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The Duality of Progress

The desire to model the world, to 

build a Theory of Everything, so 

that we can know everything. 

Acknowledgement of the 

Unknown, so that we can prepare 

for (and survive) the unknown 

tribulations of the cosmos.

To Know the Unknown A World of Uncertainty



Cryptography Embraces the Unknown

The desire to model the world, to 

build a Theory of Everything, so 

that we can know everything. 

We want to build protocols that 

are secure against any real-life
attacker, no matter when, where, 

or how (assuming computational hardness.)

To Know the Unknown A World of Uncertainty



Reduction-Based Computational Security
Suppose A wins a security game C (e.g. breaking an encryption scheme): 

f(x)

f-1(f(x))C’ RA 

Enc(m)

mC A 
Then RA breaks C’ (e.g. inverting a OWF)

Contradiction! (assuming security of the OWF for RA.)

Embraces the Unknown:
Allows for any 
black-box attacker!

Classically, R can rewind 
or restart the attacker.



Embracing Uncertainty has done us remarkably well.

From OWFs, we can build,

● Hardcore Bits [GL89]
● Pseudorandom Generators [HILL99]
● Private-Key Encryption [GGM85+86]
● Commitment Schemes [Nao91]
● Digital Signatures [Lam79, Rom90, Mer90]
● Zero-Knowledge Proofs for all of NP [GMW86]



1980s: The Bizarre Nature of Quantum Computing

No-Cloning Theorem: can’t copy qubits without collapsing superposition.
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1980s: The Bizarre Nature of Quantum Computing

No-Cloning Theorem: can’t copy qubits without collapsing superposition.

Can no longer reason about Nature as classical algorithm: 

It is bizarrely stateful (Behavior changes on repeated invocations).
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1980s: The Bizarre Nature of Quantum Computing

No-Cloning Theorem: can’t copy qubits without collapsing superposition.

Can no longer reason about Nature as classical algorithm: 

It is bizarrely stateful (Behavior changes on repeated invocations).
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f(x)

f-1(f(x))C’ RA 
Classically, R can 
just “rerun” A, where A is not 
stateful across runs



1980s: The Bizarre Nature of Quantum Computing

No-Cloning Theorem: can’t copy qubits without collapsing superposition.

Can no longer reason about Nature as classical algorithm: 

It is bizarrely stateful (Behavior changes on repeated invocations).

It isn’t a stretch to imagine a fully stateful real world attacker...
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Questioning Our Faith

Extended Church Turing Hypothesis: 

Real-life attackers are stateless, and (nu)PPT.

Quantum Extended Church Turing Hypothesis: 

Real-life attackers are stateless, and (nu)QPT.

Our world view is built on two implicit assumptions:



Questioning Our Faith

Extended Church Turing Hypothesis: 

Real-life attackers are stateless, and (nu)PPT.

Quantum Extended Church Turing Hypothesis: 

Real-life attackers are stateless, and (nu)QPT.

Our world view is built on two implicit assumptions:

These are religious, not scientific assumptions.



Popper’s Falsifiability Test [Pop05]

“It must be possible for a scientific theory to be refuted by experience.”

“It is easy to obtain confirmations 

for nearly every theory — if we 

look for confirmations.”

“ALL MEN ARE MORTAL”

“Real Life Attackers 
Are Efficient Algorithms”

Thus, a scientific theory must be 

systematically falsifiable.

The Extended Church 
Turing Hypothesis doesn’t 

pass the test!

“ALL MEN ARE IMMORTAL”



If Our Faith is Wrong… If Nature is Stateful...

It took 1400 years for humankind to develop the tools necessary to falsify geocentrism.



Can we build a reduction-based
theory of cryptography 

without making a religious assumption 
on the properties of real-world attackers?

(acknowledging that unknown, that the world is vaster than we previously thought it to be,
and not just modeled by stateless algorithms?)

This talk:



Can we build a reduction-based 
theory of cryptography

in the face of newfound uncertainty
about the Nature of real-world attackers?

(What if real-world attackers can change the way they play security games over time?)

This talk:



Our work: Cosmic Security (Informal)

Suppose PPT A uses Nat to ‘break’ C (e.g. breaking an encryption scheme): 

f(x)

f-1(f(x))C’ A’ 

Enc(m)

mC A 
Then ∃ PPT A’ that uses Nat to ‘break’ C’ (e.g. inverting a OWF)

Contradiction! (assuming security of the OWF vs PPT+Nat)

Nat 

Nat 

Can be stateful
Can be unbounded

A’ can no longer 
religiously rely on Nat 
behaving statelessly.



Roadmap
1. Motivation (10min)

2. Defining Cosmic Security  (15min)

3. Properties of Cosmic Security: a Sanity Check
a. Composition, Black-box reductions  (5min)

4. Summary of Key Results 
a. Feasibilities and Impossibilities (20min)

5. Other Notions of  Cosmic Security  (10min)

6. Conclusion  (5min)
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Defining Cosmic Security

A ↔  Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful!

“Cosmic Adversary” (A, Nat)



Cosmic Adversaries

A ↔  Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful

“Cosmic Adversary” (A, Nat)
to capture our uncertainty 

regarding  the 
“Power of Nature”

A classic attacker
that uses Nature

to break some scheme



C ↔ A ↔  Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful

“Challenger”
uniform PPT

outputs “win”/“lose”

Cosmic Security Game

“Cosmic Adversary” (A, Nat)

Observe: the attacker can 
alter the state of Nature
during the interaction.
This is intentional and a key 
property of our definition.



C ↔ A ↔  NatWIN.

C ↔ A ↔  
C ↔ A ↔  
C ↔ A ↔  
C ↔ A ↔  

LOSE.

LOSE.

LOSE.

LOSE.

time

41202343698665954385553136533257594817981169984432
79828454556264338764455652484261980988704231618418
79261420247188869492560931776375033421130982397485
15094490910691026986103186270411488086697056490290
36536588674337317208131041051908642547932826013912
57624033946373269391

Nat refuses to play more than once.

Maybe Nat measured a qubit.

The cat was let out of the box.

Nat simply isn’t useful!

Nature can be invoked 
many times, “statefully”



Useful adversaries win repeatedly.

C ↔ A  NatWIN.

C ↔ A  
C ↔ A  
C ↔ A  
C ↔ A  

WIN.

WIN.

WIN.

WIN.

time

No point in inverting a OWF only once.

Classically, we always have the option 
of re-running A from scratch, with 
independent coins.



C ↔ A ↔  Nat

We consider only (A, Nat) that 
“wins repeatedly” over time.

C ↔ A ↔  
C ↔ A ↔  

WIN.

WIN.

WIN.

time

C ↔ A ↔  WIN.

It doesn’t matter that Nat is “stateful” if it only wins once.



↔

C ↔ A ↔  

C ↔ A ↔  Nat

robust winning

C ↔ A ↔  
WIN.

↔

the past

42

(A, Nat) wins for C regardless of any 
interactions that Nat had in the past!

time



ρ

C ↔ A ↔  

↔

C ↔ A ↔  Nat(ρ)

robust winning

C ↔ A ↔  
WIN.

↔

the past

42

Interaction prefix ρ: 

a transcript of messages 

previously sent to Nat before 

the beginning of execution, 

including coins flipped by Nat.

(A, Nat) wins for C regardless of any 
interactions that Nat had in the past!
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Interaction prefix ρ: 

a transcript of messages 

previously sent to Nat before 

the beginning of execution, 

including coins flipped by Nat.

Definition: (A, Nat) has robust advantage 
a(.) for C, if ∀ interaction prefixes ρ, ∀λ:
Pr[(A, Nat(ρ)) wins C] ≥ a(λ)



ρ

C ↔ A ↔  

↔

C ↔ A ↔  Nat(ρ)

robust winning

C ↔ A ↔  
WIN.

↔

the past

42

Interaction prefix ρ: 

a transcript of messages 

previously sent to Nat before 

the beginning of execution, 

including coins flipped by Nat.

Definition: (A, Nat) has robust advantage 
a(.) for C, if ∀ interaction prefixes ρ, ∀λ:
Pr[(A, Nat(ρ)) wins C] ≥ a(λ)

A weak notion! 
Can win in a different way 
for each prefix.



Cosmic Security (Final)

Suppose (A, Nat) has robust advantage a(·) for C 

Enc(m)

mC A Nat 

∃ an ε-cosmic reduction from C to C’ if  ∀ PPT A, ∃ PPT A’ s.t.  ∀Nat:



Cosmic Security (Final)

Suppose (A, Nat) has robust advantage a(·) for C 

f(x)

f-1(f(x))C’ A’ 

Enc(m)

mC A 
Then (A’, Nat) has robust advantage ε(·,a(·)) for C’.

Nat 

Nat 

∃ an ε-cosmic reduction from C to C’ if  ∀ PPT A, ∃ PPT A’ s.t.  ∀Nat:
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Suppose (A, Nat) has robust advantage a(·) for C 

f(x)

f-1(f(x))C’ A’ 

Enc(m)

mC A 
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Nat 

Nat 
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A’ can now use the fact that 
(A, Nat) wins repeatedly.
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Cosmic Security (Final)

Suppose (A, Nat) has robust advantage a(·) for C 

f(x)

f-1(f(x))C’ A’ 

Enc(m)

mC A 
Then (A’, Nat) has robust advantage ε(·,a(·)) for C’.

Nat 

Nat 

∃ an ε-cosmic reduction from C to C’ if  ∀ PPT A, ∃ PPT A’ s.t.  ∀Nat:

A’ can now use the fact that 
(A, Nat) wins repeatedly.

Equivalent definition!

Rest of this talk: 

this is the right definition to work on!
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Def: ε-cosmic reduction from C to C’: 

∀ PPT attackers A, ∃ PPT A’ s.t. ∀ Nat: 

(A, Nat) has robust adv a(.) for C

Two Nice Properties

(A’, Nat) has robust adv ε(.,a(.)) for C’.
What makes us think that 
cosmic security is a good definition?

1. Composability: Cosmic reductions are 

composable; that is, if C reduces to C’ and
C’ reduces to C’’, then C reduces to C’’.



What makes us think that 
cosmic security is a good definition?

1. Composability: Cosmic reductions are 

composable; that is, if C reduces to C’ and
C’ reduces to C’’, then C reduces to C’’.

follows nicely from definition!

Two Nice Properties
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1. Composability: Cosmic reductions are 

composable; that is, if C reduces to C’ and
C’ reduces to C’’, then C reduces to C’’.

2. Dummy Lemma: Regular cosmic reductions are 

equivalent to black-box cosmic reductions.
Def: ε-cosmic black-box reduction 

from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 

(A, Nat) has robust adv a(.) for C

(RA, Nat) has robust adv ε(.,a(.)) for C’.

Def: ε-cosmic reduction from C to C’: 

∀ PPT attackers A, ∃ PPT A’ s.t. ∀ Nat: 

(A, Nat) has robust adv a(.) for C

(A’, Nat) has robust adv ε(.,a(.)) for C’.



Two Nice Properties
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1. Composability: Cosmic reductions are 

composable; that is, if C reduces to C’ and
C’ reduces to C’’, then C reduces to C’’.

2. Dummy Lemma: Regular cosmic reductions are 

equivalent to black-box cosmic reductions.

Let’s quickly intuit this to understand 

cosmic security better
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robust adv a(.) for C

AC Nat

want to 

show

Def: ε-cosmic black-box reduction 
from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 

(A, Nat) has robust adv a(.) for C

(RA, Nat) has robust adv ε(.,a(.)) for C’.

From Existential to Constructive Reductions
Def: ε-cosmic reduction from C to C’: 

∀ PPT attackers A, ∃ PPT A’ s.t. ∀ Nat: 

(A, Nat) has robust adv a(.) for C

(A’, Nat) has robust adv ε(.,a(.)) for C’.



robust adv a(.) for C

Natr

x
A

dummy
C 

Nat*
x
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AC Nat

A

Def: ε-cosmic black-box reduction 
from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 

(A, Nat) has robust adv a(.) for C

(RA, Nat) has robust adv ε(.,a(.)) for C’.

From Existential to Constructive Reductions

want to 

show

Def: ε-cosmic reduction from C to C’: 

∀ PPT attackers A, ∃ PPT A’ s.t. ∀ Nat: 

(A, Nat) has robust adv a(.) for C

(A’, Nat) has robust adv ε(.,a(.)) for C’.
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Def: ε-cosmic black-box reduction 
from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 

(A, Nat) has robust adv a(.) for C

(RA, Nat) has robust adv ε(.,a(.)) for C’.
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 s.t.

robust adv ε(.,a(.)) for C’

From Existential to Constructive Reductions

want to 

show

Def: ε-cosmic reduction from C to C’: 

∀ PPT attackers A, ∃ PPT A’ s.t. ∀ Nat: 

(A, Nat) has robust adv a(.) for C

(A’, Nat) has robust adv ε(.,a(.)) for C’.
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Def: ε-cosmic black-box reduction 
from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 

(A, Nat) has robust adv a(.) for C

(RA, Nat) has robust adv ε(.,a(.)) for C’.

R
dummy

C’ ∃R
dummy

 s.t.

robust adv ε(.,a(.)) for C’

R
dummy

RA

NatC’ A

From Existential to Constructive Reductions

want to 

show

Def: ε-cosmic reduction from C to C’: 

∀ PPT attackers A, ∃ PPT A’ s.t. ∀ Nat: 

(A, Nat) has robust adv a(.) for C

(A’, Nat) has robust adv ε(.,a(.)) for C’.
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A Nat

robust adv a(.) for C

Natr

x
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C 

Nat*
x
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R
dummy

C’ ∃R
dummy

 s.t.

robust adv ε(.,a(.)) for C’

AC Nat

RA

Nat

A

C’ A

Now,

need to argue 

robustness.

Nontrivial; 
argued in paper!

Def: ε-cosmic black-box reduction 
from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 

(A, Nat) has robust adv a(.) for C

(RA, Nat) has robust adv ε(.,a(.)) for C’.
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Def: ε-cosmic reduction from C to C’: 
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(A’, Nat) has robust adv ε(.,a(.)) for C’.
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robust adv ε(.,a(.)) for C’

AC Nat

RA

Nat

A

C’ 

From Existential to Constructive Reductions

Dummy Lemma:

Suffices to show a

cosmic reduction for A
dummy

Def: ε-cosmic black-box reduction 
from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 

(A, Nat) has robust adv a(.) for C

(RA, Nat) has robust adv ε(.,a(.)) for C’.

Def: ε-cosmic reduction from C to C’: 

∀ PPT attackers A, ∃ PPT A’ s.t. ∀ Nat: 

(A, Nat) has robust adv a(.) for C

(A’, Nat) has robust adv ε(.,a(.)) for C’.
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1. Acknowledges the Unknown: allows Nature to be 

stateful in a way previously not considered, but that 

we are now compelled to acknowledge.

Moreover, the definition is Well-Behaved.

2. Composability: Cosmic reductions are composable; 

that is, if C reduces to C’ and C’ reduces to C’’, 
then C reduces to C’’.

3. Dummy Lemma: Regular cosmic reductions are 

equivalent to black-box cosmic reductions.



Recap So Far: A Necessary, Natural Definition

Why do we like Cosmic Security?

1. Acknowledges the Unknown: allows Nature to be 

stateful in a way previously not considered, but that 

we are now compelled to acknowledge.

Moreover, the definition is Well-Behaved.

2. Composability: Cosmic reductions are composable; 

that is, if C reduces to C’ and C’ reduces to C’’, 
then C reduces to C’’.

3. Dummy Lemma: Regular cosmic reductions are 

equivalent to black-box cosmic reductions. NEXT UP, The Real Test: 

What Can We Build?
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> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.
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What about reductions that use the attacker multiple times?
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Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

Thm 2 (Impossibility): Hardness amplification of arbitrary weak OWFs via direct product, using only 

black-box access to the OWF, is impossible.

Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 

the OWF, is impossible.

Thm 4 (Feasibility): Hardness amplification is possible for “re-randomizable” OWFs.

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

> Teaser: the cosmic adversary can notice when it is sent correlated inputs.

“A First Stab” at feasibility in 

the cosmic setting
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Claim: a non-trivial setting (for feasibility),
since we rule out some classical approaches.

Plain Cosmic Security

Suppose Nature isn’t fully stateful; the only state it keeps is the “time”. 

Later: “Relaxed” Cosmic Security

Thm 5 (Informal): Non-adaptive straight-line black-box reductions give cosmic 

reductions for Natures that evolve over time (but are otherwise stateless).

Table this for now.



Next Up: 
Walkthrough of our results

Intermission
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Key Results:
Feasibilities and Impossibilities

Thm 2 (Impossibility of Hardness Amplification): 

Suppose there is an ε-cosmic black reduction from the OWF security of gn(x
1

…x
n
) = (g(x

1
), … , g(x

n
)) 

to the OWF security of g(x) that uses only black-box access to g, and that works for any function g. 

Then, there exists a negligible function μ such that ε(λ, a) ≤ a + μ(λ).
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n
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x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
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y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter

repeat!

embed g(x) in random location 
in uniformly generated image of gn

with non-negl probability,
all n are preimages
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r
 = g(x) no longer looks like 

part of a fresh challenge!



High Level Idea: Cosmic Hardness Amplification

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter
embed g(x) in random location 
in uniformly generated image of gn

A
dummy

Nat

repeat!
Since Nat is stateful, 
if it saw g(x) once already, 
just ignore future queries that 
contain g(x).



Classical reductions that use an attacker repeatedly on correlated 
inputs may fail, if the attacker notices the correlation and halts.

We may need to hide the correlation.

Thus, Black-Box Cosmic 
Hardness Amplification is Impossible.
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Key Results:
Feasibilities and Impossibilities

Thm 3 (Impossibility of a Goldreich Levin Theorem): 

Suppose there is an ε-cosmic black-box reduction from the security of the hardcore predicate h(x,r) = 
<x,r> w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works 

for any function g. Then, there is a negligible function μ such that ε(λ, a) ≤ μ(λ) for all a.



Recall: Goldreich Levin Theorem

HCB predictor
g(x)

x

(g(x), r)Sends HCB predictor 
lots of queries for 
different, but 
correlated r

b = <x,r>

OWF Inverter

Invert with
 non-negl Pr

Win Pr ½+nonnegl
Since Nat is stateful, 
if it saw g(x) once already, 
just ignore future queries that 
contain g(x).

A
dummy

Nat



Takeaway: classical techniques fail.

To get around it, need techniques that are non-black-box in  the OWF.

Thus, a Goldreich Levin Theorem 
is Impossible.



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.
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Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 
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> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

> Teaser: the cosmic adversary can notice when it is sent correlated inputs.

“A First Stab” at feasibility in 

the cosmic setting



Feasibility: Hardness Amplification

Suppose g(x) is re-randomizable. 

Def: A one-way function g is re-randomizable if ∃ PPT rand(.), recover(.) s.t.
∀x, {r←{0,1}λ : rand(g(x), r)} ≡ {x’←{0,1}λ : g(x’)}

∀x, r, let y←rand(g(x), r), x’←recover(g-1(y), r) , then  g(x) = g(x’).

Denote g(x) = rand(g(x),Uλ) and x’ = recover(x’, r), where r is the previous seed used.
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Feasibility: Hardness Amplification

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter
embed g(x) in random location 
in uniformly generated image of gn

A
dummy

Nat(ρ)

repeat!

Suppose g(x) is re-randomizable.

y
r
 = g(x) always looks 

uniformly random, so Nat 
must win with nonnegl 
probability.



Key Point: We need to hide any correlation between queries in the 
view of the adversary. For example, by re-randomizing g(x).

We Can Go Beyond 
Single-Shot Straight-Line Reductions!



Open Problem: 
Even though a Goldreich-Levin Theorem (that is black-box in the OWF)
is impossible, can we build cosmic PRGs from OWFs?

How Far Can We Go?



For now…
   ...let’s climb a different mountain.
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Roadmap



Recall: Why did this fail?

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter
embed g(x) in random location 
in uniformly generated image of gn

A
dummy

Nat(ρ)

repeat!
Since Nat is stateful, 

if it saw g(x) once already, 

just ignore future queries that 
contain g(x).

Because Nat can adjust future behavior based on prior game outcomes.
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Nat

A 
It may be presumptuous to 
think that C or A can influence 
the future behavior of Nat.

C 

Small Games, Large World

What if Nat plays every game 
independently, the same way?
“Restartable”, and classic.



maybe Nat evolves over time...
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C
1
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C
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C
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...the same way regardless of any interaction we have with it.

maybe Nat evolves over time...



Let’s formalize it.

Def: (A, Nat) is μ-weakly restartable if ∃ Sim s.t. ∀λ, ∀C , ∀ interaction prefixes ρ,

C ↔ A ↔  Nat(ρ) ≈
μ(λ)

statistical distance

C ↔ Sim(|ρ|) 
“Simulator”
any distribution

Number of messages in ρ

In other words, the behavior of (A, Nat) in the view of any C
is pre-programmed and depends only on |ρ|.



Regular Cosmic Adversaries

RC’ NatA
A
A
A
A

r msgs

r msgs

etc



Weakly-Restartable Cosmic Adversaries

RC’ Sim(0)
Sim(r)
Sim(2r)
Sim(3r)
Sim(4r)

(A, Nat) is now a sequence of attackers Sim(0), Sim(1), Sim(2), …  
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Weakly-Restartable Cosmic Adversaries

RC’ A
1

A
2

A
3

A
4

A
5

(A, Nat) is now a sequence of attackers A
1

  A
2

  A
3

  …  (informal)

Theorem: Suppose there is a non-adaptive (straight-line 

black-box) reduction R
classic

 from C to C’. 

Then there is a cosmic reduction from C to C’, assuming 

(A, Nat) is weakly restartable.

Corollaries: Hardcore Bits from OWFs, Hardness 

Amplification.
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the order in any way
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May be possible to do better for 
specific applications.
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Let’s wrap it up.



It is perhaps surprising that classical 
non-adaptive reductions “work” for the 
cosmic weakly-restartable “A

1
 A

2
 A

3
” model.

Implication: we can treat slightly stateful Natures 
(that keep only time as state) as stateless! 
(if we don’t make adaptive queries)

In Sum



For fully stateful Natures,

● Several black-box classical reductions that run 
the adversary repeatedly on correlated inputs 
cannot have cosmic equivalents.  

● So far, feasibility for cosmic reductions is limited 
to either re-randomizing correlated queries, or 
sticking to one-shot reductions.

In Greater Sum



Biggest Takeaway: we should consider 
stateful adversaries that may behave 
differently each time its run.

In Greater, Greater Sum



What’s Next?
An Unexplored Universe.

● PRGs from OWFs?

● MPC?

● New techniques to deal 
with a stateful Cosmos?
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● New techniques to deal 
with a stateful Cosmos?

Image Credits: NASA/ESA/Hubble

Thank You!
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