]$$

- Based on neighbors of i other than j, at step t-1
- After T iterations each node computes label minimizing (maximizing "belief")

$$b_i(x_i) = D(x_i, y_i) + \sum_{k \in \mathcal{M}} m_{k,i,T}(x_i)$$

Schematic of LBP on Grid

- Each node computes four messages
 - Think of neighbors as up, down, left, right
- Example, message to send down from i $m_{i,d,t}(x_d) = \min_{x_i} \left[V(x_i,x_d) + D(x_i,y_i) + m_{r,i,t-1}(x_i) + m_{l,i,t-1}(x_i) + m_{l,i,t-1}(x_i) + m_{l,i,t-1}(x_i) \right]$

Min-transform so O(k) not O(k²)

About LBP

- For grids works well in practice
 - Convergence properties not totally understood
- Number of iterations T proportional to diameter of grid
 - For most vision problems need to propagate information from distant parts of grid
- An improvement to LBP on grid
 - Initialize messages to values that reflect propagation from distant sites
 - Use a multi-scale method to do so
 - Only constant number of iterations required

Multi-Scale LBP on Grid

- Node corresponds to block of pixels that are all assigned a single label
 - $2^{\ell}x2^{\ell}$ block at level ℓ of hierarchy
- Short paths in coarse level graphs
- Final messages at level ℓ initialize level ℓ -1
- Other multi-scale
 BP methods change
 problem definition
 - Use hierarchical graph

Multi-Scale Method

- Clique potential V, same at all levels
 - Based on pair of labels for two nodes
 - Each node assigned one label (for all pixels)
- Data cost D, sum of data costs for pixels
 - Corresponds to likelihood of observed data given single label for all pixels
 - Differs from other multi-scale methods
 - Not lower resolution image
 - E.g., Gaussian pyramid, smooth and sub-sample
 - Only lower resolution estimation problem
 - To speed message propagation

Hierarchical Method Converges Fast

- Example for stereo matching
 - Truncated linear clique potential

Fast MRF Methods

- Makes MRF's practical for many problems
 - Vision, comparable to speed of local methods
 - Stereo matching, 1 sec per pair
 - Visual motion estimation, 4 secs per pair
 - Image restoration, 4 secs per image
 - Human body pose recovery, 30 secs per image (640x480 images, 2 gHz Pentium 4)
 - Time series, large label sets (state spaces)
- Compared with previous methods
 - GC and standard LBP take minutes for stereo, other vision problems not feasible
 - HMM's only feasible for small state spaces

Still Plenty To Do

- Better understanding of why LBP and hierarchical method work well on grids
 - "Large moves" many labels set together
 - Characterization of local minima found
- Related techniques for sum-product BP algorithm
 - Important for problems such as motion where sub-pixel interpolation desirable
- Problems where parameters of MRF not known (or learned) a priori
 - E.g., "multi modal" imagery