
New Approaches to Computing with Kernels

David Bindel
4 Nov 2024

Collaborators

Misha Padidar Xinran Zhu Leo Huang
(Flatiron) (Cadence) (Meta)

Geoff Pleiss Kilian Weinberger Andrew Wilson
(UBC) (Cornell) (NYU)

David Eriksson Jake Gardner Alex Terenin
(Meta) (U Penn) (Cornell)

1

The setup

Given (maybe noisy) evals at points X ⊂ Ω of

f : Ω ⊂ Rd → R

Want to compute s ≈ f via kernel methods. Challenges:

• How to choose the kernel?
• What are the approximation properties?
• Can we go faster than the naive costs?

• Fitting: O(N3)
• Evaluating: O(N)
• Evaluating uncertainty: O(N2)

2

Inducing points

Idea: Organize approximation around relatively few inducing
points. Different methods for different perspectives:

• NLA: Nyström, subset of regressors, FITC (see
e.g. Rasmussen and Williams, Ch. 8)

• GP: Variational inference
• Optimal recovery: Norm minimization with ℓ∞ constraints

3

Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈

4

Feature Maps

[
x
y

]
7→

1
x
y
x2

xy
y2

Augment simple linear model (cTx) with feature map:

f(x) ≈ 〈d, ψ(x)〉

where ψ : Ω → F and d ∈ F , some Hilbert space F .

5

Feature Maps

=

≈

A (observed) y (observed)

(unobserved) (unobserved)

Underdetermined (dimF > n): seek minimal norm solution.
For standard inner product (ℓ2):

d = A†y =AT(AAT)−1y
f(x) ≈ ψ(x)Td = ψ(x)TAT(AAT)−1y

Implicit preference for some models over others.

6

Placing Parens

Given:

AT =
[
ψ(x1) . . . ψ(xn)

]
f(x) ≈ s(x) ≡

(
ψ(x)TAT

)
(AAT)−1y

Several interpretations for this formula:

s(x) = w(x)Ty, w(x) = (AAT)−1Aψ(x)
s(x) = ψ(x)Td, d = AT(AAT)−1y
s(x) = ψ(x)TATc, c = (AAT)−1y

Respectively:

• Approximate ψ(x) ≈
∑

i wi(x)ψ(xi)
• Minimium norm solution for underdetermined system
• Apply the kernel trick

7

The Kernel Trick

Formula:

AT =
[
ψ(x1) . . . ψ(xn)

]
f(x) ≈ s(x) ≡

(
ψ(x)TAT

)
(AAT)−1y

In terms of kernel k(x, y) = 〈ψ(x), ψ(y)〉:

(AAT)ij = k(xi, xj) = (KXX)ij
KXXc = y = fX

s(x) = KxXc =
n∑
j=1

k(x, xj)cj

Subscripts to denote vectors/matrices of function evaluations.

8

Basic ingredient: Kernel functions

Call the kernel (or covariance) function k. Required (today):

• Pos def: KXX is always positive definite

Often desirable:

• Stationary: k(x, y) depends only on x− y
• Isotropic: k(x, y) depends only on x and ‖x− y‖

Often want both (sloppy notation: k = k(r)).

Common examples (e.g. Matérn, SE) also depend on
hyper-parameters θ — suppressed in notation unless needed.

9

Matérn and SE kernels

−4 −3 −2 −1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1 Matérn 1/2
Matérn 3/2
Matérn 5/2
Squared exp

10

Observations on kernel matrices

Kernel is chosen by modeler

• Matérn / SE for regularity and simplicity
• Rarely have the intuition to pick the “right” kernel
• Common choices are universal — can recover anything

• ... with less data for “good” choice (inductive bias)

• Smoother k =⇒ “prefer” smoother approximator

Intuitively, strong inductive bias toward smoothness =⇒
rapid eigenvalue decay for K (or for KXX)

• Unit norm ball is close to a low-dimensional set; or
• Probability concentrates near a low-dimensional set

11

Scaling Challenge

Want to compute with KXX ∈ RN×N fast.

• Naive: O(N3) fitting
• Better: Use low dimensionality or smoothness

12

Example: Structured Kernel Interpolation (SKI)

Write KXX ≈ WTKUUW where

• U is a uniform mesh of m points
• KUU has Toeplitz or block Toeplitz structure
• Sparse W interpolates values from X to U

Apply KUU via FFTs in O(m logm) time.
13

(Corrected) Nyström

Approximate via inducing points Z ⊂ X:

KXX + ηI ≈ KXZK−1ZZ KZX + D,

where D = ηI (SoR), or plus some additional correction (FITC).

A good exercise: solve (KXZK−1ZZ KZX + D)c = y by

• Minimize
∥∥∥∥∥
[
D−1/2KXZ
KZZ

]
λ−

[
D−1/2y
0

]∥∥∥∥∥
• Recover c = D−1(y− KXZλ) if desired
• Prediction KxZK−1ZZ KZXc = KxZλ.

Can be a good preconditioner even when not great alone.
Things like log determinants are also simple to compute.

14

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.00e+00

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 6.77e-02

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.91e-02

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 5.11e-04

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.19e-04

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 4.18e-05

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 8.54e-07

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 3.58e-07

15

Greedy Selection and Choosy Cholesky

Greedy choice of inducing points Z for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.92e-07

15

Greedy Selection and Choosy Cholesky

What if we can choose new sample points (or fake data)?

• Continuous pivoted Cholesky: next point maximizes the
Schur complement / posterior variance / power function:

v(x) = kxx − kxXK̂−1XX kXx

• Same optimization, just over continuous vs discrete set!
• Limiting case of several Bayesian optimization methods
• May want to re-optimize kernel hypers between samples

16

Function Values?

• So far, focused on approximating kernel matrix/operator.
• ... but we did not use the observations fX!
• What if we focus on approximating fX?

17

Forward Selection

Goal:

minimize ‖KXZc− fX‖2 over Z ⊂ X of size m, c ∈ Rm

Stepwise regression with forward selection:

• Initialize r = fX
• Select next point z to maximize |kTXzr|/‖kXz‖2

• Update residual and repeat

Similar to pivoted QR on
[
fX KXX

]
.

18

Continuous Forward Selection

• Why not choose Z 6⊂ X?
• Gradient-based maximization of |kTXzr|/‖kXz‖.
• Use a discrete set Ẑ of starting guesses

• Given initial guess (e.g. from greedy approach) can refine
with variable projection approach:

min
U

‖(I− KXZK†XZ)fX‖
2

See Zhu, Gardner, B, NeurIPS 2022 Workshop on GPs.
(Also: Cornell CS 4220 project 3, Spring 2022)

19

Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈

20

Simple and Impossible

Let u = (u1,u2) (think (fX, fX′)). Given u1, what is u2?

We need an assumption!

21

Being Bayesian

uTK−1u = 1

Let U = (U1,U2) ∼ N(0, K). Given U1 = u1, what is U2?

Posterior distribution: (U2|U1 = u1) ∼ N(w, S) where

w = K21K−111 u1
S = K22 − K21K−111 K12

22

Basic ingredient: Gaussian Processes (GPs)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

23

Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)

24

Being Bayesian

Consider a (zero-mean) GP prior with kernel k:

f ∼ GP(0, k)

Measure at X, apply Bayes to get posterior:

(f | fX = y) ∼ GP(µ, k̃)

where

µ(x) = kxXc
k̃(x, y) = k(x, x)− kxXK−1XX kXy

Specifically, posterior for f(x) at given x is

N(kxXc, k(x, x)− kxXK−1XX kXx)

25

What About the Distribution?

• Started focused on approximating kernel matrix/operator.
• Then we paid direct attention to sX ≈ fX.
• What about trying to match the uncertainty (v(x))?

26

Probabilistic Perspective

Usual GP inference:

• Prior p(fX, f∗) on training values and test values
• Condition on observations y = fX + ϵ

• Marginalize out fX

Inducing points:

• Prior p(fX, f∗, fZ) on training, test, inducing values
• Assume conditional independence of fX, f∗ given fZ
• Marginalize out fX and fZ

Perspective unifies many inducing point schemes
(Quiñonera-Candela and Rasmussen, 2006).

27

Sparse GP framework

Training (fX|fZ) Test (f∗|fZ)
DTC N (KXZK−1ZZ fZ, 0) N (K∗ZK−1ZZ fZ, K̃∗∗)
FITC N (KXZK−1ZZ fZ, diag(K̃XX)) N (K∗ZK−1ZZ fZ, K̃∗∗)
SVGP N (KXZK−1ZZ fZ, K̃XX) N (K∗ZK−1ZZ fZ, K̃∗∗)

Here K̃∗∗ = K∗∗ − K∗ZK−1ZZ KZ∗

How to get Z (and fZ)?

28

Sparse GPs and variational inference

Idea:

• Take a Bayesian perspective – want to approximate the
posterior distribution conditioned on observations.

• As approximating family, consider GP conditioned on
inducing values at inducing locations (Z 6⊂ X).

• Maximize (with respect to Z, fZ) the evidence lower bound
(ELBO) / minimize the KL divergence between the
approximating GP and the true posterior.

Optimization via SGD variants. Several variations on this. Also
useful with non-Gaussian likelihoods.

(See Blei, Kucukelbir, McAuliffe, 2018)

29

Variational GPs

Latent Function Training data Inducing points

�1

0

1

2

(a) Test NLL: 0.60, l: 0.85

SVGP with 10 inducing points

(b) Test NLL: -0.61, lmean: 0.27, lcovar: 2.15

DCSVGP with 10 inducing points (ours)

�2 �1 0 1 2 3 4

�1

0

1

2

(c) Test NLL: -0.90, l: 0.31

SVGP with 100 inducing points

�2 �1 0 1 2 3 4

(d) Test NLL: -0.93, lmean: 0.33, lcovar: 0.31

DCSVGP with 100 inducing points (ours)

Figure 1: We compare model fit on a 1D latent function using 100 training samples. Solid curves
with shading area depict the predictive mean and 95% confidence interval. Using 10 inducing points,
in subplot (a) SVGP underfits the latent function with large lengthscale l = 0.85; while in subplot

(b), our DCSVGP model (see Sec. 3.2) fits better and learns different decoupled lengthscales lmean
and lcovar. Using 100 inducing points, in subplot (c) and (d), both models fits well with similar
lengthscales around 0.3. See Sec. 1 for more details.

that increase the flexibility of these conditionals. In Sec. 3.2, we describe two concrete examples of
this idea: decoupling kernel lengthscales and decoupling entire deep feature extractors.

As a simple illustration, Fig. 1 illustrates, for example, how decoupled lengthscales improve model
fitting. Our model DCSVGP (see Sec. 3.2) learns decoupled lengthscales lmean and lcovar for mean
and covariance respectively, and we compare with baseline SVGP (see Sec. 2) which learns one
lengthscale l.

To summarize our contributions: 1) We propose decoupled conditionals in variational GPs to improve
model expressiveness for better accuracy. 2) We show that our idea is compatible with the variational
framework and rigorously derive an ELBO for variational inference with decoupled conditionals.
3) We provide two concrete examples of applying decoupled conditionals and empirically show the
superior performance of our models through extensive regression tasks and BO applications.

2 Background

We assume familiarity with GPs [38] and briefly introduce them for notational clarity. Given
observation locations X = {xi}

n
i=1 ⇢ Rd, a GP prior induces a multivariate Normal belief for

latent function values f = {f(xi)}: f ⇠ N (µX,Knn), where µX,Knn are the mean values and
covariance matrix at data X. Givend observations y = f + ✏ with Gaussian noise ✏ ⇠ N (0,�2I), the
posterior distribution of the function value f⇤ at a new data point x⇤ is p(f⇤|y) = N (µ⇤,⌃⇤⇤), where

µ⇤ = µ(x⇤) + K⇤n(Knn + �2I)�1(y � µX),

⌃⇤⇤ = K(x⇤,x⇤) � K⇤n(Knn + �2I)�1KT
⇤n.

Model hyperparameters such as kernel hyperparameters and noise � are typically estimated by
Maximum Likelihood using standard numerical solvers such as LBFGS [35]. If no approximations
are used, each evaluation to optimize the log marginal likelihood function costs O(n3) flops and
O(n2) memory, thus motivating approximate methods for large training datasets.

2.1 Sparse Gaussian Processes

To overcome the scalability limitations of exact GPs, many authors have proposed a variety of sparse
GPs by introducing inducing points Z = {zi}mi=1 [17, 44, 47, 48, 49]. Inducing points are associated
with inducing values fm, which represent latent function values at Z under the same GP assumption.

2

Maybe works poorly with too few inducing points?

30

Sparse GP Framework

Training (fX|fZ) Test (f∗|fZ)
DTC N (KXZK−1ZZ fZ, 0) N (K∗ZK−1ZZ fZ, K̃∗∗)
FITC N (KXZK−1ZZ fZ, diag(K̃XX)) N (K∗ZK−1ZZ fZ, K̃∗∗)
SVGP N (KXZK−1ZZ fZ, K̃XX) N (K∗ZK−1ZZ fZ, K̃∗∗)
DCSVGP N (QXZQ−1

ZZ fZ, K̃XX) N (Q∗ZQ−1
ZZ fZ, K̃∗∗)

Not obliged to capture conditional mean and covariance with
same kernels!

31

What do we get?

Latent Function Training data Inducing points

�1

0

1

2

(a) Test NLL: 0.60, l: 0.85

SVGP with 10 inducing points

(b) Test NLL: -0.61, lmean: 0.27, lcovar: 2.15

DCSVGP with 10 inducing points (ours)

�2 �1 0 1 2 3 4

�1

0

1

2

(c) Test NLL: -0.90, l: 0.31

SVGP with 100 inducing points

�2 �1 0 1 2 3 4

(d) Test NLL: -0.93, lmean: 0.33, lcovar: 0.31

DCSVGP with 100 inducing points (ours)

Figure 1: We compare model fit on a 1D latent function using 100 training samples. Solid curves
with shading area depict the predictive mean and 95% confidence interval. Using 10 inducing points,
in subplot (a) SVGP underfits the latent function with large lengthscale l = 0.85; while in subplot

(b), our DCSVGP model (see Sec. 3.2) fits better and learns different decoupled lengthscales lmean
and lcovar. Using 100 inducing points, in subplot (c) and (d), both models fits well with similar
lengthscales around 0.3. See Sec. 1 for more details.

that increase the flexibility of these conditionals. In Sec. 3.2, we describe two concrete examples of
this idea: decoupling kernel lengthscales and decoupling entire deep feature extractors.

As a simple illustration, Fig. 1 illustrates, for example, how decoupled lengthscales improve model
fitting. Our model DCSVGP (see Sec. 3.2) learns decoupled lengthscales lmean and lcovar for mean
and covariance respectively, and we compare with baseline SVGP (see Sec. 2) which learns one
lengthscale l.

To summarize our contributions: 1) We propose decoupled conditionals in variational GPs to improve
model expressiveness for better accuracy. 2) We show that our idea is compatible with the variational
framework and rigorously derive an ELBO for variational inference with decoupled conditionals.
3) We provide two concrete examples of applying decoupled conditionals and empirically show the
superior performance of our models through extensive regression tasks and BO applications.

2 Background

We assume familiarity with GPs [38] and briefly introduce them for notational clarity. Given
observation locations X = {xi}

n
i=1 ⇢ Rd, a GP prior induces a multivariate Normal belief for

latent function values f = {f(xi)}: f ⇠ N (µX,Knn), where µX,Knn are the mean values and
covariance matrix at data X. Givend observations y = f + ✏ with Gaussian noise ✏ ⇠ N (0,�2I), the
posterior distribution of the function value f⇤ at a new data point x⇤ is p(f⇤|y) = N (µ⇤,⌃⇤⇤), where

µ⇤ = µ(x⇤) + K⇤n(Knn + �2I)�1(y � µX),

⌃⇤⇤ = K(x⇤,x⇤) � K⇤n(Knn + �2I)�1KT
⇤n.

Model hyperparameters such as kernel hyperparameters and noise � are typically estimated by
Maximum Likelihood using standard numerical solvers such as LBFGS [35]. If no approximations
are used, each evaluation to optimize the log marginal likelihood function costs O(n3) flops and
O(n2) memory, thus motivating approximate methods for large training datasets.

2.1 Sparse Gaussian Processes

To overcome the scalability limitations of exact GPs, many authors have proposed a variety of sparse
GPs by introducing inducing points Z = {zi}mi=1 [17, 44, 47, 48, 49]. Inducing points are associated
with inducing values fm, which represent latent function values at Z under the same GP assumption.

2

Zhu, Wu, Maus, Gardner, B, NeurIPS 2023

Decoupling mean and covariance approximation (via separate
length scales for predictive mean and covariance).

32

Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈

33

Simple and Impossible

Let u = (u1,u2) (think (fX, fX′)). Given u1, what is u2?

We need an assumption!

34

Being Bounded

{uTK−1u ≤ 1}

Let u = (u1,u2) s.t. ‖u‖2K−1 ≤ 1. Given u1, what is u2?

Optimal recovery: ‖u2 − w‖2S−1 ≤ 1− ‖u1‖2(K11)−1

w = K21K−111 u1
S = K22 − K21K−111 K12

Minimizes ‖u‖K−1 subject to data constraints. 35

From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

36

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Cubic Splines

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

• ϕ(r) = r3 is conditionally positive definite of order 2
• Squared (semi-)norm is bending energy:

‖s‖2H ∝ 1
2

∫
Ω
s′′(x)2 dx

• Linear polynomial tail = rigid body modes

37

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Force, Displacement, Stiffness

Target function f ∈ H2, known bending energy

E[f] = 1
2

∫
Ω
f′′(x)2 dx

Cubic spline minimizes E[s] s.t. s(xi) = f(xi), so

E[s] ≤ E[f]

• f(xi) as displacement, ci as corresponding force
• Kernel matrix KXX is compliance (force 7→ displacement)
• Residual compliance (inverse stiffness) at x is PX(x)−2

• Energy bound for error at X

PX(x)−2 (s(x)− f(x))2 ≤ E[f]− E[s]

38

General Picture

Interpolant is
s(x) = KxXc+ b(x)Tλ

Can compute power function PX(x) from factorization; SPD case:

PX(x)2 = ϕ(0)− KxXK−1XX KXx

Bound is
|s(x)− f(x)| ≤ PX(x)

√
‖f‖2H − ‖s‖2H

Only thing that is hard to compute generally: ‖f‖2H.

39

Beyond optimal recovery

Optimal recovery perspective on kernel interpolation:

minimize ‖s‖2H s.t. sX = fX

Representer theorem says kernel interpolator is the minimizer.

What if we relax interpolation?

minimize ‖s‖2H s.t. ‖sX − fX‖∞ ≤ ϵ

Variation on representer theorem: solution is a kernel
approximation with a subset of points X.

40

Incorporating bounds

Continuous problem:

minimize ‖s‖2H s.t. ‖sX − fX‖∞ ≤ ϵ

Becomes a nice quadratic program

minimize sTXK−1XX sX s.t. ‖sX − fX‖∞ ≤ ϵ.

Generalize to ℓ ≤ sX ≤ u; KKT conditions: KXXc = sX,

s(xi) = ℓi =⇒ ci ≥ 0
s(xi) = ui =⇒ ci ≤ 0

ℓi < s(xi) < ui =⇒ c′i = 0.

41

Incorporating bounds

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

1.5

42

Why do this?

• Has an adjustable cost/accuracy knob
• No local minimizers (problem for VI methods)
• Can build on standard RBF error bounds

43

Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈

44

Summary

Three flavors of inducing point methods from three different
perspectives:

• Matrix perspective: Diagonal + low-rank approximation of
the kernel matrix. Use alone or as a preconditioner.

• Bayesian variational inference: Use inducing points (and
values) to define a candidate family. Maximize the
evidence lower bound over that family / minimize KL
divergence to true posterior.

• Optimization perspective: Inducing points arise naturally
from minimizing norm subject to inequality bounds (vs
subject to interpolation constraints).

Unlike interpolation, get fundamentally different methods
from these perspectives.

45

