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Given (maybe noisy) evals at points X C Q of
f:QcRISR
Want to compute s = fvia kernel methods. Challenges:

- How to choose the kernel?

- What are the approximation properties?
- Can we go faster than the naive costs?

- Fitting: O(N?)

- Evaluating: O(N)

- Evaluating uncertainty: O(N?)



Inducing points

Idea: Organize approximation around relatively few inducing
points. Different methods for different perspectives:

- NLA: Nystrom, subset of regressors, FITC (see
e.g. Rasmussen and Williams, Ch. 8)

+ GP: Variational inference

- Optimal recovery: Norm minimization with £ constraints



Kernel-Based Regression: Four Stories

Feature map Data-dependent basis
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Feature Maps

where ¢ : Q — F and d € F, some Hilbert space F.



Feature Maps

A (observed) = y (observed)

%

(unobserved) (unobserved)

Underdetermined (dim F > n): seek minimal norm solution.
For standard inner product (¢2):

d = Aly =AT(AAT) Ty
fx) = 9(x)7d = p(x)AT(AAT) "y

Implicit preference for some models over others.



Placing Parens

Given:
AT = [¢(x1) ¢(Xn)}
fix) = s(x) = (¥(x)7AT) (AAT) "y

Several interpretations for this formula:

s(x) = w(x)'y, w(x) = (AAT) Ay (x)
s(x) = ¢(x)'d, d = AT(AAT) Ty
s(x) = v(x)"Alc, c=(AAD) Ty

Respectively:

- Approximate ¥(x) = > w;(x)y(x;)
- Minimium norm solution for underdetermined system
- Apply the kernel trick



The Kernel Trick

Formula:

= [pen) - o)
o) = s(x) = (w( )'AT) (AAT) "y
In terms of kernel kR(x,y) = ((x), ¥(y)):

(AATYj = R(x;, %)) = (Kxx)jj
KxxC =y = fx

n
S(X) = KaxC = ) R(X, X))
j=1

Subscripts to denote vectors/matrices of function evaluations.



Basic ingredient: Kernel functions

Call the kernel (or covariance) function k. Required (today):
- Pos def: Ky is always positive definite
Often desirable:

- Stationary: kR(x,y) depends only on x —y

- Isotropic: R(x,y) depends only on x and ||x — y/|

Often want both (sloppy notation: k = k(r)).

Common examples (e.g. Matérn, SE) also depend on
hyper-parameters 6§ — suppressed in notation unless needed.



Matéern and SE kernels
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Observations on kernel matrices

Kernel is chosen by modeler

- Matérn / SE for regularity and simplicity
- Rarely have the intuition to pick the “right” kernel

- Common choices are universal — can recover anything
- ... with less data for “good” choice (inductive bias)

- Smoother R = “prefer” smoother approximator

Intuitively, strong inductive bias toward smoothness =
rapid eigenvalue decay for K (or for Kyx)

- Unit norm ball is close to a low-dimensional set; or

- Probability concentrates near a low-dimensional set

"



Scaling Challenge

Want to compute with Kyx € RV*N fast.

- Naive: O(N?) fitting
- Better: Use low dimensionality or smoothness
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Example: Structured Kernel Interpolation (SKI)

Write Kyx ~ WTKyyW where

- Uis a uniform mesh of m points
- Kyy has Toeplitz or block Toeplitz structure
- Sparse W interpolates values from X to U

Apply Kyy via FFTs in O(mlog m) time.
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(Corrected) Nystrom

Approximate via inducing points Z C X:
Kyox + nl ~ KxzK37 Kzx + D,

where D = gl (SoR), or plus some additional correction (FITC).

A good exercise: solve (KxzK, Kzx + D)c = y by

D—1/2KXZ \ D—1/2y
< | o

- Recover ¢ = D~'(y — Kxz)) if desired

- Prediction KezK; Kzx€ = Kiz.

« Minimize

Can be a good preconditioner even when not great alone.
Things like log determinants are also simple to compute.
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky
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Diagonal element: 1.00e+00
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky
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Diagonal element: 6.77e-02
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

02
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 511e-04
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 418e-05
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 8.54e-07
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 3.58e-07
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.92e-07
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Greedy Selection and Choosy Cholesky

What if we can choose new sample points (or fake data)?

- Continuous pivoted Cholesky: next point maximizes the
Schur complement / posterior variance / power function:

V(X) = Ryx — I?XXI%)?)J Rxx

- Same optimization, just over continuous vs discrete set!
- Limiting case of several Bayesian optimization methods

- May want to re-optimize kernel hypers between samples



Function Values?

- So far, focused on approximating kernel matrix/operator.
- ... but we did not use the observations fx!

- What if we focus on approximating fx?



Forward Selection

Goal:
minimize ||Kxzc — fx||* over Z c X of size m,c € R™

Stepwise regression with forward selection:

- Initialize r = fx
- Select next point z to maximize |RY,r| /|| Rx.||?

- Update residual and repeat

Similar to pivoted QR on [fx KXX]



Continuous Forward Selection

- Why not choose Z ¢ X?

- Gradient-based maximization of |kl r|/||Rx||-
- Use a discrete set Z of starting guesses

- Given initial guess (e.g. from greedy approach) can refine
with variable projection approach:

min [|(1 = KizK, )l

See Zhu, Gardner, B, NeurlPS 2022 Workshop on GPs.
(Also: Cornell CS 4220 project 3, Spring 2022)
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Kernel-Based Regression: Four Stories
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Simple and Impossible
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Let u = (uq, up) (think (fx, fx)). Given uq, what is u,?

We need an assumption!
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Being Bayesian

AN

)

yl N

uTk=u =1

Let U = (Us, Uy) ~ N(O, K). Given Uy = uq, what is U,?
Posterior distribution: (U,|Us = uq) ~ N(w, S) where

W= K21Kﬁ1U1
S = Kz — KnKq;'Kn
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Basic ingredient: Gaussian Processes (GPs)

05 /= = = = - o
- -
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Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over

R: Normal(u,o?), p,0% € R
R™ Normal(u,C), weR",Ce RM™"
RY = R:  GP(u,R), p:RISR R:RIxRT - R

More technically, define GPs by looking at finite sets of points:

VX = (X1,...,X%), X; € RY,
have fx ~ N(ux, Kxx), where
fx €R", (fx)i = f(x)
px € R (mx)i = p(xi)
Kxx € R™M (Kxx)ij = R(Xi, X;)

2%



Being Bayesian

Consider a (zero-mean) GP prior with kernel k:
f ~ GP(0, k)

Measure at X, apply Bayes to get posterior:

(Flfx =) ~ GP(u, k)

where

1(X) = Ruxc
F?(X, y) - k)(va) - I?XXK)?X‘II?X)/

Specifically, posterior for f(x) at given x is

N(RxxC, R(X, x) — /?xxK;;f?xX)
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What About the Distribution?

- Started focused on approximating kernel matrix/operator.
- Then we paid direct attention to sy = fx.

- What about trying to match the uncertainty (v(x))?
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Probabilistic Perspective

Usual GP inference:

- Prior p(fx, f+) on training values and test values
- Condition on observationsy = fx + ¢
- Marginalize out fx

Inducing points:

- Prior p(fx, f«,f7) on training, test, inducing values
- Assume conditional independence of fy, f« given f;

- Marginalize out fx and f;

Perspective unifies many inducing point schemes
(Quinonera-Candela and Rasmussen, 2006).
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Sparse GP framework

‘ Training (fx|fz) Test (filfz)
DTC | N(KxzK5,fz,0) N (KizK37 fz, Kes)
FITC N(KXZKZZfZ,d.ag(kXX)) N (KizK77 f7, Ko
SVGP | N (KxzK57fz, Kxx) N (KizKz7 fz, Kes)

Here Kux = Kix — KizK77 Kz

How to get Z (and f7)?
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Sparse GPs and variational inference

ldea:

- Take a Bayesian perspective — want to approximate the
posterior distribution conditioned on observations.

- As approximating family, consider GP conditioned on
inducing values at inducing locations (Z ¢ X).

- Maximize (with respect to Z, f7) the evidence lower bound
(ELBO) / minimize the KL divergence between the
approximating GP and the true posterior.

Optimization via SGD variants. Several variations on this. Also
useful with non-Gaussian likelihoods.

(See Blei, Kucukelbir, McAuliffe, 2018)
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Variational GPs

(a) Test NLL: 0.60, I: 0.85

9 e SVGP with 10 inducing points
1
0

(c) Test NLL: -0.90, : 0.31

2 === SVGP with 100 inducing points
1
0 s
-1
-2 -1 0 1 2 3 4

Maybe works poorly with too few inducing points?

30



Sparse GP Framework

Training (fx|f2) Test (filf2)
DTC N (KxzK57fz,0) N (KizK55 7, K )
FITC N (KxzK7; f7, diag(Kxx)) N (KezK77 f2, Kis)
SVGP N (KxzKz; fz, Kix) N (KizK55 7, K )
DCSVGP | N (QxzQzfz, Kxx) N(QuzQ5; 17, Ki)

Not obliged to capture conditional mean and covariance with
same kernels!
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What do we get?

() Test NLL: 0.60, I: 0.85 (b) Test NLL: -0.61, bnean: 0.27, leovar: 2.15
9 = SVGP with 10 inducing points = DCSVGP with 10 inducing points (ours)
l \/\
0
-1
(¢) Test NLL: -0.90, I: 0.31 (d) Test NLL: -0.93, lmean: 0.33, leovar: 031
2 —— SVCP with 100 inducing points —— DCSVGP with 100 inducing points (ours)
1
0
—1
-2 -1 0 1 2 3 1 -2 -1 0 1 2 3 4
Latent Function Training data Inducing points

Zhu, Wu, Maus, Gardner, B, NeurlPS 2023

Decoupling mean and covariance approximation (via separate
length scales for predictive mean and covariance).
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Simple and Impossible

N

I
I
I
I
I
I
I
I
0 N
L
I
I
I
I
I
I
I
I
|

L 4

Let u = (uy, Up) (think (fx, fx)). Given uq, what is u,?

We need an assumption!
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Being Bounded

Let u = (ur, up) st [|ufl2_, < 1. Given uy, what is u,?

Optimal recovery: [|uz — w3 <1~ fJurlfg )

W = K21K1_11U1
S = Kz — KnKq;'Kn

Minimizes ||ul|x-1 subject to data constraints. 35



From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm
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http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Cubic Splines

e

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

- ¢(r) = r* is conditionally positive definite of order 2
- Squared (semi-)norm is bending energy:

IslBe o 5 | 5002 o
2 Ja
- Linear polynomial tail = rigid body modes
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http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Force, Displacement, Stiffness

Target function f € H?, known bending energy
£l = 5 | 07 x
2 Ja

Cubic spline minimizes E[s] s.t. s(x;) = f(X;), so

-

- f(x;) as displacement, ¢; as corresponding force

E[s] < E[f]

- Kernel matrix Kxx is compliance (force — displacement)
- Residual compliance (inverse stiffness) at x is Px(x) 2
- Energy bound for error at X

Px(x) % (s(x) — f(x))* < EIf] - Els]
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General Picture

Interpolant is
s(x) = KyxC 4+ b(x)TA

Can compute power function Px(x) from factorization; SPD case:

Px(X)? = $(0) — KexKigg Kxx

[s() = 001 < PxOOA/ A5, — sl

Only thing that is hard to compute generally: Hﬂ\%{.

Bound is
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Beyond optimal recovery

Optimal recovery perspective on kernel interpolation:
minimize ||s||3, s.t. sx = fx

Representer theorem says kernel interpolator is the minimizer.

What if we relax interpolation?
minimize ||s||%; st |sx — fxlloo < €

Variation on representer theorem: solution is a kernel
approximation with a subset of points X.
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Incorporating bounds

Continuous problem:
minimize ||s|3, St [|sx — fxlloo < €
Becomes a nice quadratic program
minimize syKy'sx St [|Sx — fxlloo < €.
Generalize to ¢ < sy < u; KKT conditions: KyxC = Sy,

s(x)=4 = ¢ =0
S(xj)) =u; = ¢ <0

0 <s(x) <up = ¢ =0.
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Incorporating bounds

1.0p] J

f4+++

R T

0.0
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Why do this?

- Has an adjustable cost/accuracy knob
- No local minimizers (problem for VI methods)
- Can build on standard RBF error bounds
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Three flavors of inducing point methods from three different
perspectives:

- Matrix perspective: Diagonal + low-rank approximation of
the kernel matrix. Use alone or as a preconditioner.

- Bayesian variational inference: Use inducing points (and
values) to define a candidate family. Maximize the
evidence lower bound over that family / minimize KL
divergence to true posterior.

- Optimization perspective: Inducing points arise naturally
from minimizing norm subject to inequality bounds (vs
subject to interpolation constraints).

Unlike interpolation, get fundamentally different methods

from these perspectives.
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