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Kernel-Based Regression: Four Stories

Feature map Data-dependent basis
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Basic ingredient: Gaussian Processes (GPs)
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Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over

R: Normal(u,o?), p,0% € R
R™ Normal(u,C), weR",Ce RM™"
RY = R:  GP(u,R), p:RISR R:RIxRT - R

More technically, define GPs by looking at finite sets of points:

VX = (X1,...,X%), X; € RY,
have fx ~ N(ux, Kxx), where
fx €R", (fx)i = f(x)
px € R (mx)i = p(xi)
Kxx € R™M (Kxx)ij = R(Xi, X;)



Being Bayesian
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Let Y = (Y4, Y2) ~ N(O, K). Given Yq = y4, what is Y5?
Posterior distribution: (Y2]Y1 = u1) ~ N(w, S) where

w = K K3;'ys
S = Kz — KnKq;'Kn



Being Bayesian

Consider a (zero-mean) GP prior with kernel k:

Measure at X with noise, apply Bayes to get posterior:

(Fly =fx + €) ~ GP(u, k)

where
u(x) = ke, Kyc=y
R(x,y) = R(X, X) — kexKxy Rxy
Kyx = Kix 4 1l
Specifically,

(FOONY = fi+ €) ~ N (R, k(x, X) = RoRigl )



Scandalous Scaling

Can we go faster than the naive costs?

- Fitting and hyperparameter selection: O(N?)
- Evaluating: O(N)
- Evaluating uncertainty: O(N?)

Idea: Approximate via m < N inducing points.



Where Do We Go Now?

- (Corrected) Nystrom matrix and operator approximation
- Matrix and quasimatrix forward selection

- Getting the right predictive uncertainty



(Corrected) Nystrom

Approximate via inducing points U C X:
Kyx -+ nl ~ KxuKp Kux + D,

where D = gl (SoR), or plus some additional correction (FITC).
A good exercise: solve (KXUKU&KUX + D)c =y by

D71/2KXU )\ D71/2y
Kuu oo

- Recover ¢ = D™'(y — Kyy) if desired

« Minimize

+ Prediction KKy Kuxc = Kxu.

Can be a good preconditioner even when not great alone.
Things like log determinants are also simple to compute.



Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky
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Diagonal element: 1.00e+00
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 511e-04
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 418e-05
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 8.54e-07
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 3.58e-07
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Greedy Selection and Choosy Cholesky

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.92e-07
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Greedy Selection and Choosy Cholesky

What if we can choose new sample points (or fake data)?

- Continuous pivoted Cholesky: next point maximizes the
posterior variance:

V(X) = Ruw — RexKig) R

- Same optimization, just over continuous vs discrete set!
- Limiting case of several Bayesian optimization methods

- May want to re-optimize kernel hypers between samples
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Function Values?

- So far, focused on approximating kernel matrix/operator.
- ... but we did not use the observations fx!

- What if we focus on approximating fx?
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Forward Selection

Goal:
minimize ||Kxy¢ — fx||* over U C X of size m,c € R™

Stepwise regression with forward selection:

- Initialize r = fx
- Select next point u to maximize |k, r|/||kxul|?

- Update residual and repeat

Similar to pivoted QR on [fx KXX]
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Continuous Forward Selection

- Why not choose U ¢ X?

- Gradient-based maximization of [k}, r|/||Rxull-
- Use a discrete set U of starting guesses

- Given initial guess (e.g. from greedy approach) can refine
with variable projection approach:

min |1 — KxuKy )l

See Zhu, Gardner, B, NeurlPS 2022 Workshop on GPs.
(Also: Cornell CS 4220 project 3, Spring 2022)
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What About the Distribution?

- Started focused on approximating kernel matrix/operator.
- Then we paid direct attention to sy ~ fx.

- What about trying to match the uncertainty (v(x))?
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Probabilistic Perspective

Usual GP inference:

- Prior p(fx, f+) on training values and test values
- Condition on observations y

- Marginalize out fx
Inducing points:

- Prior p(fx, f«, u) on training, test, inducing values
- Assume conditional independence of fy, fi given u

- Marginalize out fx and u

Perspective unifies many inducing point schemes
(Quinonera-Candela and Rasmussen, 2006).



Sparse GP framework

| Training (fx|fu) Test (f|fu)
DTC | N(KxuKfu, 0) N (KuuKgifu, Kax)
FITC | N(KwKpifu, diag(Kxx)) N (KeuKpifu, Kes)
SVGP | N (KxuKyyfu, Kxx) N (KeuKyfus K )




Variational Inference

Desiderata: choos inducing point locations (and other params)
to maximize log-likelihood log p(y) - but hard!

Basic idea:

p(y) = / PP ()
pYIfu) = / PP ()

Jensen'’s inequality
ogp(yfu) > | log PRI

Yields evidence lower bound — maximize that. Like minimizing
KL divergence between true posterior and parametric
approximation.

(See Blei, Kucukelbir, McAuliffe, 2018)



Variational GPs

(a) Test NLL: 0.60, I: 0.85

9 e SVGP with 10 inducing points
1
0

(c) Test NLL: -0.90, : 0.31

2 === SVGP with 100 inducing points
1
0 s
-1
-2 -1 0 1 2 3 4

Maybe works poorly with too few inducing points?
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Sparse GP Framework

Training (fx|fu) Test (f«|fu)
DTC N (KxuKy)fu, 0) N (KeuKggfu, Kex)
FITC N (KxuKyifu, diag(Kxx)) N (KeuKylfus Kee)
SVGP N (KxuKyifus Kxx) N KKy fu, K )
DCSVGP | N(QuuQy/fu, Kxx) N (QuuQyfu, Kix)

Not obliged to capture conditional mean and covariance with
same kernels!
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What do we get?

(a) Test NLL: 0.60, [: 0.85 (b) Test NLL: -0.61, Imean: 0.27. lcovar: 2.15
2 —— SVGP with 10 inducing points —— DCSVGP with 10 inducing points (ours)
| N
0
-1
(c) Test NLL: -0.90, I: 0.31 (d) Test NLL: -0.93, Imean: 0.33, lcovar: 0.31
2 —— SVGP with 100 inducing points —— DCSVGP with 100 inducing points (ours)
1
0
-1
-2 -1 0 1 2 3 4 ! -1 0 1 2 3 i
Latent Function Training data Inducing points

Zhu, Wu, Maus, Gardner, B, NeurlPS 2023

Decoupling mean and covariance approximation (via separate
length scales for predictive mean and covariance).
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Concluding notes

- Common idea: approximate kernel approximations via a
few inducing points

- Reduces cost of fitting the approximation and
computation of predictive mean and variance

- Different “glasses” give different approaches to inducing
points
- NLA: Pivoted factorizations!
- Function approximation: Forward selection
- Distribution approximation: Variational inference

Refs: Zhu, Gardner, B, NeurlPS 2022 Workshop on GPs;
Zhu, Wu, Maus, Gardner, B, NeurlPS 2023
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