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We may be theorists, but at the end of the day, we ideally want to build 
cryptosystems secure for real-world attackers.

Observation
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can be simulated by (nu)PPT Turing Machines
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A very productive study

From OWFs, we can build,

● Hardcore Bits [GL89]
● Pseudorandom Generators [HILL99]
● Private-Key Encryption [GGM85+86]
● Commitment Schemes [Nao91]
● Digital Signatures [Lam79, Rom90, Mer90]
● Zero-Knowledge Proofs for all of NP [GMW86]



A very productive study

From OWFs, we can build,

● Hardcore Bits [GL89]
● Pseudorandom Generators [HILL99]
● Private-Key Encryption [GGM85+86]
● Commitment Schemes [Nao91]
● Digital Signatures [Lam79, Rom90, Mer90]
● Zero-Knowledge Proofs for all of NP [GMW86]

But throughout, an explicit assumption:
The attacker is a rewindable algorithm that can be reused!



So, what if the physical extended Church Turing 
Hypothesis is wrong?

Enter Quantum Computing. 
No-Cloning Theorem: 

can’t copy qubits without collapsing superposition.
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How Cryptography Models Attacks Today 

Suppose ∃ (nu)QPT A  that breaks an encryption scheme C: 
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because it is 
just a piece of code!
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undo
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f(x’)

x’

Hard to “reset” quantum resources
that have been measured!
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undo

Need to revisit:

- Hardcore Bits from OWFs [AC01*]

- PRGs from OWFs [Aar09]

- Digital Signatures [Son14]

- Zero Knowledge [Wat09*]

- etc

Quantum rewinding requires extra care

Another assumption: if reduction uses 
qubits, then it also assumes that QPT is 
“feasible”! (is it?)



Claim: currently, cryptography depends heavily on 
extended physical Church Turing assumptions

“It must be possible for a scientific theory to be refuted by 
experience.” - Karl Popper

● Not clear how to decisively prove 

that any version of the Church Turing Hypothesis is 

correct.

Could easily imagine “fully stateful” attackers
lurking somewhere in the “Cosmos”
that we do not know how to “restart” or “rewind” A 



Claim: currently, cryptography depends heavily on 
extended physical Church Turing assumptions

“It must be possible for a scientific theory to be refuted by 
experience.” - Karl Popper

● Not clear how to decisively prove 

that any version of the Church Turing Hypothesis is 

correct. Seems non-ideal!

Could easily imagine “fully stateful” attackers
lurking somewhere in the “Cosmos”
that we do not know how to “restart” or “rewind” A 
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Can we build a reduction-based 
theory of computational cryptography

with minimal assumptions on
 the Nature of real-world attackers?

This talk:

No rewinding
Letting the attacker “keep state” 

between uses.
(e.g. maybe your genius neighbor can 

decrypt things)



Our work: Cosmic Security (Informal)

Suppose PPT A uses Nat to ‘break’ C (e.g. breaking an encryption scheme): 
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Our work: Cosmic Security (Informal)

Suppose PPT A uses Nat to ‘break’ C (e.g. breaking an encryption scheme): 

f(x)

f-1(f(x))C’ A’ 

C A 
Then ∃ PPT A’ that uses Nat to ‘break’ C’ (e.g. inverting a OWF)

Contradiction! (assuming security of the OWF vs PPT+Nat)

Nat 

Nat 

Can be stateful
Can be unbounded

A’ can no longer 
“undo” an interaction 
with Nat

Minimal assumption: Nat won’t just “shut down” after one use
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3. Properties of Cosmic Security: a Sanity Check
a. Composition, Black-box reductions  (5min)

4. Summary of Key Results 
a. Feasibilities and Impossibilities (20min)

5. Other Notions of  Cosmic Security  (10min)

6. Conclusion  (5min)



Quick Comparisons

Relativized Reductions

● A relativized reduction gives attackers AO access to some arbitrary oracle O
● O is modeled as a (perhaps uncomputable) function 
● Cosmic reductions can be viewed as relativized reductions for stateful, interactive 

oracles O (in contrast to a non-interactive, stateless oracle).

Universal Composability [Canetti00]

● Cosmic security is syntactically similar to UC with unbounded environments
● Semantically very different: our notion is reduction-based & computational.

(For instance, UC security proofs can rewind the environment [e.g. CLP10])
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C ↔ A ↔  Nat
“Attacker”

uniform PPT
“Nature”
nonuniform any choice of runtime
Stateful

“Challenger”
uniform PPT

outputs “win”/“lose”

Cosmic Security Game

“Cosmic Adversary” (A, Nat)

Observe: the attacker can 
alter the state of Nature
during the interaction.
This is intentional and a key 
property of our definition.



C ↔ A ↔  NatWIN.

C ↔ A ↔  
C ↔ A ↔  
C ↔ A ↔  
C ↔ A ↔  

LOSE.

LOSE.

LOSE.

LOSE.

time

41202343698665954385553136533257594817981169984432
79828454556264338764455652484261980988704231618418
79261420247188869492560931776375033421130982397485
15094490910691026986103186270411488086697056490290
36536588674337317208131041051908642547932826013912
57624033946373269391

Nat refuses to play more than once.

Maybe Nat measured a qubit.

The cat was let out of the box.

Nat simply isn’t useful!

Problem! Nature can be invoked 
many times, “statefully”



Useful adversaries win repeatedly.

C ↔ A  NatWIN.

C ↔ A  
C ↔ A  
C ↔ A  
C ↔ A  

WIN.

WIN.

WIN.

WIN.

time

No point in inverting a OWF only once.

Classically, we always have the option 
of re-running A from scratch, with 
independent coins.

What is a weaker assumption we 
could make, that might still be useful?



C ↔ A ↔  Nat

We consider only (A, Nat) that 
“wins repeatedly” over time.

C ↔ A ↔  
C ↔ A ↔  

WIN.

WIN.

WIN.

time

C ↔ A ↔  WIN.

It doesn’t matter that Nat is “stateful” if it only wins once.
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C ↔ A ↔  Nat

robust winning

C ↔ A ↔  
WIN.

↔

the past

42

(A, Nat) wins for C (that flips fresh coins) 
regardless of any interactions that Nat had 
in the past!

time
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ρ

C ↔ A ↔  

↔

C ↔ A ↔  Nat(ρ)

robust winning

C ↔ A ↔  
WIN.

↔

the past

42

Interaction prefix ρ: 

a transcript of messages 

previously sent to Nat before 

the beginning of execution, 

including coins flipped by Nat.

Definition: (A, Nat) has robust advantage 
a(.) for C, if ∀ interaction prefixes ρ, ∀λ:
Pr[(A, Nat(ρ)) wins C] ≥ a(λ)

A weak notion! 
Can win in a different way 
for each prefix.
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Suppose (A, Nat) has robust advantage a(·) for C 

f(x)

f-1(f(x))C’ A’ 

C A 
Then (A’, Nat) has robust advantage ε(·,a(·)) for C’.

Nat 

Nat 

∃ an ε-cosmic reduction from C to C’ if  ∀ PPT A, ∃ PPT A’ s.t.  ∀Nat:

A’ can now use the fact that 
(A, Nat) wins “repeatedly”.

Equivalent definition!

Rest of this talk: 

this is the right definition to work on!
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Def: ε-cosmic black-box reduction 
from C to C’ if ∃ PPT R s.t. ∀ (A,Nat): 
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Recap So Far: A Necessary, Natural Definition

Why do we like Cosmic Security?

1. Acknowledges the Unknown: allows Nature to be 

stateful in a way previously not considered, but that 

we are now compelled to acknowledge.

Moreover, the definition is Well-Behaved.

2. Composability: Cosmic reductions are composable; 

that is, if C reduces to C’ and C’ reduces to C’’, 
then C reduces to C’’.

3. Dummy Lemma: Regular cosmic reductions are 

equivalent to black-box cosmic reductions. NEXT UP, The Real Test: 

What Can We Build?
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> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

New 1-shot straight-line black-box proof for WI! (See Paper)



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

What about reductions that use the attacker multiple times?



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

Thm 2 (Impossibility): Hardness amplification of arbitrary weak OWFs via direct product, using only 

black-box access to the OWF, is impossible.

Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 

the OWF, is impossible.

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

Thm 2 (Impossibility): Hardness amplification of arbitrary weak OWFs via direct product, using only 

black-box access to the OWF, is impossible.

Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 

the OWF, is impossible.

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

> Teaser: the cosmic adversary can notice when it is sent correlated inputs.



Key Results:
Feasibilities and Impossibilities

Thm 2 (Impossibility of Hardness Amplification): 

Suppose there is an ε-cosmic black reduction from the OWF security of gn(x
1

…x
n
) = (g(x

1
), … , g(x

n
)) 

to the OWF security of g(x) that uses only black-box access to g, and that works for any function g. 

Then, there exists a negligible function μ such that ε(λ, a) ≤ a + μ(λ).

Thm 3 (Impossibility of a Goldreich Levin Theorem): 

Suppose there is an ε-cosmic black-box reduction from the security of the hardcore predicate h(x,r) = 
<x,r> w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works 

for any function g. Then, there is a negligible function μ such that ε(λ, a) ≤ μ(λ) for all a.



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

Thm 2 (Impossibility): Hardness amplification of arbitrary weak OWFs via direct product, using only 

black-box access to the OWF, is impossible.

Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 

the OWF, is impossible.

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

Claim: we need new techniques to build advanced cosmic cryptography!

> Teaser: the cosmic adversary can notice when it is sent correlated inputs.



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

Thm 2 (Impossibility): Hardness amplification of arbitrary weak OWFs via direct product, using only 

black-box access to the OWF, is impossible.

Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 

the OWF, is impossible.

Thm 4 (Feasibility): Hardness amplification is possible for “re-randomizable” OWFs.

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

> Teaser: the cosmic adversary can notice when it is sent correlated inputs.



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

Thm 2 (Impossibility): Hardness amplification of arbitrary weak OWFs via direct product, using only 

black-box access to the OWF, is impossible.

Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 

the OWF, is impossible.

Thm 4 (Feasibility): Hardness amplification is possible for “re-randomizable” OWFs.

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

> Teaser: the cosmic adversary can notice when it is sent correlated inputs.

“A First Stab” at feasibility in 

the cosmic setting



Plain Cosmic Security

Claim: a non-trivial setting (for feasibility),
since we rule out some classical approaches.



Claim: a non-trivial setting (for feasibility),
since we rule out some classical approaches.

Plain Cosmic Security

Suppose Nature isn’t fully stateful; the only state it keeps is the “time”, or the 
number of queries it has received. 

Later: “Relaxed” Cosmic Security



Claim: a non-trivial setting (for feasibility),
since we rule out some classical approaches.

Plain Cosmic Security

Later: “Relaxed” Cosmic Security

Thm 5 (Informal): Non-adaptive straight-line black-box reductions give cosmic 

reductions for Natures that evolve over time (but are otherwise stateless).

Suppose Nature isn’t fully stateful; the only state it keeps is the “time”, or the 
number of queries it has received. 



Claim: a non-trivial setting (for feasibility),
since we rule out some classical approaches.

Plain Cosmic Security

Later: “Relaxed” Cosmic Security

Thm 5 (Informal): Non-adaptive straight-line black-box reductions give cosmic 

reductions for Natures that evolve over time (but are otherwise stateless).

Suppose Nature isn’t fully stateful; the only state it keeps is the “time”, or the 
number of queries it has received. Table this for now.



1. At the end of the day, we want to build secure cryptosystems 
for “real-world attackers.”

2. We currently model “real-world attackers” as PPT or QPT 
algorithms – and security proofs depend on the fact that we can 
“take a piece of code” and “re-run” it  or “rewind” it. Is this realistic?

3. Our work: such “physical Church-Turing assumptions” are not 
necessary for a theory of cryptography.

Part I, Takeaways



Next Up: 
Walkthrough of our results

Intermission
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Thm 2 (Impossibility of Hardness Amplification): 

Suppose there is an ε-cosmic black reduction from the OWF security of gn(x
1
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to the OWF security of g(x) that uses only black-box access to g, and that works for any function g. 
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Strong OWF Inverter
for gn = (g(x

1
), … , g(x

n
))

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter

repeat!

embed g(x) in random location 
in uniformly generated image of gn

with non-negl probability,
all n are preimages
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Metareduction

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter
embed g(x) in random location 
in uniformly generated image of gn

Simg

repeat!

- Suppose g is a random length-tripling 

function

- Then, images of g are “sparse”. Reduction 

won’t find other images except by 

invoking the oracle, which Sim controls

- Thus, Sim only needs to guess “one 
response”, namely that for the challenge 
g(x). 

- Sim simply returns ⟂ when asked to 

invert g(x), whereas Nat returns g-1(g(x)) 

with Pr a(.).  Thus, Pr[Diverge] <= a(.)

Suppose we did have a reduction that works with such a Nat (R uses oracle 

access to g)…

Claim: can simulate Nat “easily” s.t. the reduction 
loses at most a(.) advantage overall. 



Classical reductions that use an attacker repeatedly on correlated 
inputs may fail, if the attacker notices the correlation and halts.

We may need to hide the correlation.

Thus, Black-Box Cosmic 
Hardness Amplification is Impossible.



Key Results:
Feasibilities and Impossibilities

Thm 1 (Feasibility): classical 1-shot straight-line black-box reductions imply cosmic reductions.

Corollaries: PRFs/SKE/Commitments/Witness Indistinguishability/PRG Length Extension

Thm 2 (Impossibility): Hardness amplification of arbitrary weak OWFs via direct product, using only 

black-box access to the OWF, is impossible.

Thm 3 (Impossibility): A Goldreich Levin Theorem, where the reduction has only black-box access to 

the OWF, is impossible. Same High Level Idea!

Thm 4 (Feasibility): Hardness amplification is possible for “re-randomizable” OWFs.

> Not surprising, since it doesn’t matter that Nature is stateful: a 1-shot  reduction only uses Nature once.

> Teaser: the cosmic adversary can notice when it is sent correlated inputs.



Key Results:
Feasibilities and Impossibilities

Thm 3 (Impossibility of a Goldreich Levin Theorem): 

Suppose there is an ε-cosmic black-box reduction from the security of the hardcore predicate h(x,r) = 
<x,r> w.r.t. f(x, r) = (g(x), r) to the OWF security of g that uses only black-box access to g and that works 

for any function g. Then, there is a negligible function μ such that ε(λ, a) ≤ μ(λ) for all a.
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Recall: Goldreich Levin Theorem

HCB predictor
g(x)

x

(g(x), r)Classically, sends 
HCB predictor lots of 
queries for different r, 
but same g(x)

b = <x,r>

OWF Inverter

Invert with
 non-negl Pr

Win Pr ½+nonnegl
Since Nat is stateful, 
if it saw g(x) once already, 
it could just ignore future 
queries that contain g(x).

A
dummy

Nat

Claim: can simulate Nat “easily” s.t. the reduction 
loses at most 1/2 advantage overall. (How?)



Takeaway: classical techniques fail.

To get around it, need techniques that are non-black-box in  the OWF.

Thus, a Goldreich Levin Theorem 
is Impossible.
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“A First Stab” at feasibility in 

the cosmic setting



Feasibility: Hardness Amplification

Suppose g(x) is re-randomizable. 

Def: A one-way function g is re-randomizable if ∃ PPT rand(.), recover(.) s.t.
∀x, {r←{0,1}λ : rand(g(x), r)} ≡ {x’←{0,1}λ : g(x’)}

∀x, r, let y←rand(g(x), r), x’←recover(g-1(y), r) , then  g(x) = g(x’).

Denote g(x) = rand(g(x),Uλ) and x’ = recover(x’, r), where r is the previous seed used.



Feasibility: Hardness Amplification

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)
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else, repeat up to 
2λn2p(λ) times
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A
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Suppose g(x) is re-randomizable.



Feasibility: Hardness Amplification

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter
embed g(x) in random location 
in uniformly generated image of gn

A
dummy

Nat(ρ)

repeat!

Suppose g(x) is re-randomizable.

y
r
 = g(x) always looks 

uniformly random, so Nat 
must win with nonnegl 
probability (by robust 

winning).



Key Point: We need to hide any correlation between queries in the 
view of the adversary. For example, by re-randomizing g(x).

We Can Go Beyond 
Single-Shot Straight-Line Reductions!



Open Problem: 
Even though a Goldreich-Levin Theorem (that is black-box in the OWF)
is impossible, can we build cosmic PRGs from OWFs?

How Far Can We Go?



For now…
   ...let’s climb a different mountain.



1. Motivation (10min)

2. Defining Cosmic Security  (15min)

3. Properties of Cosmic Security: a Sanity Check
a. Composition, Black-box reductions  (5min)

4. Summary of Key Results 
a. Feasibilities and Impossibilities (20min)

5. Other Notions of Cosmic Security  (10min)

6. Conclusion  (5min)

Roadmap



Recall: Why did this fail?

g(x)

x’

y1, … , ynfor i=1...n, yi = g(Uλ)
for random r, yr = g(x)

x1, … , xnif g(xr) == g(x), 
output x’ = xr 
else, repeat up to 
2λn2p(λ) times

Weak OWF Inverter
embed g(x) in random location 
in uniformly generated image of gn

A
dummy

Nat(ρ)

repeat!
Since Nat is stateful, 

if it saw g(x) once already, it 

could simply ignore future 
queries that contain g(x).

Because Nat can adjust future behavior based on prior game outcomes.



Nat

A 
It may be presumptuous to 
think that C or A can influence 
the future behavior of Nat.

C 

Small Games, Large World



Nat

A 
It may be presumptuous to 
think that C or A can influence 
the future behavior of Nat.

C 

Small Games, Large World

What if Nat plays every game 
independently, the same way?
“Restartable”, and classic.



But maybe Nat evolves over time (# of queries it has received)...
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...the same way regardless of any interaction we have with it.

But maybe Nat evolves over time (# of queries it has received)...



Let’s formalize it.

Def: (A, Nat) is μ-weakly restartable if ∃ Sim s.t. ∀λ, ∀C , ∀ interaction prefixes ρ,

C ↔ A ↔  Nat(ρ) ≈
μ(λ)

statistical distance

C ↔ Sim(|ρ|) 
“Simulator”
any distribution

Number of messages in ρ

In other words, the behavior of (A, Nat) in the view of any C
is pre-programmed and depends only on |ρ|.



Regular Cosmic Adversaries

RC’ NatA
A
A
A
A

r msgs

r msgs

etc



Weakly-Restartable Cosmic Adversaries

RC’ Sim(0)
Sim(r)
Sim(2r)
Sim(3r)
Sim(4r)

(A, Nat) is now a sequence of attackers Sim(0), Sim(1), Sim(2), …  
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Weakly-Restartable Cosmic Adversaries

RC’ A
1

A
2

A
3

A
4

A
5

(A, Nat) is now a sequence of attackers A
1

  A
2

  A
3

  …  (informal)

Theorem: Suppose there is a non-adaptive (straight-line 

black-box) reduction R
classic

 from C to C’. 

Then there is a cosmic reduction from C to C’, assuming 

(A, Nat) is weakly restartable.

Corollaries: Hardcore Bits from OWFs, Hardness 

Amplification.
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nonadaptive: can permute 
the order in any way
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Let’s wrap it up.



It is perhaps surprising that classical 
non-adaptive reductions “work” for the 
cosmic weakly-restartable “A

1
 A

2
 A

3
” model.

Implication: we can treat slightly stateful Natures 
(that keep only time as state) as stateless! 
(if we don’t make adaptive queries)

In Sum



For fully stateful Natures,

● Several black-box classical reductions that run 
the adversary repeatedly on correlated queries 
cannot have cosmic equivalents.  

● So far, feasibility for cosmic reductions is limited 
to either re-randomizing correlated queries, or 
sticking to one-shot reductions.

In Greater Sum



Biggest Takeaway: we should consider 
stateful adversaries that may behave 
differently each time its run, in order 
to minimize “unprovable” 
assumptions on the attacker.

In Greater, Greater Sum



What’s Next?
An Unexplored Universe.

● PRGs from OWFs?

● MPC?

● New techniques to deal 
with a stateful Cosmos?
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Image Credits: NASA/ESA/Hubble

Thank You!
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