Optimizing Magnetic Confinement Devices for Fusion Plasmas

David Bindel

12 Nov 2024

Department of Computer Science Cornell University

Simons Collaboration: "Hidden Symmetries and Fusion Energy"

https://hiddensymmetries.princeton.edu/

A collaboration of plasma physicists and mathematicians from:

Princeton, NYU, Maryland, IPP Greifswald, Warwick, CU Boulder, Cornell, UW Madison, EPFL, ANU, UT Austin, U Arizona. (along with many unfunded collaborators)

- Phase 0: Aug 2017-Aug 2018
- Phase 1: Sep 2018-Aug 2022
- Phase 2: Sep 2022-Aug 2025

2017-08-22 Email from Antoine Cerfon, "would you be interested in participating in these initial conversations?"

- 2017-09-01 Initial conversation
- 2017-10-04 LOI submitted
- 2017-12-06 First two-day proposal meeting
- 2018-01-31 Second two-day proposal meeting
- 2018-02-15 Proposal submitted
- 2018-04-18 Panel pitch (Bhattacharjee, MacKay, Bindel)
- **2018-05-30** Award announced to collaboration (recommended change in title to add Fusion Energy).

"Fusion for a 5 Year Old"

At the risk of sounding like a broken record, I will lobby for the addition of a paragraph in the introduction of the proposal that describes magnetically confined fusion as if it were being explained to a five year old. – Mike O'Neill (2018-02-07)

"Adiabatic invariants of Hamiltonian mechanics" is well beyond the level of sophistication that should be included in the intro, in my opinion.

– Response to a proposed revision (2018-02-08)

Ad: Introduction to Stellarators by Imbert-Gerard, Paul, Wright (https://arxiv.org/abs/1908.05360, coming to SIAM)

"Fusion for a 5 Year Old"

Lawson: Need combination of high density, temperature, energy confinement time

Magnetic confinement basics

Magnetic confinement basics

- Ensure drift in and out averages to zero.
- Tokamaks: axisymmetric field (requires plasma current)
- Stellarators: use a "hidden symmetry"

Stellarator Concept and Practice

Wendelstein 7-X Poincaré Plots

https://commons.wikimedia.org/wiki/File: Stellarator_magnetic_field.png

Poincaré Features (NCSX)

"An Introduction to Stellarators" (2020) Imbert-Gerard, Paul, and Wright. https://arxiv.org/abs/1908.05360

Digression: A Non-Stellarator Test Problem

Illustrate with standard (Chirikov-Taylor) map

$$x_{t+1} = x_t + y_{t+1} \mod 1$$

$$y_{t+1} = y_t - \frac{0.7}{2\pi} \sin(2\pi x_t)$$

Plan in Pictures

- Iterating gives a Poincaré plot showing
 - X and O points (hyperbolic and elliptic periodic points)
 - · Invariant circles and island chains (quasiperiodic orbits)
 - Chaos
- Goal: Identify these structures cheaply and automatically

- 1. Make a Poincaré plot and eyeball it
- 2. Parameterization method
- 3. Form a function with invariant level sets
 - Birkhoff averaging
 - Weighted Birkhoff averaging
 - Adaptive weighted Birkhoff (*)
 - Learned labels (*)
- 4. Model dynamics for a field line (*)

Goal: $z : \mathbb{T} \to \mathbb{R}^2$ s.t.

$$F(z(\theta))=z(\theta+\omega).$$

Discretize via Fourier:

$$\hat{z}(\theta) = \sum_{n=-m}^{m} \hat{z}_n \exp(2\pi i n\theta)$$

Solve nonlinear least squares problem

$$\min \sum_{i=0}^{N-1} \|z(i/N) - F(z(i/N + \omega))\|^2$$

with two additional constraints (phase + which circle).

Usually combine with continuation (e.g. from fixed point of F).

Learned Labels

Goal: Find (non-constant) h s.t. $h \circ F = h$.

Discretize via favorite ansatz, e.g. $h = \sum_{j=1}^{m} c_j \phi(||x - x_j||)$. Define $h(x_j) = y_j$ and $h(F(x_j)) = y'_j$, solve (for example)

minimize
$$\frac{\eta}{2} y^{T} K^{-1} y + \frac{1}{2} ||y - \tilde{y}||^{2}$$
 s.t. $y_{i} = y'_{i}$

to encourage *h* smooth, non-constant, invariant under *F*.

Ruth and Bindel, https://arxiv.org/abs/2312.00967

16

Birkhoff Average

Consider $f: \Omega \to \Omega$ symplectic, $h \in \mathcal{C}^{\infty}(\Omega)$

Define Birkhoff average:

$$\mathcal{B}_{K}[h](x) = \frac{1}{K+1} \sum_{k=0}^{K} (h \circ F^{k})(x).$$

Birkhoff-Khinchin: for $h \in \mathcal{L}^1$, converges a.e. to conditional expectation of an invariant measure on an invariant set.

Error behavior $\mathcal{B}_{\mathcal{K}}[h](x) - \bar{h}(x)$?

- Invariant circle/island? $O(K^{-1})$
- Chaos? $O(K^{-1/2})$

Rates signal regular vs chaotic ("stochastic") trajectories.

Ideas:

- Invariant sets as level sets of Birkhoff average
- Convergence rates as signal of regularity vs chaos

Converges in the long run – but in the long run, we are all dead. (with apologies to Keynes)

Related: Learn a continuous, nonconstant \bar{h} s.t. $\bar{h} = \bar{h} \circ F$. Can do pretty well with kernel interpolation ansatz – a topic for another talk.

Weighted Birkhoff average

Sander and Meiss, Physica D, 411 (2020) p. 132569; Das, Sander, and Yorke, Nonlinearity, 30 (2017), pp. 4111-4140

Weighting accelerates regular convergence to super-algebraic:

$$\mathcal{WB}_{\mathcal{K}}[h](x) = \sum_{k=0}^{\mathcal{K}} w_{k,\mathcal{K}}(h \circ F^k)(x).$$

Signal Processing Perspective

Parameterize $z(\theta)$ for invariant circle

$$F(z(\theta)) = z(\theta + \omega), \quad z(\theta) = \sum_{n \in \mathbb{Z}} \hat{z}_n \exp(2\pi i n \theta)$$

Trajectory $z_t = z(\omega t)$ has series expansion

$$Z_t = \sum_{n \in \mathbb{Z}} \hat{Z}_n \xi^{nt}, \quad \xi = \exp(2\pi i \omega)$$

Observables $h_t = h(z_t)$ can be similarly expanded

$$h_t = \sum_{n \in \mathbb{Z}} \hat{h}_n \xi^{nt}, \quad \bar{h} = \hat{h}_0$$

Weighted Birkhoff starting from x_0

$$\mathcal{B}_{K}[h](x_{0}) = \sum_{n \in \mathbb{Z}} \hat{h}_{n} p_{K}(\xi^{n}), \quad p_{K}(z) = \sum_{k=0}^{K} w_{k,K} z^{k}$$

Signal Processing Perspective

Signal Processing Perspective

Signal Processing Perspective: Adaptive Filtering

Adaptive Filtering

Series for $h_t = h(z_t)$ $h_t = \sum_{n \in \mathbb{Z}} \hat{h}_n \xi^{nt}$

Filtered/accelerated series with polynomial p_{K} :

$$\mathcal{AWB}_{K}[h](x_{t}) = \sum_{n \in \mathbb{Z}} \hat{h}_{n} \xi^{nt} p_{K}(\xi^{n}) \to \hat{h}_{n}$$

How do we adaptively choose the filter polynomial? Desiderata for this to work:

- Fast enough decay of \hat{h}_n
- "Sufficiently irrational" ω (Diophantine condition)

(Vector) Reduced Rank Extrapolation

Assume

$$h_t = \hat{h}_0 + \sum_{n \neq 0} \lambda_n^t \quad (\text{e.g. } \lambda_n = \xi^n)$$

Difference sequence removes mean:

$$u_t = h_{t+1} - h_t = \sum_{n \neq 0} (\lambda_n - 1) \hat{h}_m \lambda_m^t$$

Seek coeffs c_k to minimize

$$\sum_{t=0}^{T-1} \left(\sum_{k=0}^{K} c_k u_{k+t} \right)^2 \text{ s.t. } \sum_{k=0}^{K} c_k = 1.$$

Accelerated series is

$$\tilde{h}_t = \sum_{k=0}^{K} c_k h_{k+t}.$$

- Can (and do) use vector observables
- \cdot Rectangular Hankel matrix \implies fast matvecs via FFT
- Solve least squares problem with LSQR
- Constrain for time reversibility \implies palindromic polynomial:

$$c_j = c_{K-j}$$

Roots come in inverse pairs (generally on unit circle)

• Measure convergence adaptively via residual

Standard vector RRE convergence (Sidi, Vector Extrapolation Methods with Applications): if $|\lambda_j|$ are in descending order, error for Kth extrapolated average goes like

$$\hat{h}_{0,K} - \hat{h}_0 = O(\lambda_{K+1}^{2K}).$$

But for us everything is on the unit circle!

Alternate analysis gives super-algebraic convergence given

- Enough smoothness of circle (decay of $|\hat{h}_n|$ with |n|)
- "Sufficient irrationality" (Diophantine condition) so ξ_n doesn't get too close to 1 too fast.

Weighted Birkhoff vs RRE

Still good for classification.convergence slightly faster than weighted Birkhoff.

Residuals and Regularity

Use least squares residual to judge "circleness."

(Hard cases near rational rotational transform)

Why use the RRE model just for averaging?

- 1. Form filter polynomial with coefficients c
- 2. Find natural frequencies / polynomial roots
- 3. Sort by contribution to signal
- 4. Of 10 most contributing frequencies, identify rationals (Sander & Meiss)
 - Yes: island chain RRE on *q*th step
 - No: call largest the rotational transform
- 5. Project signal onto Fourier modes

Get shape and characteristics of circles and islands.

Island Identification

Wistell Stellarator Configuration

- 1000 random trajectories (via RK4 on interpolated *B* field)
- $K_{\max} = 300, T_{\max} = 900$
- Residual tolerance = 10^{-6}
- Rational tolerance = 10^{-6}

Wistell Analysis

Residual Chaos

Circles

9 R 10

Islands

9 R

Pros and Cons

- Extrapolation pros
 - Classifies chaos vs regular trajectories
 - Recovers invariant circles/islands
 - No need for continuation or initial guesses
 - Parallelizable over trajectories
- Cons
 - Problems near low-order rationals
 - · Linear algebra adds extra cost vs weighted Birkhoff
- Higher dimensions?
 - Relevant beyond field line flow (guiding center approx)
 - Invariant sets are more complicated
 - The "model the trajectory" philosophy should still work

Ruth and Bindel, https://arxiv.org/abs/2403.19003

We were talking about optimizing stellarators...

What makes an "optimal" stellarator?

- Approximates field symmetries (which measures?)
- Satisfies macroscopic and local stability
- Divertor fields for particle and heat exhaust
- Minimizes collisional and energetic particle transport
- Minimizes turbulent transport
- Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations, uncertainties, and computational costs.

How Do We Optimize? (STELLOPT Approach)

- 1. Costly and "black box" physics computations
 - Each step: MHD equilibrium solve, transport, coil design, ...
 - Several times per step for finite-difference gradients
- 2. Managing tradeoffs
 - How do we choose the weights in the χ^2 measure? By gut?
 - Varying the weights does not expose tradeoffs sensibly
- 3. Dealing with uncertainties
 - What you simulate \neq what you build!
- 4. Global search
 - How to avoid getting stuck in local minima?

Optimization Under Uncertainty

Low construction tolerances:

- NCSX: 0.08%
- Wendelstein 7-X: 0.1% 0.17%

Higher tolerances as coil opt goal!

Also want tolerance to

- Changes to control parameters
- Uncertainty in physics or model

Risk-neutral OUU

Want efficient OUU in \sim 200 dimensions

 $\min_{x\in\Omega}\mathbb{E}_U[f(x-U)]$

Risk-neutral OUU

Want efficient OUU in \sim 200 dimensions

 $\min_{x\in\Omega}\mathbb{E}_U[f(x-U)]$

(Recent) Prior: Monte Carlo Approach

Robustness & mean perf greatly improved (w/ ~ 10⁸ evals) J.-F. Lobsien, M. Drevlak, T. Kruger, S. Lazerson, C. Zhu, T. S. Pedersen, Improved performance of stellarator coil design optimization, Journal of Plasma Physics, 2020.

Our Approach: fast TuRBO-ADAM

Black: ref; red: TuRBO-ADAM 10mm; blue: TuRBO-ADAM 20mm.

Evaluate objective with FOCUS from PPPL.

- Global search with modified TuRBO
- Local refinement with ADAM with control variate

Costs about 0.01% the evaluation budget.

Gaussian Processes (GPs)

Being Bayesian

45

Matérn and SE kernels

46

Gaussian Processes (GPs)

Our favorite continuous distributions over

$$\begin{array}{ll} \mathbb{R}: & \text{Normal}(\mu, \sigma^2), \quad \mu, \sigma^2 \in \mathbb{R} \\ \mathbb{R}^n: & \text{Normal}(\mu, C), \quad \mu \in \mathbb{R}^n, C \in \mathbb{R}^{n \times n} \\ \mathbb{R}^d \to \mathbb{R}: & \text{GP}(\mu, k), \qquad \mu : \mathbb{R}^d \to \mathbb{R}, \, k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \end{array}$$

More technically, define GPs by looking at finite sets of points:

$$\forall X = (x_1, \dots, x_n), x_i \in \mathbb{R}^d,$$

have $f_X \sim N(\mu_X, K_{XX})$, where
 $f_X \in \mathbb{R}^n, \quad (f_X)_i \equiv f(x_i)$
 $\mu_X \in \mathbb{R}^n, \quad (\mu_X)_i \equiv \mu(x_i)$
 $K_{XX} \in \mathbb{R}^{n \times n}, \quad (K_{XX})_{ij} \equiv k(x_i, x_j)$

When X is unambiguous, we will sometimes just write K.

Now consider prior of $f \sim GP(\mu, k)$, noisy measurements

$$f_X \sim y + \epsilon, \quad \epsilon \sim N(0, W), \qquad \text{typically } W = \sigma^2 I$$

Posterior is $f \sim \operatorname{GP}(\mu', k')$ with

$$\mu'(x) = \mu(x) + K_{xX}c \qquad \qquad \tilde{K} = K_{XX} + W$$

$$k'(x, x') = K_{xx'} - K_{xX}\tilde{K}^{-1}K_{Xx'} \qquad \qquad c = \tilde{K}^{-1}(y - \mu_X)$$

The expensive bit: solves with \tilde{K} .

Typical GP-based BO:

- + Evaluate f on initial sample in Ω
- Condition a GP on sample data
- Until budget exhausted
 - Optimize acquisiton function $\alpha(x)$ over Ω (e.g. $\alpha_{\text{EI}}(x) = E[[f(x_{\text{best}}) - f(x)]_+]$ where x_{best} is best so far)
 - Evaluate at selected point
 - Update the GP model (including hyper-parameters)
- Standard cost: $O(n^3)$ per step (with *n* data points)

Suppose *d* large, but not too many minimizers:

- $\cdot\,$ Choose M starting points scattered over $\Omega\,$
- Run local minimizer (gradient descent, Newton, etc)
- Hope for at least one start per convergence basin

Q: How to allocate effort to different starts?

For high-d: combine local BO with multi-start strategy

- Rough global sampling at *M* points
- Local GP models and trust-region around each point
- Thompson sampling to choose which local model (and trust region) to refine next

(Eriksson, Pearce, Gardner, Turner, Poloczek, 2019)

Turbo + OUU

- TuRBO builds GP models for *f*(*x*) (nominal objective)
- Simple transform from GP for f(x) to GP for $E_U[f(x + U)]$ (Beland and Nair, 2017)

Problem: TuRBO explores a lot — want more refinement

Stochastic Gradient Descent (SGD)

Ordinary gradient descent is

$$X_{k+1} = X_k - \alpha_k \nabla \phi(X_k)$$

SGD is

 $x_{k+1} = x_k - \alpha_k g_k$ where g_k is a random draw, $E[g_k] = \nabla \phi(x_k)$.

For
$$\phi(x) = E_U[f(x+U)]$$
, use $g_k = \nabla f(x_k + u_k)$.

Convergence is slow (O(1/m)), but steps can be cheap. Speed depends a lot on variance of gradient estimator.

Adam + Control Variates

• Regular Adam: stochastic gradient algorithm with "adaptive momentum" for step size control. Use directions

$$g(x) = \nabla f(x+U)$$

for a random draw U (can also do mini-batch).

• Variance reduction with control variates (Wang, Chen, Smola, Xing, 2013)

$$g(x) = \nabla f(x + U) + \alpha(\hat{g}(x) - E[\hat{g}(x)])$$
$$\hat{g}(x) = \nabla f(x) + HU.$$

• True Hessian not avail, so set *H* to be an approximate Hessian (BFGS approximation via gradients from Adam).

Additional Information

Multi-output GPs model $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}^k$

- Model covariance over space and across outputs.
- Example: function values + derivatives

$$\mu^{\nabla}(\mathbf{x}) = \begin{bmatrix} \mu(x) \\ \nabla_{x}\mu(x) \end{bmatrix}, \quad k^{\nabla}(x, x') = \begin{bmatrix} k(x, x') & (\nabla_{x'}k(x, x'))^{\mathsf{T}} \\ \nabla_{x}k(x, x') & \nabla^{2}k(x, x') \end{bmatrix}$$

· Can also model multi-fidelity sims, etc

Pro: FOCUS provides gradients, easy to incorporate! Con: Matrix dimensions scale like n(d + 1)(Partial) Fix: Variational inference (Bindel, Gardner, Huang, Padidar, Zhu, NeurIPS 2021) I was tense, I was nervous, I guess it just wasn't my night. Art Fleming gave the answers; oh, but I couldn't get the questions right.

– Weird Al Yankovic, "I Lost on Jeopardy"

Stellarator optimization is hard. Beyond formulating reasonable objectives, challenges include:

- 1. Costly and "black box" physics computations
- 2. Managing tradeoffs
- 3. Dealing with uncertainties
- 4. Global search

Many challenges/opportunities in the formulation – not unique to stellarators!

(And lots of interesting non-optimization problems, too!)