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Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process
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Basic ingredient: Gaussian Processes (GPs)
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Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)
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Being Bayesian

yTK−1y = 1

Let Y = (Y1, Y2) ∼ N(0, K). Given Y1 = y1, what is Y2?

Posterior distribution: (Y2|Y1 = u1) ∼ N(w, S) where

w = K21K−111 y1
S = K22 − K21K−111 K12
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Being Bayesian

Consider a (zero-mean) GP prior with kernel k:

f ∼ GP(0, k)

Measure at X with noise, apply Bayes to get posterior:

(f | y = fX + ϵ) ∼ GP(µ, k̃)

where

µ(x) = kxXc, K̂XXc = y
k̃(x, y) = k(x, x)− kxXK̂−1XX kXy

K̂XX = KXX + ηI

Specifically,

(f(x)|y = fX + ϵ) ∼ N
(
kxXc, k(x, x)− kxXK̂−1XX kXx

)
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Scandalous Scaling

Can we go faster than the naive costs?

• Fitting and hyperparameter selection: O(N3)
• Evaluating: O(N)
• Evaluating uncertainty: O(N2)

Idea: Approximate via m≪ N inducing points.
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Where Do We Go Now?

• (Corrected) Nyström matrix and operator approximation
• Matrix and quasimatrix forward selection
• Getting the right predictive uncertainty
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(Corrected) Nyström

Approximate via inducing points U ⊂ X:

KXX + ηI ≈ KXUK−1UUKUX + D,

where D = ηI (SoR), or plus some additional correction (FITC).

A good exercise: solve (KXUK−1UUKUX + D)c = y by

• Minimize
∥∥∥∥∥
[
D−1/2KXU
KUU

]
λ−

[
D−1/2y
0

]∥∥∥∥∥
• Recover c = D−1(y− KXUλ) if desired
• Prediction KxUK−1UUKUXc = KxUλ.

Can be a good preconditioner even when not great alone.
Things like log determinants are also simple to compute.
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.00e+00

10



Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 6.77e-02
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.91e-02
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 5.11e-04
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.19e-04
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 4.18e-05
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 8.54e-07
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 3.58e-07
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.92e-07
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Greedy Selection and Choosy Cholesky

What if we can choose new sample points (or fake data)?

• Continuous pivoted Cholesky: next point maximizes the
posterior variance:

v(x) = kxx − kxXK̂−1XX kXx

• Same optimization, just over continuous vs discrete set!
• Limiting case of several Bayesian optimization methods
• May want to re-optimize kernel hypers between samples
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Function Values?

• So far, focused on approximating kernel matrix/operator.
• ... but we did not use the observations fX!
• What if we focus on approximating fX?
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Forward Selection

Goal:

minimize ∥KXUc− fX∥2 over U ⊂ X of size m, c ∈ Rm

Stepwise regression with forward selection:

• Initialize r = fX
• Select next point u to maximize |kTXur|/∥kXu∥2

• Update residual and repeat

Similar to pivoted QR on
[
fX KXX

]
.
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Continuous Forward Selection

• Why not choose U ̸⊂ X?
• Gradient-based maximization of |kTXur|/∥kXu∥.
• Use a discrete set Û of starting guesses

• Given initial guess (e.g. from greedy approach) can refine
with variable projection approach:

min
U

∥(I− KXUK†XU)fX∥
2

See Zhu, Gardner, B, NeurIPS 2022 Workshop on GPs.
(Also: Cornell CS 4220 project 3, Spring 2022)

14



What About the Distribution?

• Started focused on approximating kernel matrix/operator.
• Then we paid direct attention to sX ≈ fX.
• What about trying to match the uncertainty (v(x))?
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Probabilistic Perspective

Usual GP inference:

• Prior p(fX, f∗) on training values and test values
• Condition on observations y
• Marginalize out fX

Inducing points:

• Prior p(fX, f∗,u) on training, test, inducing values
• Assume conditional independence of fX, f∗ given u
• Marginalize out fX and u

Perspective unifies many inducing point schemes
(Quiñonera-Candela and Rasmussen, 2006).
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Sparse GP framework

Training (fX|fU) Test (f∗|fU)
DTC N (KXUK−1UUfU, 0) N (K∗UK−1UUfU, K̃∗∗)
FITC N (KXUK−1UUfU, diag(K̃XX)) N (K∗UK−1UUfU, K̃∗∗)
SVGP N (KXUK−1UUfU, K̃XX) N (K∗UK−1UUfU, K̃∗∗)
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Variational Inference

Desiderata: choos inducing point locations (and other params)
to maximize log-likelihood log p(y) – but hard!

Basic idea:

p(y) =
∫
p(y|fX)p(fX)

p(y|fU) =
∫
p(y|fX)p(fX|fU)

Jensen’s inequality

log p(y|fU) ≥
∫

log p(y|fX)p(fX|fU)

Yields evidence lower bound – maximize that. Like minimizing
KL divergence between true posterior and parametric
approximation.

(See Blei, Kucukelbir, McAuliffe, 2018) 18



Variational GPs

Latent Function Training data Inducing points
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(a) Test NLL: 0.60, l: 0.85

SVGP with 10 inducing points

(b) Test NLL: -0.61, lmean: 0.27, lcovar: 2.15

DCSVGP with 10 inducing points (ours)
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(c) Test NLL: -0.90, l: 0.31

SVGP with 100 inducing points

�2 �1 0 1 2 3 4

(d) Test NLL: -0.93, lmean: 0.33, lcovar: 0.31

DCSVGP with 100 inducing points (ours)

Figure 1: We compare model fit on a 1D latent function using 100 training samples. Solid curves
with shading area depict the predictive mean and 95% confidence interval. Using 10 inducing points,
in subplot (a) SVGP underfits the latent function with large lengthscale l = 0.85; while in subplot

(b), our DCSVGP model (see Sec. 3.2) fits better and learns different decoupled lengthscales lmean
and lcovar. Using 100 inducing points, in subplot (c) and (d), both models fits well with similar
lengthscales around 0.3. See Sec. 1 for more details.

that increase the flexibility of these conditionals. In Sec. 3.2, we describe two concrete examples of
this idea: decoupling kernel lengthscales and decoupling entire deep feature extractors.

As a simple illustration, Fig. 1 illustrates, for example, how decoupled lengthscales improve model
fitting. Our model DCSVGP (see Sec. 3.2) learns decoupled lengthscales lmean and lcovar for mean
and covariance respectively, and we compare with baseline SVGP (see Sec. 2) which learns one
lengthscale l.

To summarize our contributions: 1) We propose decoupled conditionals in variational GPs to improve
model expressiveness for better accuracy. 2) We show that our idea is compatible with the variational
framework and rigorously derive an ELBO for variational inference with decoupled conditionals.
3) We provide two concrete examples of applying decoupled conditionals and empirically show the
superior performance of our models through extensive regression tasks and BO applications.

2 Background

We assume familiarity with GPs [38] and briefly introduce them for notational clarity. Given
observation locations X = {xi}

n
i=1 ⇢ Rd, a GP prior induces a multivariate Normal belief for

latent function values f = {f(xi)}: f ⇠ N (µX,Knn), where µX,Knn are the mean values and
covariance matrix at data X. Givend observations y = f + ✏ with Gaussian noise ✏ ⇠ N (0,�2I), the
posterior distribution of the function value f⇤ at a new data point x⇤ is p(f⇤|y) = N (µ⇤,⌃⇤⇤), where

µ⇤ = µ(x⇤) + K⇤n(Knn + �2I)�1(y � µX),

⌃⇤⇤ = K(x⇤,x⇤) � K⇤n(Knn + �2I)�1KT
⇤n.

Model hyperparameters such as kernel hyperparameters and noise � are typically estimated by
Maximum Likelihood using standard numerical solvers such as LBFGS [35]. If no approximations
are used, each evaluation to optimize the log marginal likelihood function costs O(n3) flops and
O(n2) memory, thus motivating approximate methods for large training datasets.

2.1 Sparse Gaussian Processes

To overcome the scalability limitations of exact GPs, many authors have proposed a variety of sparse
GPs by introducing inducing points Z = {zi}mi=1 [17, 44, 47, 48, 49]. Inducing points are associated
with inducing values fm, which represent latent function values at Z under the same GP assumption.

2

Maybe works poorly with too few inducing points?
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Sparse GP Framework

Training (fX|fU) Test (f∗|fU)
DTC N (KXUK−1UUfU, 0) N (K∗UK−1UUfU, K̃∗∗)
FITC N (KXUK−1UUfU, diag(K̃XX)) N (K∗UK−1UUfU, K̃∗∗)
SVGP N (KXUK−1UUfU, K̃XX) N (K∗UK−1UUfU, K̃∗∗)
DCSVGP N (QXUQ−1

UUfU, K̃XX) N (Q∗UQ−1
UUfU, K̃∗∗)

Not obliged to capture conditional mean and covariance with
same kernels!
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What do we get?

Latent Function Training data Inducing points
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(a) Test NLL: 0.60, l: 0.85

SVGP with 10 inducing points

(b) Test NLL: -0.61, lmean: 0.27, lcovar: 2.15

DCSVGP with 10 inducing points (ours)
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(c) Test NLL: -0.90, l: 0.31

SVGP with 100 inducing points

�2 �1 0 1 2 3 4

(d) Test NLL: -0.93, lmean: 0.33, lcovar: 0.31

DCSVGP with 100 inducing points (ours)

Figure 1: We compare model fit on a 1D latent function using 100 training samples. Solid curves
with shading area depict the predictive mean and 95% confidence interval. Using 10 inducing points,
in subplot (a) SVGP underfits the latent function with large lengthscale l = 0.85; while in subplot

(b), our DCSVGP model (see Sec. 3.2) fits better and learns different decoupled lengthscales lmean
and lcovar. Using 100 inducing points, in subplot (c) and (d), both models fits well with similar
lengthscales around 0.3. See Sec. 1 for more details.

that increase the flexibility of these conditionals. In Sec. 3.2, we describe two concrete examples of
this idea: decoupling kernel lengthscales and decoupling entire deep feature extractors.

As a simple illustration, Fig. 1 illustrates, for example, how decoupled lengthscales improve model
fitting. Our model DCSVGP (see Sec. 3.2) learns decoupled lengthscales lmean and lcovar for mean
and covariance respectively, and we compare with baseline SVGP (see Sec. 2) which learns one
lengthscale l.

To summarize our contributions: 1) We propose decoupled conditionals in variational GPs to improve
model expressiveness for better accuracy. 2) We show that our idea is compatible with the variational
framework and rigorously derive an ELBO for variational inference with decoupled conditionals.
3) We provide two concrete examples of applying decoupled conditionals and empirically show the
superior performance of our models through extensive regression tasks and BO applications.

2 Background

We assume familiarity with GPs [38] and briefly introduce them for notational clarity. Given
observation locations X = {xi}

n
i=1 ⇢ Rd, a GP prior induces a multivariate Normal belief for

latent function values f = {f(xi)}: f ⇠ N (µX,Knn), where µX,Knn are the mean values and
covariance matrix at data X. Givend observations y = f + ✏ with Gaussian noise ✏ ⇠ N (0,�2I), the
posterior distribution of the function value f⇤ at a new data point x⇤ is p(f⇤|y) = N (µ⇤,⌃⇤⇤), where

µ⇤ = µ(x⇤) + K⇤n(Knn + �2I)�1(y � µX),

⌃⇤⇤ = K(x⇤,x⇤) � K⇤n(Knn + �2I)�1KT
⇤n.

Model hyperparameters such as kernel hyperparameters and noise � are typically estimated by
Maximum Likelihood using standard numerical solvers such as LBFGS [35]. If no approximations
are used, each evaluation to optimize the log marginal likelihood function costs O(n3) flops and
O(n2) memory, thus motivating approximate methods for large training datasets.

2.1 Sparse Gaussian Processes

To overcome the scalability limitations of exact GPs, many authors have proposed a variety of sparse
GPs by introducing inducing points Z = {zi}mi=1 [17, 44, 47, 48, 49]. Inducing points are associated
with inducing values fm, which represent latent function values at Z under the same GP assumption.
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Zhu, Wu, Maus, Gardner, B, NeurIPS 2023

Decoupling mean and covariance approximation (via separate
length scales for predictive mean and covariance).
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Concluding notes

• Common idea: approximate kernel approximations via a
few inducing points

• Reduces cost of fitting the approximation and
computation of predictive mean and variance

• Different “glasses” give different approaches to inducing
points

• NLA: Pivoted factorizations!
• Function approximation: Forward selection
• Distribution approximation: Variational inference

Refs: Zhu, Gardner, B, NeurIPS 2022 Workshop on GPs;
Zhu, Wu, Maus, Gardner, B, NeurIPS 2023
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