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Who?

Simons Collaboration: “Hidden Symmetries and Fusion Energy”

https://hiddensymmetries.princeton.edu/

A collaboration of plasma physicists and mathematicians from:

Princeton, NYU, Maryland, IPP Greifswald, Warwick, CU Boulder,
Cornell, UW Madison, EPFL, ANU, UT Austin, U Arizona.

(along with many unfunded collaborators)

• Phase 0: Aug 2017-Aug 2018
• Phase 1: Sep 2018-Aug 2022
• Phase 2: Sep 2022-Aug 2025
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Some Phase 0 recollections

2017-08-22 Email from Antoine Cerfon, “would you be
interested in participating in these initial
conversations?”

2017-09-01 Initial conversation
2017-10-04 LOI submitted
2017-12-06 First two-day proposal meeting
2018-01-31 Second two-day proposal meeting
2018-02-15 Proposal submitted
2018-04-18 Panel pitch (Bhattacharjee, MacKay, Bindel)
2018-05-30 Award announced to collaboration (recommended

change in title to add Fusion Energy).
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“Fusion for a 5 Year Old”
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“Fusion for a 5 Year Old”

At the risk of sounding like a broken record, I will lobby
for the addition of a paragraph in the introduction of
the proposal that describes magnetically confined fu-
sion as if it were being explained to a five year old.
– Mike O’Neill (2018-02-07)

“Adiabatic invariants of Hamiltonian mechanics” is
well beyond the level of sophistication that should be
included in the intro, in my opinion.
– Response to a proposed revision (2018-02-08)

Ad: Introduction to Stellarators by Imbert-Gerard, Paul, Wright
(https://arxiv.org/abs/1908.05360, coming to SIAM)
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“Fusion for a 5 Year Old”

Lawson: Need combination of high density, temperature,
energy confinement time
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Magnetic confinement basics
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Magnetic confinement basics

• Ensure drift in and out averages to zero.
• Tokamaks: axisymmetric field (requires plasma current)
• Stellarators: use a “hidden symmetry”
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Stellarator Concept and Practice
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Wendelstein 7-X Poincaré Plots

https://commons.wikimedia.org/wiki/File:
Stellarator_magnetic_field.png
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Poincaré Features (NCSX)

“An Introduction to Stellarators” (2020)
Imbert-Gerard, Paul, and Wright.

https://arxiv.org/abs/1908.05360
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Digression: A Non-Stellarator Test Problem

Illustrate with standard (Chirikov-Taylor) map

xt+1 = xt + yt+1 mod 1

yt+1 = yt −
0.7
2π sin(2πxt)
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Plan in Pictures

Circles Islands Chaos

• Iterating gives a Poincaré plot showing
• X and O points (hyperbolic and elliptic periodic points)
• Invariant circles and island chains (quasiperiodic orbits)
• Chaos

• Goal: Identify these structures cheaply and automatically
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Processing Poincaré Plots

1. Make a Poincaré plot and eyeball it
2. Parameterization method
3. Form a function with invariant level sets

• Birkhoff averaging
• Weighted Birkhoff averaging
• Adaptive weighted Birkhoff (*)
• Learned labels (*)

4. Model dynamics for a field line (*)
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Parameterization method

Goal: z : T → R2 s.t.

F(z(θ)) = z(θ + ω).

Discretize via Fourier:

ẑ(θ) =
m∑

n=−m
ẑn exp(2πinθ)

Solve nonlinear least squares problem

min
N−1∑
i=0

∥z(i/N)− F(z(i/N+ ω))∥2

with two additional constraints (phase + which circle).

Usually combine with continuation (e.g. from fixed point of F).
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Learned Labels

Goal: Find (non-constant) h s.t. h ◦ F = h.

Discretize via favorite ansatz, e.g. h =
∑m

j=1 cjϕ(∥x− xj∥).
Define h(xj) = yj and h(F(xj)) = y′j, solve (for example)

minimize η

2y
TK−1y+ 1

2∥y− ỹ∥2 s.t. yi = y′i
to encourage h smooth, non-constant, invariant under F.

Ruth and Bindel, https://arxiv.org/abs/2312.00967 16
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Birkhoff Average

Consider f : Ω → Ω symplectic, h ∈ C∞(Ω)

Define Birkhoff average:

BK[h](x) =
1

K+ 1

K∑
k=0

(h ◦ Fk)(x).

Birkhoff-Khinchin: for h ∈ L1, converges a.e. to conditional
expectation of an invariant measure on an invariant set.

Error behavior BK[h](x)− h̄(x)?

• Invariant circle/island? O(K−1)
• Chaos? O(K−1/2)

Rates signal regular vs chaotic (“stochastic”) trajectories.
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Birkhoff Average

Ideas:

• Invariant sets as level sets of Birkhoff average
• Convergence rates as signal of regularity vs chaos

Converges in the long run – but in the long run, we are all dead.
(with apologies to Keynes)

Related: Learn a continuous, nonconstant h̄ s.t. h̄ = h̄ ◦ F.
Can do pretty well with kernel interpolation ansatz – a topic
for another talk.
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Weighted Birkhoff average

Sander and Meiss, Physica D, 411 (2020) p. 132569;
Das, Sander, and Yorke, Nonlinearity, 30 (2017), pp. 4111-4140

Weighting accelerates regular convergence to super-algebraic:

WBK[h](x) =
K∑

k=0
wk,K(h ◦ Fk)(x).
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Signal Processing Perspective

Parameterize z(θ) for invariant circle

F(z(θ)) = z(θ + ω), z(θ) =
∑
n∈Z

ẑn exp(2πinθ)

Trajectory zt = z(ωt) has series expansion

zt =
∑
n∈Z

ẑnξnt, ξ = exp(2πiω)

Observables ht = h(zt) can be similarly expanded

ht =
∑
n∈Z

ĥnξnt, h̄ = ĥ0

Weighted Birkhoff starting from x0

BK[h](x0) =
∑
n∈Z

ĥnpK(ξn), pK(z) =
K∑

k=0
wk,Kzk
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Signal Processing Perspective
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Signal Processing Perspective
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Signal Processing Perspective: Adaptive Filtering
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Adaptive Filtering

Series for ht = h(zt)
ht =

∑
n∈Z

ĥnξnt

Filtered/accelerated series with polynomial pK:

AWBK[h](xt) =
∑
n∈Z

ĥnξntpK(ξn) → ĥn

How do we adaptively choose the filter polynomial?

Desiderata for this to work:

• Fast enough decay of ĥn
• “Sufficiently irrational” ω (Diophantine condition)
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(Vector) Reduced Rank Extrapolation

Assume
ht = ĥ0 +

∑
n ̸=0

λtn (e.g. λn = ξn)

Difference sequence removes mean:

ut = ht+1 − ht =
∑
n ̸=0

(λn − 1)ĥmλtm

Seek coeffs ck to minimize
T−1∑
t=0

( K∑
k=0

ckuk+t

)2
s.t.

K∑
k=0

ck = 1.

Accelerated series is

h̃t =
K∑

k=0
ckhk+t.
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Details

• Can (and do) use vector observables
• Rectangular Hankel matrix =⇒ fast matvecs via FFT
• Solve least squares problem with LSQR
• Constrain for time reversibility =⇒ palindromic
polynomial:

cj = cK−j

Roots come in inverse pairs (generally on unit circle)
• Measure convergence adaptively via residual
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(Vector) Reduced Rank Extrapolation

Standard vector RRE convergence (Sidi, Vector Extrapolation
Methods with Applications): if |λj| are in descending order,
error for Kth extrapolated average goes like

ĥ0,K − ĥ0 = O(λ2KK+1).

But for us everything is on the unit circle!

Alternate analysis gives super-algebraic convergence given

• Enough smoothness of circle (decay of |ĥn| with |n|)
• “Sufficient irrationality” (Diophantine condition) so ξn
doesn’t get too close to 1 too fast.

27



Weighted Birkhoff vs RRE

Still good for classification.convergence slightly faster than
weighted Birkhoff.
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Residuals and Regularity

Use least squares residual to judge “circleness.”

(Hard cases near rational rotational transform)
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Post-Processing (Filter Diagonalization)

Why use the RRE model just for averaging?

1. Form filter polynomial with coefficients c
2. Find natural frequencies / polynomial roots
3. Sort by contribution to signal
4. Of 10 most contributing frequencies, identify rationals
(Sander & Meiss)

• Yes: island chain — RRE on qth step
• No: call largest the rotational transform

5. Project signal onto Fourier modes

Get shape and characteristics of circles and islands.
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Island Identification
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Wistell Stellarator Configuration

• 1000 random trajectories (via RK4 on interpolated B field)
• Kmax = 300, Tmax = 900
• Residual tolerance = 10−6

• Rational tolerance = 10−6
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Wistell Analysis

Residual Chaos

Circles Islands
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Pros and Cons

• Extrapolation pros
• Classifies chaos vs regular trajectories
• Recovers invariant circles/islands
• No need for continuation or initial guesses
• Parallelizable over trajectories

• Cons
• Problems near low-order rationals
• Linear algebra adds extra cost vs weighted Birkhoff

• Higher dimensions?
• Relevant beyond field line flow (guiding center approx)
• Invariant sets are more complicated
• The “model the trajectory” philosophy should still work

Ruth and Bindel, https://arxiv.org/abs/2403.19003
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Reset

We were talking about optimizing stellarators...
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Stellarator Quality Measures

What makes an “optimal” stellarator?

• Approximates field symmetries (which measures?)
• Satisfies macroscopic and local stability
• Divertor fields for particle and heat exhaust
• Minimizes collisional and energetic particle transport
• Minimizes turbulent transport
• Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations,
uncertainties, and computational costs.
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How Do We Optimize? (STELLOPT Approach)

Optimizer Calculate χ2

(physics + engineering targets)

Adjust plasma boundary
(or coil shape)

Solve 3D
equilibrium

r(ϕ, θ) + iz(ϕ, θ) =
∑

αm,nei(mϕ−nθ)
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Challenges

1. Costly and “black box” physics computations
• Each step: MHD equilibrium solve, transport, coil design, ...
• Several times per step for finite-difference gradients

2. Managing tradeoffs
• How do we choose the weights in the χ2 measure? By gut?
• Varying the weights does not expose tradeoffs sensibly

3. Dealing with uncertainties
• What you simulate ̸= what you build!

4. Global search
• How to avoid getting stuck in local minima?
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Optimization Under Uncertainty

Low construction tolerances:
• NCSX: 0.08%
• Wendelstein 7-X: 0.1% – 0.17%

Higher tolerances as coil opt goal!

Also want tolerance to
• Changes to control parameters
• Uncertainty in physics or model
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Risk-neutral OUU

Want efficient OUU in ∼ 200 dimensions

min
x∈Ω

EU[f(x− U)]
40



Risk-neutral OUU

Want efficient OUU in ∼ 200 dimensions

min
x∈Ω

EU[f(x− U)]
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(Recent) Prior: Monte Carlo Approach

8000 Samples
Entries 100000
Mean 5.611
Std Dev 0.1577
f(x0) 5.38718
10% 5.83611
5% 5.96501
2% 6.0585
1% 6.1137
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Entries 100000
Mean 7.071
Std Dev 0.3034
f(x0) 6.65137
10% 7.48375
5% 7.60976
2% 7.83457
1% 8.03636

8000 Samples
Entries 100000
Mean 5.611
Std Dev 0.1577
f(x0) 5.38718
10% 5.83611
5% 5.96501
2% 6.0585
1% 6.1137

f(x0)
Percentile

Robustness & mean perf greatly improved (w/ ∼ 108 evals)
J.-F. Lobsien, M. Drevlak, T. Kruger, S. Lazerson, C. Zhu, T. S. Pedersen,
Improved performance of stellarator coil design optimization,

Journal of Plasma Physics, 2020. 42



Our Approach: fast TuRBO-ADAM

Black: ref; red: TuRBO-ADAM 10mm; blue: TuRBO-ADAM 20mm.

Evaluate objective with FOCUS from PPPL.

• Global search with modified TuRBO
• Local refinement with ADAM with control variate

Costs about 0.01% the evaluation budget. 43



Gaussian Processes (GPs)
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Being Bayesian
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Matérn and SE kernels
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Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)

When X is unambiguous, we will sometimes just write K.
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Being Bayesian

Now consider prior of f ∼ GP(µ, k), noisy measurements

fX ∼ y+ ϵ, ϵ ∼ N(0,W), typically W = σ2I

Posterior is f ∼ GP(µ′, k′) with

µ′(x) = µ(x) + KxXc K̃ = KXX +W
k′(x, x′) = Kxx′ − KxXK̃−1KXx′ c = K̃−1(y− µX)

The expensive bit: solves with K̃.
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Bayesian Optimization (BO)

Typical GP-based BO:

• Evaluate f on initial sample in Ω

• Condition a GP on sample data
• Until budget exhausted

• Optimize acquistion function α(x) over Ω
(e.g. αEI(x) = E [[f(xbest)− f(x)]+] where xbest is best so far)

• Evaluate at selected point
• Update the GP model (including hyper-parameters)

• Standard cost: O(n3) per step (with n data points)

49



Multi-Start

Suppose d large, but not too many minimizers:

• Choose M starting points scattered over Ω
• Run local minimizer (gradient descent, Newton, etc)
• Hope for at least one start per convergence basin

Q: How to allocate effort to different starts?
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TuRBO: Trust-Region BO

For high-d: combine local BO with multi-start strategy

• Rough global sampling at M points
• Local GP models and trust-region around each point
• Thompson sampling to choose which local model (and
trust region) to refine next

(Eriksson, Pearce, Gardner, Turner, Poloczek, 2019)
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TuRBO + OUU

• TuRBO builds GP models for f(x) (nominal objective)
• Simple transform from GP for f(x) to GP for EU[f(x+ U)]
(Beland and Nair, 2017)

Problem: TuRBO explores a lot — want more refinement

52



Stochastic Gradient Descent (SGD)

Ordinary gradient descent is

xk+1 = xk − αk∇ϕ(xk)

SGD is
xk+1 = xk − αkgk

where gk is a random draw, E[gk] = ∇ϕ(xk).

For ϕ(x) = EU[f(x+ U)], use gk = ∇f(xk + uk).

Convergence is slow (O(1/m)), but steps can be cheap.
Speed depends a lot on variance of gradient estimator.
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Adam + Control Variates

• Regular Adam: stochastic gradient algorithm with
“adaptive momentum” for step size control. Use directions

g(x) = ∇f(x+ U)

for a random draw U (can also do mini-batch).
• Variance reduction with control variates (Wang, Chen,
Smola, Xing, 2013)

g(x) = ∇f(x+ U) + α(ĝ(x)− E[ĝ(x)])
ĝ(x) = ∇f(x) + HU.

• True Hessian not avail, so set H to be an approximate
Hessian (BFGS approximation via gradients from Adam).
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Additional Information

Multi-output GPs model f : Ω ⊂ Rd → Rk

• Model covariance over space and across outputs.
• Example: function values + derivatives

µ∇(x) =
[

µ(x)
∇xµ(x)

]
, k∇(x, x′) =

[
k(x, x′) (∇x′k(x, x′))T

∇xk(x, x′) ∇2k(x, x′)

]

• Can also model multi-fidelity sims, etc

Pro: FOCUS provides gradients, easy to incorporate!
Con: Matrix dimensions scale like n(d+ 1)
(Partial) Fix: Variational inference (Bindel, Gardner, Huang,
Padidar, Zhu, NeurIPS 2021)
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Some concluding notes

I was tense, I was nervous, I guess it just wasn’t my night.
Art Fleming gave the answers; oh, but I couldn’t get the
questions right.

— Weird Al Yankovic, “I Lost on Jeopardy”

Stellarator optimization is hard. Beyond formulating
reasonable objectives, challenges include:

1. Costly and “black box” physics computations
2. Managing tradeoffs
3. Dealing with uncertainties
4. Global search

Many challenges/opportunities in the formulation – not
unique to stellarators!

(And lots of interesting non-optimization problems, too!) 56


