Linear Algebra Perspectives on Inducing Point Selection

David Bindel 14 May 2024

Collaborators

Jake Gardner (U Penn)

Xinran Zhu (Cadence)

(+ many other past collaborators)

Kernel-Based Regression: Four Stories

Basic ingredient: Gaussian Processes (GPs)

3

Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over

$$\begin{array}{ll} \mathbb{R}: & \text{Normal}(\mu, \sigma^2), \quad \mu, \sigma^2 \in \mathbb{R} \\ \mathbb{R}^n: & \text{Normal}(\mu, C), \quad \mu \in \mathbb{R}^n, C \in \mathbb{R}^{n \times n} \\ \mathbb{R}^d \to \mathbb{R}: & \text{GP}(\mu, k), \qquad \mu : \mathbb{R}^d \to \mathbb{R}, \, k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \end{array}$$

More technically, define GPs by looking at finite sets of points:

$$\forall X = (x_1, \dots, x_n), x_i \in \mathbb{R}^d,$$

have $f_X \sim N(\mu_X, K_{XX})$, where
 $f_X \in \mathbb{R}^n, \quad (f_X)_i \equiv f(x_i)$
 $\mu_X \in \mathbb{R}^n, \quad (\mu_X)_i \equiv \mu(x_i)$
 $K_{XX} \in \mathbb{R}^{n \times n}, \quad (K_{XX})_{ij} \equiv k(x_i, x_j)$

Being Bayesian

Let $Y = (Y_1, Y_2) \sim N(0, K)$. Given $Y_1 = y_1$, what is Y_2 ?

Posterior distribution: $(Y_2|Y_1 = u_1) \sim N(w, S)$ where

$$w = K_{21}K_{11}^{-1}y_1$$

S = K_{22} - K_{21}K_{11}^{-1}K_{12}

Consider a (zero-mean) GP prior with kernel k:

 $f\sim \mathrm{GP}(0,k)$

Measure at X with noise, apply Bayes to get posterior:

$$(f | y = f_X + \epsilon) \sim \operatorname{GP}(\mu, \tilde{k})$$

where

$$\mu(x) = k_{XX}c, \quad \hat{k}_{XX}c = y$$
$$\tilde{k}(x, y) = k(x, x) - k_{XX}\hat{k}_{XX}^{-1}k_{Xy}$$
$$\hat{k}_{XX} = K_{XX} + \eta I$$

Specifically,

$$(f(x)|y = f_X + \epsilon) \sim N\left(k_{XX}c, k(x, x) - k_{XX}\hat{K}_{XX}^{-1}k_{XX}\right)$$

Can we go faster than the naive costs?

- Fitting and hyperparameter selection: $O(N^3)$
- Evaluating: O(N)
- Evaluating uncertainty: $O(N^2)$

Idea: Approximate via $m \ll N$ inducing points.

- \cdot (Corrected) Nyström matrix and operator approximation
- Matrix and quasimatrix forward selection
- Getting the right predictive uncertainty

Approximate via inducing points $U \subset X$:

 $K_{XX} + \eta I \approx K_{XU} K_{UU}^{-1} K_{UX} + D,$

where $D = \eta I$ (SoR), or plus some additional correction (FITC).

A good exercise: solve $(K_{XU}K_{UU}^{-1}K_{UX} + D)c = y$ by

• Minimize
$$\left\| \begin{bmatrix} D^{-1/2} K_{XU} \\ K_{UU} \end{bmatrix} \lambda - \begin{bmatrix} D^{-1/2} y \\ 0 \end{bmatrix} \right\|$$

- Recover $c = D^{-1}(y K_{XU}\lambda)$ if desired
- Prediction $K_{XU}K_{UU}^{-1}K_{UX}c = K_{XU}\lambda$.

Can be a good preconditioner even when not great alone. Things like log determinants are also simple to compute.

Diagonal element: 6.77e-02

Diagonal element: 5.11e-04

Diagonal element: 4.18e-05

Diagonal element: 8.54e-07

What if we can choose new sample points (or fake data)?

• Continuous pivoted Cholesky: next point maximizes the posterior variance:

$$v(x) = k_{XX} - k_{XX}\hat{k}_{XX}^{-1}k_{XX}$$

- · Same optimization, just over continuous vs discrete set!
- Limiting case of several Bayesian optimization methods
- May want to re-optimize kernel hypers between samples

- $\cdot\,$ So far, focused on approximating kernel matrix/operator.
- ... but we did not use the observations f_X !
- What if we focus on approximating f_X ?

Goal:

minimize $||K_{XU}c - f_X||^2$ over $U \subset X$ of size $m, c \in \mathbb{R}^m$

Stepwise regression with forward selection:

- Initialize $r = f_X$
- Select next point *u* to maximize $|k_{Xu}^T r| / ||k_{Xu}||^2$
- Update residual and repeat

Similar to pivoted QR on $\begin{bmatrix} f_X & K_{XX} \end{bmatrix}$.

Continuous Forward Selection

- Why not choose $U \not\subset X$?
 - Gradient-based maximization of $|k_{\chi u}^T r| / ||k_{\chi u}||$.
 - Use a discrete set \hat{U} of starting guesses
- Given initial guess (e.g. from greedy approach) can refine with variable projection approach:

$$\min_{U} \| (I - K_{XU} K_{XU}^{\dagger}) f_X \|^2$$

See Zhu, Gardner, B, NeurIPS 2022 Workshop on GPs. (Also: Cornell CS 4220 project 3, Spring 2022)

- Started focused on approximating kernel matrix/operator.
- Then we paid direct attention to $s_X \approx f_X$.
- What about trying to match the uncertainty (v(x))?

Usual GP inference:

- Prior $p(f_X, f_*)$ on training values and test values
- Condition on observations y
- Marginalize out *f_X*

Inducing points:

- Prior $p(f_X, f_*, u)$ on training, test, *inducing* values
- Assume conditional independence of f_X, f_* given u
- Marginalize out f_X and u

Perspective unifies many inducing point schemes (Quiñonera-Candela and Rasmussen, 2006).

	Training $(f_X f_U)$	Test $(f_* f_U)$
DTC	$\mathcal{N}(K_{XU}K_{UU}^{-1}f_U,0)$	$\mathcal{N}(K_{*U}K_{UU}^{-1}f_U, \tilde{K}_{**})$
FITC	$\mathcal{N}(K_{XU}K_{UU}^{-1}f_U, \operatorname{diag}(\widetilde{K}_{XX}))$	$\mathcal{N}(K_{*U}K_{UU}^{-1}f_U, \tilde{K}_{**})$
SVGP	$\mathcal{N}(K_{XU}K_{UU}^{-1}f_U, \tilde{K}_{XX})$	$\mathcal{N}(K_{*U}K_{UU}^{-1}f_U, \tilde{K}_{**})$

Variational Inference

Desiderata: choos inducing point locations (and other params) to maximize log-likelihood $\log p(y)$ – but hard!

Basic idea:

$$p(y) = \int p(y|f_X)p(f_X)$$
$$p(y|f_U) = \int p(y|f_X)p(f_X|f_U)$$

Jensen's inequality

$$\log p(y|f_U) \ge \int \log p(y|f_X) p(f_X|f_U)$$

Yields *evidence lower bound* – maximize that. Like minimizing KL divergence between true posterior and parametric approximation.

(See Blei, Kucukelbir, McAuliffe, 2018)

Variational GPs

Maybe works poorly with too few inducing points?

		Training $(f_X f_U)$	Test $(f_* f_U)$	
[DTC	$\mathcal{N}(K_{XU}K_{UU}^{-1}f_U,0)$	$\mathcal{N}(K_{*U}K_{UU}^{-1}f_U, \tilde{K}_{**})$	
F	ITC	$\mathcal{N}(K_{XU}K_{UU}^{-1}f_U, diag(\widetilde{K}_{XX}))$	$\mathcal{N}(K_{*U}K_{UU}^{-1}f_U, \widetilde{K}_{**})$	
S	SVGP	$\mathcal{N}(K_{XU}K_{UU}^{-1}f_U, \tilde{K}_{XX})$	$\mathcal{N}(K_{*U}K_{UU}^{-1}f_U, \tilde{K}_{**})$	
C	OCSVGP	$\mathcal{N}(Q_{XU}Q_{UU}^{-1}f_U, \tilde{K}_{XX})$	$\mathcal{N}(Q_{*U}Q_{UU}^{-1}f_U, \tilde{K}_{**})$	
Not obliged to capture conditional mean and covariance with				
same kernelsi				

Zhu, Wu, Maus, Gardner, B, NeurIPS 2023

Decoupling mean and covariance approximation (via separate length scales for predictive mean and covariance).

Concluding notes

- Common idea: approximate kernel approximations via a few inducing points
- Reduces cost of fitting the approximation and computation of predictive mean and variance
- Different "glasses" give different approaches to inducing points
 - NLA: Pivoted factorizations!
 - Function approximation: Forward selection
 - Distribution approximation: Variational inference

Refs: Zhu, Gardner, B, NeurIPS 2022 Workshop on GPs; Zhu, Wu, Maus, Gardner, B, NeurIPS 2023